CEA
CNRS
Univ. Paris-Saclay

Service de Physique de l'Etat Condensé

Conversion de l'énergie thermoélectrique en nanofluides pour un capteur de chaleur solaire hybride
Thermoelectric energy conversion in nanofluids for hybrid solar heat & power generator

Spécialité

Physique des matériaux

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

08/05/2024

Durée

6 mois

Poursuite possible en thèse

oui

Contact

NAKAMAE Sawako
+33 1 69 08 75 38/93 07

Résumé/Summary
Dans le cadre du stage expérimental proposé, nous étudierons les lois fondamentales de la physique qui sous-tendent les propriétés optiques, thermiques et thermoélectriques des nanofluides. En parallèle, l'optimisation et la validation de dispositifs hybrides solaires-capteurs de démonstration seront menées afin de montrer la faisabilité de la cogénération de chaleur et d'électricité afin de montrer la faisabilité de la cogénération de chaleur et d'électricité.
In proposed experimental internship, we will investigate the fundamental laws of physics behind the optical, thermal and thermoelectric properties of nanofluids. In parallel, the optimization and validation of the proof-of-concept hybrid solar-collector devices
will be conducted in order to demonstrate the co-generation feasibility of heat and electricity.
Sujet détaillé/Full description
Les matériaux thermoélectriques (TE) capables de convertir la chaleur en électricité sont considérés comme une solution possible pour récupérer la chaleur fatale provenant du flux de déchets industriels, de moteurs, d’appareils électroniques ménagers ou de la chaleur corporelle. Depuis plusieurs années, au sein du laboratoire SPHYNX nous explorons les effets thermoélectriques dans les nanofluides ioniques, où des nanoparticules chargées électriquement servent à la fois de porteurs de chaleur et d'électricité. Contrairement aux matériaux solides, plusieurs effets TE interdépendants se produisent dans ces fluides, en donnant des valeurs du coefficient thermoélectrique généralement supérieures d'un ordre de grandeur à celles des semiconducteurs solides. De plus, les liquides thermoélectriques sont constitués de matières premières abondantes, et ils font l'objet d'une attention particulière en tant que futurs matériaux TE peu coûteux et écologiques. Alors que les origines précises des phénomènes thermoélectriques dans ces fluides sont encore débattues, nos résultats expérimentaux indiquent que les natures physico-chimiques d’interface particule-liquide y jouent un rôle décisif.

L'objectif du projet est double. Premièrement, nous étudierons les mécanismes thermodynamiques sous-jacents à la production du potentiel thermoélectrique dans les nanofluides par mesures systématiques du coefficient Seebeck et le courant électrique produit. Il s'agit de la production de l'entropie de transfert d'Eastman de nanoparticules sous les gradients de concentration, de température et de potentiel électrique. Les résultats seront comparés à leur propriétés thermo-diffusives et absorptions optiques étudiées par ailleurs dans le cadre d'actions de collaboration. Deuxièmement, le projet vise à utiliser les fluides plus prometteurs dans les capteurs hybrides solaires-thermoélectriques prototypes développés actuellement et de les optimiser pour démontrer leur capacité à cogénérer de la chaleur et de l'électricité. Le projet de recherche proposé est principalement expérimental, impliquant des mesures thermoélectriques, thermiques et électrochimiques ; la mise en place d'un système d'acquisition de données automatisé et l'analyse des données obtenues. Des notions de thermodynamique, de physique des fluides et de physique de l'ingénierie (des dispositifs), ainsi que des connaissances pratiques sur la manipulation des dispositifs de laboratoire sont souhaitées. Des connaissances de base en optique et en électrochimie sont un plus mais pas obligatoires. Pour les étudiants motivés, des simulations numériques utilisant des logiciels CFD commerciaux aussi bien que les mesures d'absorption optique au laboratoire partenaire (INO/CNR, Florence, Italie) peuvent également être envisagées.
Today, much of world’s consumed energy is lost to waste heat through all levels of human activity. For example, thermal loss consists 20 to 50 % of total energy consumption across different industrial sectors and as high as 60-70% in current gasoline and/or diesel powered. In such context, if even a small fraction of ‘waste-heat’ could be converted into more useful forms of energy (e.g., electrical, mechanical, etc.), it would result in tremendous savings to global energy consumption. Thermoelectric (TE) materials that are capable of converting heat into electricity have been considered as one possible solution to recover the low-grade waste-heat (from industrial waste-stream, motor engines, household electronic appliances or body-heat). The thermoelectric effect (the Seebeck effect) describes a material’s intrinsic property to directly convert temperature difference (dT) applied across its body into electric voltage (dV) and vice-versa; dV = -SedT, where Se is known as “the Seebeck coefficient.” So far, solid semiconductor-based materials are known to possess the highest thermal-to-electrical energy conversion efficiency, which is often expressed as a function of a dimensionless parameter ZT, called “figure of merit”: ZT = Se^2 T(s/k) where s and k are the electrical and thermal conductivities.

