CEA
CNRS
Univ. Paris-Saclay

Service de Physique de l'Etat Condensé

Conversion de l'énergie thermoélectrique en nanofluides pour un capteur de chaleur solaire hybride
Thermoelectric energy conversion in nanofluids for hybrid solar heat & power generator

Spécialité

Physique des matériaux

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

08/05/2024

Durée

6 mois

Poursuite possible en thèse

oui

Contact

NAKAMAE Sawako
+33 1 69 08 75 38/93 07

Résumé/Summary
Dans le cadre du stage expérimental proposé, nous étudierons les lois fondamentales de la physique qui sous-tendent les propriétés optiques, thermiques et thermoélectriques des nanofluides. En parallèle, l'optimisation et la validation de dispositifs hybrides solaires-capteurs de démonstration seront menées afin de montrer la faisabilité de la cogénération de chaleur et d'électricité afin de montrer la faisabilité de la cogénération de chaleur et d'électricité.
In proposed experimental internship, we will investigate the fundamental laws of physics behind the optical, thermal and thermoelectric properties of nanofluids. In parallel, the optimization and validation of the proof-of-concept hybrid solar-collector devices
will be conducted in order to demonstrate the co-generation feasibility of heat and electricity.
Sujet détaillé/Full description
Les matériaux thermoélectriques (TE) capables de convertir la chaleur en électricité sont considérés comme une solution possible pour récupérer la chaleur fatale provenant du flux de déchets industriels, de moteurs, d’appareils électroniques ménagers ou de la chaleur corporelle. Depuis plusieurs années, au sein du laboratoire SPHYNX nous explorons les effets thermoélectriques dans les nanofluides ioniques, où des nanoparticules chargées électriquement servent à la fois de porteurs de chaleur et d'électricité. Contrairement aux matériaux solides, plusieurs effets TE interdépendants se produisent dans ces fluides, en donnant des valeurs du coefficient thermoélectrique généralement supérieures d'un ordre de grandeur à celles des semiconducteurs solides. De plus, les liquides thermoélectriques sont constitués de matières premières abondantes, et ils font l'objet d'une attention particulière en tant que futurs matériaux TE peu coûteux et écologiques. Alors que les origines précises des phénomènes thermoélectriques dans ces fluides sont encore débattues, nos résultats expérimentaux indiquent que les natures physico-chimiques d’interface particule-liquide y jouent un rôle décisif.

L'objectif du projet est double. Premièrement, nous étudierons les mécanismes thermodynamiques sous-jacents à la production du potentiel thermoélectrique dans les nanofluides par mesures systématiques du coefficient Seebeck et le courant électrique produit. Il s'agit de la production de l'entropie de transfert d'Eastman de nanoparticules sous les gradients de concentration, de température et de potentiel électrique. Les résultats seront comparés à leur propriétés thermo-diffusives et absorptions optiques étudiées par ailleurs dans le cadre d'actions de collaboration. Deuxièmement, le projet vise à utiliser les fluides plus prometteurs dans les capteurs hybrides solaires-thermoélectriques prototypes développés actuellement et de les optimiser pour démontrer leur capacité à cogénérer de la chaleur et de l'électricité. Le projet de recherche proposé est principalement expérimental, impliquant des mesures thermoélectriques, thermiques et électrochimiques ; la mise en place d'un système d'acquisition de données automatisé et l'analyse des données obtenues. Des notions de thermodynamique, de physique des fluides et de physique de l'ingénierie (des dispositifs), ainsi que des connaissances pratiques sur la manipulation des dispositifs de laboratoire sont souhaitées. Des connaissances de base en optique et en électrochimie sont un plus mais pas obligatoires. Pour les étudiants motivés, des simulations numériques utilisant des logiciels CFD commerciaux aussi bien que les mesures d'absorption optique au laboratoire partenaire (INO/CNR, Florence, Italie) peuvent également être envisagées.
Today, much of world’s consumed energy is lost to waste heat through all levels of human activity. For example, thermal loss consists 20 to 50 % of total energy consumption across different industrial sectors and as high as 60-70% in current gasoline and/or diesel powered. In such context, if even a small fraction of ‘waste-heat’ could be converted into more useful forms of energy (e.g., electrical, mechanical, etc.), it would result in tremendous savings to global energy consumption. Thermoelectric (TE) materials that are capable of converting heat into electricity have been considered as one possible solution to recover the low-grade waste-heat (from industrial waste-stream, motor engines, household electronic appliances or body-heat). The thermoelectric effect (the Seebeck effect) describes a material’s intrinsic property to directly convert temperature difference (dT) applied across its body into electric voltage (dV) and vice-versa; dV = -SedT, where Se is known as “the Seebeck coefficient.” So far, solid semiconductor-based materials are known to possess the highest thermal-to-electrical energy conversion efficiency, which is often expressed as a function of a dimensionless parameter ZT, called “figure of merit”: ZT = Se^2 T(s/k) where s and k are the electrical and thermal conductivities.

At SPHYNX, we explore thermoelectric effects in an entirely different class of materials, namely, complex fluids containing electrically charged nanoparticles that serve as both heat and electricity carriers. Unlike in solid materials, there are several inter-dependent TE effects taking place in liquids, resulting in Se values that are generally an order of magnitude larger than the semiconductor counterparts. While the precise origins of high Seebeck coefficients in these fluids are still debated, such liquids are already attracting attention as future TE-materials that are low-cost and environmentally friendly. One promising example of TE liquids is found in a hybrid solar collector capable for the co-generation of heat and electricity. The goal of this internship and the subsequent PhD project is two-fold. First, we will investigate the underlying laws of thermodynamic mechanisms behind the thermoelectric potential and power generation and other associated phenomena in nanofluids. More specifically, we are interested in how the particles' Eastman entropy of transfer is produced under the influence of thermal, electrical and concentration gradients. The results will be compared to their thermos-diffusive and optical abosrption properties to be obtained through research collaborations. Second, the project aims to test the promising nanofluids in the proof-of-concept hybrid solar-collector devices currently developed within the group to demonstrate the co-generation capability of heat and electricity. The hybrid device optimization is also within the project's scope. The proposed research project is primarily experimental, involving thermos-electrical, thermal and electrochemical measurements; implementation of automated data acquisition system and analysis of the resulting data obtained. The notions of thermodynamics, fluid physics and engineering (device) physics, as well as hands-on knowledge of experimental device manipulation are needed. Basic knowledge of optics and electrochemistry is a plus. For motivated students, numerical simulations using commercial CFD software, as well as the optical absorption measurements at the partner lab (LNO/CNR, Florence, Italy) can also be envisaged.
Mots clés/Keywords
Thermodynamique, thermoélectricité
Thermodynamics, thermoelectricity
Compétences/Skills
Mesures de transport Caractérisation électrochimique Absorption/extinction optique (en option)
Transport measurements Electrochemical characterization Optical absorption/extinction (optional)
Logiciels
LabView MatLab Origin

 

Retour en haut