Biophysique
logo_tutelle logo_tutelle 
Biophysique

Globules rouges chargés en hémoglobine

Dans les systèmes biologiques, l'intérieur des cellules est un milieu encombré. Cet encombrement peut provenir de la présence de macromolécules inertes ou non vis-à-vis des réactions biologiques (encombrement macromoléculaire) ou de la séquestration physique par des éléments tels que des réseaux de fibres et de membranes (confinement). Par rapport au in vitro, l’encombrement in vivo peut considérablement affecter le comportement des protéines et des acides nucléiques (conformation, stabilité, cinétique de repliement...). L’équipe biophysique s’intéresse à l'influence de l’encombrement de macromolécules sur : i) les conformations des protéines (influence de la pression, de polymère hydrophobes), la stabilité, la réduction de la mobilité et l’implication sur des facteurs physiologiques connexes, la transition bobine-hélice des chaînes polypeptidiques, ii) le repliement et la compaction des acides nucléiques, iii) les interactions entre les membranes cellulaires et diverses molécules (peptides, protéines telles que la dystrophine, ions, gaz), interactions qui sont à l’origine de nombreux processus biologiques (fonction musculaire, réparation des cassures double-brin de l’ADN). Un modèle bactérien est particulièrement étudié, la protéine Hfq qui affecte la dynamique du génome, en ayant des implications directes sur l’efficacité de la machinerie cellulaire (réplication, transcription, traduction). Sont notamment étudiés les interactions de membranes de phospholipides avec des nanopores, des protéines amyloïdes et des complexes contenant des fragments d’AND et des cations divalents (Lipoplexes) pouvant agir comme agent de thérapie génique. La diffraction de neutrons donne également accès à la structure cristallographique des protéines, en particulier lorsqu’elles sont deutérées.
Ces diverses études sont abordées via diverses méthodes de biochimie, de biologie moléculaire et de biophysique, dont les méthodes de diffusion statiques (DXPA et DNPA), de diffusion inélastiques des neutrons (diffusion quasi-élastique incohérente en utilisant la substitution isotopique, scans élastiques), de dynamique moléculaire, de dichroïsme circulaire (conventionnel ou sur synchrotron), de spectroscopie infrarouge, de rhéologie et l’imagerie (fluorescence, microscopie électronique ou microscopie de force atomique). L’étude des membranes est également abordée en surface par réflectivité de neutrons et de rayons X.

 
#3240 - Màj : 08/07/2020
Faits marquants scientifiques

Li Shi, Florent Carn, Arsen Goukassov, Eric Buhler, and François Boué

Mixing negatively charged polyelectrolyte (PEL) with positively charged gold nanoparticles (Au NPs) in aqueous solution results in electrostatics complexes of different shapes and compactness. Here, when complexing with a semirigid PEL hyaluronic acid (HA), we obtain crystals made of nanoparticles in a new region of the phase diagram, as evidenced by small-angle Xray scattering (SAXS). The Au NPs were initially well dispersed in solution; their size distribution is well controlled but does not need to be extremely narrow. The bacterial hyaluronic acid, polydispersed, is commercially available. Such rather simple materials and mixing preparation produce a highly ordered crystalline phase of electrostatic complexes. The details of the interactions between spherical nanoparticles and linear polymer chains remain to be investigated. In practice, it opens a completely new and unexpected method of complexation. It has high potential, in particular because one can take advantage of the versatility of Au NPs associated with the specificity of biopolymers, varied due to natural biodiversity.

https://dx.doi.org/10.1021/acs.langmuir.0c01064

Editors : Véronique Arluison and Frank Wien

This volume looks at the different spectroscopic and biophysical methods used by researchers to study the structure and folding of RNA, and to follow their interactions with proteins. The chapters in this book cover topics such as single-molecule spectroscopy of multiple RNA species; surface plasmon resonance, MS or microcalorimetry for investigating molecular interactions with RNA; FTIR, SAXS, SANS and SRCD spectroscopies to analyze RNA structure; use of fluorescent nucleotides to map RNA-binding sites on proteins surfaces or CryoEM; and much more. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.

Cutting-edge and comprehensive, RNA Spectroscopy: Methods and Protocols is a valuable resource for anyone interested in learning more about this developing field.