At SPHYNX, we explore thermoelectric effects in an entirely different class of materials, namely, complex fluids containing electrically charged nanoparticles that serve as both heat and electricity carriers. Unlike in solid materials, there are several inter-dependent TE effects taking place in liquids, resulting in Se values that are generally an order of magnitude larger than the semiconductor counterparts. While the precise origins of high Seebeck coefficients in these fluids are still debated, such liquids are already attracting attention as future TE-materials that are low-cost and environmentally friendly. One promising example of TE liquids is found in a hybrid solar collector capable for the co-generation of heat and electricity. The goal of this internship and the subsequent PhD project is two-fold. First, we will investigate the underlying laws of thermodynamic mechanisms behind the thermoelectric potential and power generation and other associated phenomena in nanofluids. More specifically, we are interested in how the particles' Eastman entropy of transfer is produced under the influence of thermal, electrical and concentration gradients. The results will be compared to their thermos-diffusive and optical abosrption properties to be obtained through research collaborations. Second, the project aims to test the promising nanofluids in the proof-of-concept hybrid solar-collector devices currently developed within the group to demonstrate the co-generation capability of heat and electricity. The hybrid device optimization is also within the project's scope. The proposed research project is primarily experimental, involving thermos-electrical, thermal and electrochemical measurements; implementation of automated data acquisition system and analysis of the resulting data obtained. The notions of thermodynamics, fluid physics and engineering (device) physics, as well as hands-on knowledge of experimental device manipulation are needed. Basic knowledge of optics and electrochemistry is a plus. For motivated students, numerical simulations using commercial CFD software, as well as the optical absorption measurements at the partner lab (LNO/CNR, Florence, Italy) can also be envisaged.
Mots clés/Keywords
Thermodynamique, thermoélectricité
Thermodynamics, thermoelectricity
Compétences/Skills
Mesures de transport Caractérisation électrochimique Absorption/extinction optique (en option)
Transport measurements Electrochemical characterization Optical absorption/extinction (optional)
Logiciels
LabView MatLab Origin
Fissures rapides dans les verres : développement d’une mesure électrique pour le suivi submicroseconde de la dynamique
Dynamic fracture in glass: development of experimental setup & protocol

Spécialité

Résistance des matériaux

Niveau d'étude

Bac+4/5

Formation

Master 2

Unité d'accueil

Candidature avant le

29/03/2024

Durée

6 mois

Poursuite possible en thèse

oui

Contact

ROUNTREE Cindy
+33 1 69 08 26 55

Résumé/Summary
Développement d'une mesure électrique pour le suive submicroseconde de la dynamique.
Development of potential drop method on oxide glass samples.
Sujet détaillé/Full description
Le verre est un matériau largement utilisé du fait de ces nombreux avantages : transparence, dureté, faible dilatation thermique, température du point de fusion élevée, relative inertie chimique, etc... Il présente néanmoins une faiblesse majeure : sa fragilité. Des sollicitations relativement modérées peuvent amener sa rupture brutale, sans signe avant-coureur.

