Faits marquants scientifiques 2022

29 mars 2022

En 1905, l’interprétation théorique de l’effet photoélectrique (émission d’un électron suite à l’absorption d’un quantum de lumière, le photon) proposée par Einstein allait révolutionner la physique. Du fait de son extrême rapidité, ce processus fondamental a longtemps été considéré comme instantané. Ce n’est que depuis une dizaine d’années que le développement des sources de lumière ultrabrève et de la métrologie attoseconde* (1 as= 10-18 s) a permis d’accéder à l’aspect temporel de ce processus ultrarapide, souvent au détriment de l’aspect spatial.

Une expérience menée sur la plateforme ATTOLab au CEA Paris-Saclay par une collaboration française composée de chercheurs du CEA, du CNRS, de l'Université Paris-Saclay, de Sorbonne Université et de l'Université Lyon 1 a permis pour la première fois de reconstruire le film tridimensionnel d'un processus de photoémission, au niveau atomique et à l’échelle attoseconde.

La photoémission étant par ailleurs à la base des méthodes d'analyse spectroscopique parmi les plus fines, ces travaux ouvrent la voie à une compréhension approfondie des effets de corrélations électroniques dans la matière, depuis les atomes et les molécules jusqu’aux solides, et à l’œuvre notamment au cours des réactions chimiques.

25 février 2022

Les nanostructures magnétiques sont essentielles pour le stockage de données (MRAM, disque dur de haute densité) ou encore au sein de capteurs et actionneurs magnétiques. Pour sonder ce magnétisme local, le dichroïsme circulaire magnétique (MCD) et l'effet Kerr magnétique (MOKE) reposent tous deux sur l'absorption différentielle de la lumière selon le sens de sa polarisation circulaire (associée à des photons d'orientation de spin opposée). Cependant, la connaissance fine de leurs dynamiques à l'échelle de la femtoseconde reste encore largement à explorer.

La lumière peut aussi porter un second type de moment angulaire, dit "orbital", associé à des ondes électromagnétiques dont le front d'onde est hélicoïdal. Il a été montré qu'un dichroïsme hélicoïdal magnétique existe (réflexion différentielle de lumière portant des moments angulaires orbitaux opposés) et présente de multiples avantages. Cette méthode peut en particulier devenir une méthode de choix pour les études résolues en temps de structures magnétiques telles que les skyrmions ou les vortex magnétiques, dont la taille caractéristique (~1 µm) correspond à celle du front d'onde en hélice.

18 août 2022

En utilisant les impulsions lumineuses ultracourtes du laser à électrons libres FERMI à Trieste (Italie), une large collaboration de physiciens à laquelle participe une équipe du LIDYL, a pu étudier pour la première fois dans le domaine de l'ultraviolet extrême (UVX), l’interaction cohérente entre atomes et photons, phénomène quantique prédit théoriquement par Rabi, dès 1937.

L'expérience met en évidence le couplage cohérent obtenu entre un système à 2 niveaux (atome d'hélium) et le champ électromagnétique, à une énergie de 23.7 eV. Ce résultat ouvre la voie à l’exploration de phénomènes cohérents dans ce domaine des très courtes longueurs d'onde et à une échelle de temps jamais atteinte.



Retour en haut