Aline Maire du Poset, Mikaela Börjesson, Céline Rameau, Claire Madeleine-Perdrillat, Adrien Lerbret, Camille Loupiac, Fabrice Cousin, Ali Assifaoui

We show here how the structure of polygalacturonate (polyGalA) hydrogels cross-linked by Ca2+ cations via external gelation controls the loading and release rate of beta-lactoglobulin (BLG), a globular protein. Hydrogels prepared from a polyGalA/BLG solution are found to be similar to those obtained from a polyGalA solution in our previous study (Maire du Poset et al. Biomacromolecules 2019, 20 (7), 2864–2872): they exhibit similar transparencies and gradients of mechanical properties and polyGalA concentrations. The nominal BLG/polyGalA ratio of the mixtures is almost recovered within the whole mixed hydrogel despite such strong concentration gradients, except in the part of the hydrogels with the largest mesh size, where more BLG proteins are present. This gradient enables one to tune the amount of protein loaded within the hydrogel. At a local scale, the proteins are distributed evenly within the hydrogel network, as shown by small-angle neutron scattering (SANS). The release of proteins from hydrogels is driven by Fickian diffusion, and the release rate increases with the mesh size of the network, with a characteristic time of a few hours. The specific structure of these polysaccharide-based hydrogels allows for control of both the dosage and the release rate of the loaded protein and makes them good candidates for use as oral controlled-delivery systems.

https://dx.doi.org/10.1021/acs.biomac.9b01722

 

Daniela Russo, Maya Dimova Lambreva, Christiane Alba Simionesco, Pierre Sebban,and Giuseppina Rea

Studies on the dynamical properties of photosynthetic membranes of land plants and purple bacteria have been previously performed by neutron spectroscopy, revealing a tight coupling between specific photochemical reactions and macromolecular dynamics. Here, we probed the intrinsic dynamics of biotechnologically useful mutants of the green alga Chlamydomonas reinhardtii by incoherent neutron scattering coupled with prompt chlorophyll fluorescence experiments. We brought to light that single amino acid replacements in the plastoquinone (PQ)-binding niche of the photosystem II D1 protein impair electron transport (ET) efficiency between quinones and confer increased flexibility to the host membranes, expanding to the entire cells. Hence, a more flexible environment in the PQ-binding niche has been associated to a less efficient ET.Asimilar function/dynamics relationship was also demonstrated in Rhodobacter sphaeroides reaction centers having inhibited ET, indicating that flexibility at the quinones region plays a crucial role in evolutionarily distant organisms. Instead, a different functional/dynamical correlation was observed in algal mutants hosting a single amino acid replacement residing in a D1 domain far from the PQ-binding niche. Noteworthy, this mutant displayed the highest degree of flexibility, and besides having a nativelike ET efficiency in physiological conditions, it acquired novel, to our knowledge, phenotypic traits enabling it to preserve a high maximal quantum yield of photosystem II photochemistry in extreme habitats. Overall, in the nanosecond timescale, the degree of the observed flexibility is related to the mutation site; in the picosecond timescale, we highlighted the presence of a more pronounced dynamic heterogeneity in all mutants compared to the native cells, which could be related to a marked chemically heterogeneous environment.

DOI : https://doi.org/10.1016/j.bpj.2019.03.029

 

D. Russo, A. De Angelis, A. Paciaroni, B. Frick, N. de Sousa, F. R. Wurm, and J. Teixeira

We investigate the relaxation dynamics of proteinpolymer conjugates by neutron scattering spectroscopy to understand to which extent the coating of a protein by a polymer can replace water in promoting thermal structural fluctuations. For this purpose, we compare the dynamics of proteinpolymer mixtures to that of conjugates with a variable number of polymers covalently attached to the protein. Results show that the flexibility of the protein is larger in proteinpolymer mixtures than in native protein or in conjugates, even in the dry state. Upon hydration, both the native protein and the conjugate show equivalent dynamics, suggesting that the polymer grafted on the protein surface adsorbs all water molecules.

http://dx.doi.org/10.1021/acs.langmuir.8b03636

A. Theodoratou, L.-T. Lee, J. Oberdisse and A. Aubert-Pouëssel, Langmuir 35(20) (2019) 6620.

Abstract :

Nanofilms of about 2 nm thickness have been formed at the air–water interface using functionalized castor oil (ICO) with cross-linkable silylated groups. These hybrid films represent excellent candidates for replacing conventional polymeric materials in biomedical applications, but they need to be optimized in terms of biocompatibility, which is highly related to protein adsorption. Neutron reflectivity has been used to study the adsorption of two model proteins, bovine serum albumin and lysozyme, at the silylated oil (ICO)–water interface in the absence and presence of salt at physiologic ionic strength and pH and at different protein concentrations. These measurements are compared to adsorption at the air–water interface. While salt enhances adsorption by a similar degree at the air–water and oil–water interfaces, the impact of the oil film is significant with adsorption at the oil–water interface 3–4-fold higher compared to that at the air–water interface. Under these conditions, the concentration profiles of the adsorbed layers for both proteins indicate multilayer adsorption. The thickness of the outer layer (oil side) is close to the dimension of the minor axis of the protein molecule, ∼30 Å, suggesting a sideway orientation with the long axis parallel to the interface. The inner layer extends to 55–60 Å. Interestingly, in all cases, the composition of the oil film remains intact without significant protein penetration into the film. The optimal adsorption on these nanofilms, 1.7–2.0 mg·m-2, is comparable to the results obtained recently on thick solid cross-linked films using a quartz crystal microbalance and atomic force microscopy, showing in particular that adsorption at these ICO film interfaces under standard physiological conditions is nonspecific. These results furnish useful information toward the elaboration of vegetable oil-based nanofilms in direct nanoscale applications or as precursor films in the fabrication of thicker macroscopic films for biomedical applications.