La particularité de cette rupture brutale est la vitesse de propogation des fissures : de l’ordre de la vitesse du son soit le km/s dans le Plexiglass et jusqu’à 3 km/s dans les verres d’oxydes (verre à vitre). Les techniques traditionnelles (imagerie rapide par exemple) ne sont pas adaptés sur ces échelles de temps. Et de fait un certain nombre d’observations faites à haute vitesse continue d’échapper à notre compréhension : problème de fragmentation sous impact ou pourquoi un verre casse en mille morceaux et pas en deux !

La technique de chute de potentiel (potential drop method) permet a priori de suivre cette dynamique aux échelles de temps pertinentes. Il s’agit de déposer des fines bandes (quelques dizaines de nanomètres) de métal à la surface de l’échantillon considéré et d’utiliser un oscilloscope pour localiser les instants (à l’échelle de quelques dizaines de nanosecondes) de rupture de ces bandes lorsque la fissure se propage dans l’échantillon. Cette méthode a été utilisé avec succès sur des échantillons décimétriques de polymères (PMMA, polystyrène). Il s’agit maintenant de relever le défi de son extension sur des échantillons de verre d’oxydes (beaucoup plus rigide et de plus faible dimension).
L’objectif de ce stage est de mettre en place et qualifier la méthodologie appliquée sur le verre. Dans ce cadre, le stagiaire aura en charge :

- Concevoir la géométrie de bandes et le circuit électrique associé ;
- Réaliser les dépôts métalliques en salle blanche ;
- Réaliser les expériences de fracture dynamique ;
- Analyser et interpréter les signaux obtenus ;
- Qualifier la méthode en lien avec la littérature et les données connues en corrosion sous contraintes et fracture.

Ce stage sera l’opportunité de travailler avec des chercheurs du SPEC-SPHYNX sur le comportement mécanique de verre. Le SPEC est une unité mixte CEA / CNRS (UMR 3680 CEA-CNRS) menant des recherches autour de l’état condensé allant des technologies quantiques à la physique de la rupture. Il dispose en particulier d’une salle blanche à l’état de l’art et de plateformes expérimentales diverses. Dans ce contexte, le candidat aura l’occasion de manipuler les outils théoriques et expérimentaux utilisés dans le domaine de la science des matériaux, de la mécanique et de la physique de la rupture.
One of the most important materials today is glass, as such the United Nations Declared 2022 the International Year of the Glass (IYOG). IYOG2022 was not only to celebrate the importance of glass’s impact on our history, but also to usher in the Glass Age. In this new age, glasses will need to maintain their advantageous properties (transparency, hardness, low thermal expansion, high melting point temperature, relative chemical inertia, etc.), while also overcoming its major weakness: fragility. Relatively moderate stresses can cause glasses to break suddenly. These types of failures are typically associated with dynamic fracture, where a crack front propagates on the order of the speed of sound, i.e. 1 km/s in Plexiglas, and up to 3 km/s in oxide glass (window glass). Despite being well-known, quantifying and capturing a crack front’s movement in real time remains a challenge. For example, traditional techniques (such as rapid imaging) are not suited for these spatio-temporal scales, let alone other high speeds failure issues, including fragmentation under impact and why glass breaks into a thousand pieces and not two!

A promising technique to capture the dynamics of crack front at the relevant spatio-temporal scales is the potential drop method. This involves depositing thin strips (a few tens of nanometers) of metal on the sample surface. Subsequently, these strips are attached to an oscilloscope which empowers us to capture the precise time and position (on the scale of a few tens of nanoseconds and nanometers) at which one of the metal strips break as the crack propagates through the sample. This method has been successfully used on PMMA samples. The challenge herein is to extend the potential drop method to oxide glass samples (stiffer and smaller).

