Théorie de la fonctionnelle de la densité moléculaire sous l’approximation du fluide de référence homogène

Le 27 février 2017
Types d’événements
Thèses ou HDR
Lu Ding
CEA Saclay
Le 27/02/2017

Manuscrit de la thèse


Résumé :

Les propriétés de solvatation jouent un rôle important dans les problèmes chimiques et biochimiques. La théorie fonctionnelle de la densité moléculaire (MDFT) est l’une des méthodes frontières pour évaluer ces propriétés, dans laquelle une fonction d’énergie libre de solvatation est minimisée pour un soluté arbitraire dans une boîte de solvant cubique périodique. Dans cette thèse, nous travaillons sur l’évaluation du terme d’excès de la fonctionnelle d’énergie libre sous l’approximation du fluide de référence homogène (HRF), équivalent à l’approximation de la chaîne hypernettée (HNC) dans la théorie des équations intégrales. Deux algorithmes sont proposés: le premier est une extension d’un algorithme précédent, qui permet de traiter le cas d’un solvant moléculaire à trois dimensions (en fonction de trois angles d’Euler) au lieu d’un solvant linéaire (selon deux angles); L’autre est un nouvel algorithme qui intègre le traitement de la convolution angulaire de l’équation Ornstein-Zernike (OZ) moléculaire dans MDFT, et en fait développe la densité du solvant et le gradient fonctionnel en harmoniques sphériques généralisées (GSHs). On montre que le nouvel algorithme est beaucoup plus rapide que le précédent. Les deux algorithmes sont appropriés pour des solutés arbitraires tridimensionnel dans l’eau liquide, et pour prédire l’énergie libre et la structure de solvatation d’ions et de molécules.

Mots clés : Fonctionnelle de la densité classique, Solvatation, Hypernetted-Chain, Équations intégrales.


Molecular Density Functional Theory under homogeneous reference fluid approximation

Abstract : Solvation properties play an important role in chemical and bio-chemical issues. The molecular density functional theory (MDFT) is one of the frontier numerical methods to evaluate these properties, in which the solvation free energy functional is minimized for an arbitrary solute in a periodic cubic solvent box. In this thesis, we work on the evaluation of the excess term of the free energy functional under the homogeneous reference fluid (HRF) approximation, which is equivalent to hypernetted-chain (HNC) approximation in integral equation theory. Two algorithms are proposed: the first one is an extension of a previously implemented algorithm, which makes it possible to handle full 3D molecular solvent (depending on three Euler angles) instead of linear solvent (depending on two angles); the other one is a new algorithm that integrates the molecular Ornstein-Zernike (OZ) equation treatment of angular convolution into MDFT, which in fact expands the solvent density and the functional gradient on generalized spherical harmonics (GSHs). It is shown that the new algorithm is much more rapid than the previous one. Both algorithms are suitable for arbitrary three-dimensional solute in liquid water, and are able to predict the solvation free energy and structure of ions and molecules.

Keywords: Integral equations, Classical density functional theory, Solvation, Hypernetted-Chain approximation.

NIMBE/LIONS