Thèse
Analyse multi-modale par résonance magnétique nucléaire in situ des phénomènes électrochimiques dans des prototypes de batteries commerciales
Chimie physique et électrochimie
Energie, thermique, combustion, écoulements
Le développement des technologies de stockage d’énergie électrochimique est impossible sans une compréhension à l’échelle moléculaire des processus tels qu’ils se produisent dans les dispositifs commerciaux pratiques. Certains aspects de la conception des batteries, tels que la composition chimique et l’épaisseur des électrodes, ainsi que la configuration des collecteurs et des languettes de courant, influencent les distributions de densité de courant électronique et ionique et déterminent les limites cinétiques du transport ionique à l’état solide. Ces effets, à leur tour, modulent les performances et la longévité globales des batteries. Pour ces raisons, les résultats des tests de piles boutons conventionnelles ne convergent souvent pas vers des cellules commerciales hautes performances. Les préoccupations de sécurité liées à la forte densité énergétique et aux composants inflammables des batteries constituent un autre sujet crucial pour la conversion des énergies fossiles aux énergies vertes.
La spectroscopie et l’imagerie par résonance magnétique nucléaire (RMN, IRM) sont exceptionnellement sensibles à l’environnement structurel et à la dynamique de la plupart des éléments présents dans les matériaux actifs des batteries.
Récemment, des méthodes de RMN et d’IRM à balayage de surface prêtes à l’emploi ont été introduites. Dans le cadre de la recherche électrochimique fondamentale, la fusion de deux concepts innovants et complémentaires au sein d’un dispositif multimodal (RMN-IRM) permettrait de proposer diverses solutions analytiques et des mesures fiables de la performance des batteries pour le monde universitaire et le secteur de l’énergie.
Ce projet vise à développer un cadre analytique avancé pour l’analyse in situ de phénomènes fondamentaux tels que le transport d’ions à l’état solide, l’intercalation et les transitions de phase associées, la dynamique du placage métallique, la dégradation des électrolytes et les défauts mécaniques dans les batteries Li-ion et Na-ion commerciales, dans diverses conditions de fonctionnement. Une gamme de capteurs multimodaux (RMN-IRM) sera développée et utilisée pour l’analyse approfondie des processus électrochimiques fondamentaux dans les cellules et les petits packs de batteries commerciaux.
La spectroscopie et l’imagerie par résonance magnétique nucléaire (RMN, IRM) sont exceptionnellement sensibles à l’environnement structurel et à la dynamique de la plupart des éléments présents dans les matériaux actifs des batteries.
Récemment, des méthodes de RMN et d’IRM à balayage de surface prêtes à l’emploi ont été introduites. Dans le cadre de la recherche électrochimique fondamentale, la fusion de deux concepts innovants et complémentaires au sein d’un dispositif multimodal (RMN-IRM) permettrait de proposer diverses solutions analytiques et des mesures fiables de la performance des batteries pour le monde universitaire et le secteur de l’énergie.
Ce projet vise à développer un cadre analytique avancé pour l’analyse in situ de phénomènes fondamentaux tels que le transport d’ions à l’état solide, l’intercalation et les transitions de phase associées, la dynamique du placage métallique, la dégradation des électrolytes et les défauts mécaniques dans les batteries Li-ion et Na-ion commerciales, dans diverses conditions de fonctionnement. Une gamme de capteurs multimodaux (RMN-IRM) sera développée et utilisée pour l’analyse approfondie des processus électrochimiques fondamentaux dans les cellules et les petits packs de batteries commerciaux.
SL-DRF-26-0079
date inconnue
Saclay
CEA
Direction de la Recherche Fondamentale
Institut rayonnement et matière de Saclay
Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie
Laboratoire Structure et Dynamique par Résonance Magnétique (LCF)