In this regard, the intern will have the unique opportunity to setup and qualify the experimental methodology applied to glasses. The intern will be responsible for:

• Designing the strip geometry and associated electrical circuit;
• Carry out metal deposition in a clean room;
• Perform dynamic fracture experiments;
• Analyze and interpret the signals obtained;
• Qualify the method in relation to the literature and known data on fracture.

The intern will be an opportunity to work with SPEC-SPHYNX researchers on the mechanical behavior of glass. SPEC is a joint CEA / CNRS unit (UMR 3680 CEA-CNRS) carrying out research into the condensed state, ranging from quantum technologies to fracture physics. In particular, it has a state-of-the-art clean room and various experimental platforms. In this context, the candidate will have the opportunity to manipulate theoretical and experimental tools used in the fields of materials science, mechanics and fracture physics.
Mots clés/Keywords
Verres, Fissures rapides
Glasses, Dynamic Fracture
Compétences/Skills
Salle blanche à l’état de l’art et de plateformes expérimentales diverses
Clean room, AFM, Traction machines, etc.
Logiciels
Python
Réponde d'un liquide à une marche ultra rapide de température

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+4/5

Formation

Master 2

Unité d'accueil

Candidature avant le

02/04/2024

Durée

5 mois

Poursuite possible en thèse

oui

Contact

HENOT Marceau
+33 1 69 08 73 36

Résumé/Summary
Ce stage, qui s'adresse à des étudiants de M1 ou M2, a pour objectif de mettre en œuvre un nouveau dispositif expérimental développé au SPHYNX afin d'étudier le comportement d'un liquide sous l'effet d'une marche ultra rapide de température.
Sujet détaillé/Full description
Le vieillissement physique correspond à l'évolution des propriétés des matériaux hors d'équilibre causée par des réarrangements structurels. Pour les matériaux vitreux, qui sont en pratique toujours coincés dans un état hors d'équilibre, ce phénomène peut avoir des conséquences importantes sur les performances à long terme du matériau, telles que la résistance mécanique ou les propriétés optiques.

Les liquides vitrifiables voient leur temps de relaxation de la structure augmenter considérablement lors du refroidissement ce qui les empêche en pratique de s’équilibrer sous une température Tg dite de transition vitreuse. Même au-dessus de Tg, il est possible de réaliser une expérience de vieillissement en appliquant une marche de température rapide, puis d’étudier la dynamique de rééquilibration du système à la nouvelle température. Lorsque l’amplitude de la marche est supérieure à quelques kelvins, la réponse du liquide est très non-linéaire en raison de la forte dépendance du temps de relaxation par rapport à la température. Ces expériences sont utiles pour mieux comprendre les phénomènes de relaxation de la structure dans les liquides loin de l'équilibre.

Un dispositif expérimental, développé récemment au sein du groupe SPHYNX, permet d’appliquer à un liquide dans un cryostat des changements de température de grande amplitude (plusieurs dizaines de Kelvins) et à des vitesses importantes (jusqu’à 10^5 K/s). La dynamique du liquide, à l’échelle moléculaire, peut être suivie en temps réel par spectroscopie diélectrique, c’est-à-dire en étudiant la réponse du liquide (polaire) à un champ électrique variable.

L’objectif de ce stage est de mettre en œuvre ce nouveau dispositif afin d’étudier expérimentalement la réponse de liquides à des marches de température de grande amplitude. Dans ce cadre, le/la stagiaire devra dans un premier temps prendre en main le dispositif expérimental, réaliser des échantillons en salle blanche et optimiser la précision et les possibilités du système de mesure (développé en Python et Arduino). Un travail axé sur des simulations numériques du comportement thermique de l’échantillon pourra également être mené. Une poursuite en thèse pourra être envisagée.
Compétences/Skills
Travail en salle blanche, spectroscopie diélectrique
Logiciels
Python, Arduino

 

Retour en haut