https://doi.org/10.1021/acs.langmuir.9b00186

"Dynamics properties of photosynthetic microorganisms probed by incoherent neutron scattering"
Daniela Russo, Maya Dimova Lambreva, Christiane Alba Simionesco, Pierre Sebban, and Giuseppina Rea
Biophysical Journal, 116 (9) (2019) 1759-1768

Studies on the dynamical properties of photosynthetic membranes of land plants and purple bacteria have been previously performed by neutron spectroscopy, revealing a tight coupling between specific photochemical reactions and macromolecular dynamics. Here, we probed the intrinsic dynamics of biotechnologically useful mutants of the green alga Chlamydomonas reinhardtii by incoherent neutron scattering coupled with prompt chlorophyll fluorescence experiments. We brought to light that single amino acid replacements in the plastoquinone (PQ)-binding niche of the photosystem II D1 protein impair electron transport (ET) efficiency between quinones and confer increased flexibility to the host membranes, expanding to the entire cells. Hence, a more flexible environment in the PQ-binding niche has been associated to a less efficient ET.Asimilar function/dynamics relationship was also demonstrated in Rhodobacter sphaeroides reaction centers having inhibited ET, indicating that flexibility at the quinones region plays a crucial role in evolutionarily distant organisms. Instead, a different functional/dynamical correlation was observed in algal mutants hosting a single amino acid replacement residing in a D1 domain far from the PQ-binding niche. Noteworthy, this mutant displayed the highest degree of flexibility, and besides having a nativelike ET efficiency in physiological conditions, it acquired novel, to our knowledge, phenotypic traits enabling it to preserve a high maximal quantum yield of photosystem II photochemistry in extreme habitats. Overall, in the nanosecond timescale, the degree of the observed flexibility is related to the mutation site; in the picosecond timescale, we highlighted the presence of a more pronounced dynamic heterogeneity in all mutants compared to the native cells, which could be related to a marked chemically heterogeneous environment.

Andrés Marcoleta, Frank Wien, Véronique Arluison, Rosalba Lagos, Rafael Giraldo
Bacterial Amyloids (2019)

Amyloids are supramolecular protein assemblies based on fibrillar arrangements of β‐sheets that were first found as linked to neurodegenerative and systemic human diseases. However, there is now overwhelming evidence on alternative roles of amyloids as functional assemblies and as epigenetic determinants of beneficial traits, both in Fungi and Metazoa. Bacteria also use amyloids as functional devices, mainly as extracellular scaffolds in biofilms, but there is increasing evidence for functional roles of amyloids in the bacterial cytosol, and these have enabled to engineer minimal models of a ‘generic’ amyloid disease. Amyloids are thus key players in the physiology of bacteria and versatile building blocks in synthetic biology.

 

Sophie Combet, Fabrice Cousin, Human Rezaei, Sylvie Noinville

Soluble oligomers of prion proteins (PrP), produced during amyloid aggregation, have emerged as the primary neurotoxic species, instead of the fibrillar end-products, in transmissible spongiform encephalopathies. However, whether the membrane is among their direct targets, that mediate the downstream adverse effects, remains a question of debate. Recently, questions arise from the formation of membrane-active oligomeric species generated during the β-aggregation pathway, either in solution, or in lipid environment. In the present study, we characterized membrane interaction of off-pathway oligomers from recombinant prion protein generated along the amyloid aggregation and compared to lipid-induced intermediates produced during lipid-accelerated fibrillation. Using calcein-leakage assay, we show that the soluble prion oligomers are the most potent in producing leakage with negatively charged vesicles. Binding affinities, conformational states, mode of action of the different PrP assemblies were determined by thioflavin T binding-static light scattering experiments on DOPC/DOPS vesicles, as well as by FTIR-ATR spectroscopy and specular neutron reflectivity onto the corresponding supported lipid bilayers. Our results indicate that the off-pathway PrP oligomers interact with lipid membrane via a distinct mechanism, compared to the inserted lipid-induced intermediates. Thus, separate neurotoxic mechanisms could exist following the puzzling intermediates generated in the different cell compartments. These results not only reveal an important regulation of lipid membrane on PrP behavior but may also provide clues for designing stage-specific and prion-targeted therapy.

https://doi.org/10.1016/j.bbamem.2018.12.001

 

 

Retour en haut