Thesis

Influence of ionization density in water on fluorescent solutes. Application to the detection of alpha radiation

Radiation-matter interactions
Instrumentation
The location and rapid identification, at a distance, of sources of alpha and beta particle emissions on surfaces or in wet cavities or solutions, in nuclear facilities undergoing decommissioning or to be cleaned up, is a real challenge.

The aim of the proposed PhD project is to develop a concept for the remote detection of fluorescence light from water radiolysis processes on molecules or nano-agents. Temporal characterization using fluorescence lifetime measurements will enable detection to be attributed to a type of radiation, depending on its linear energy transfer (LET). In the Bragg peak of alpha radiation, where the TEL is maximal, the ionization density due to this TEL influences the fluorescence lifetime. However, dose rate effects also need to be considered.

Molecules and nanoparticles that are candidates for forming fluorescent products and are sensitive to the ionization density and radicals produced in traces at very short times will be identified by guided bibliography work, then tested and compared by measurements. Spectral measurements (absorption and fluorescence) and fluorescence lifetimes of the corresponding fluorescent species will be carried out using the multi-channel (16-channel) TCSPC (Time Corelated Single Photon Counting) method. Ion beams or alpha particles from sealed sources will be used for proof-of-concept. Ion beams or alpha particles from sealed sources will be used for proof-of-concept in the CEA clean-up/dismantling program.
SL-DRF-25-0308
Master de Chimie Physique
October 1 2025
Paris-Saclay
Sciences Chimiques: Molécules, Matériaux, Instrumentation et Biosystèmes (2MIB)
Saclay
CEA
Direction de la Recherche Fondamentale
Institut rayonnement et matière de Saclay
Service Laboratoire Interactions, Dynamique et Lasers
Dynamique et Interactions en phase COndensée
CEA
Email:
CEA
Email: