Caractérisation de matériaux pour l'énergie / Characterization of materials for energy

Les différentes filières énergétiques, telles que l'énergie nucléaire ou encore les nouvelles technologies autour de l'hydrogène, vecteur énergétique, ou le photovoltaïque, demandent des matériaux adaptés, dont il faut tester la durabilité et la fiabilité.

Caractérisation de matériaux pour l'énergie / Characterization of materials for energy
Chimie de surface pour la biologie et la santé

Chimie de surface pour la biologie et la santé

Surfaces et biologie (voir le LICSEN...)

De la molécule au matériau moléculaire

Pour obtenir des objets fabriqués avec des caractéristiques et des spécificités originales, la fabrication de matériaux moléculaires est abordée en assemblant des briques élémentaires, comme des atomes, des molécules simples ou complexes ou des nanostructures (nanotubes de carbone et feuilles de graphène notamment) sur des supports métalliques, minéraux ou organiques, du verre...

De la molécule au matériau moléculaire
Électronique organique et moléculaire

Électronique organique et moléculaire

L'électronique organique et moléculaire vise à développer un traitement de l'information basé sur différents types de nano-objets (molécules, bio-molécules, nanoparticules, nanotubes de carbone, graphène...).

Interfaces, fluides complexes et microfluidique

Selon le domaine (énergies bas carbone, nanosciences pour les technologies de l'information et de la santé (RF-TIS), interaction rayonnement-matière) plusieurs équipes de l'IRAMIS sont impliquées sur cette thématique.

Interfaces, fluides complexes et microfluidique
Matériaux et irradiation

Matériaux et irradiation

Les recherches sur ce thème portent sur des études fondamentales du comportement sous irradiation d’une grande variété de matériaux utilisés notamment dans le contexte de l’électronucléaire (alliages métalliques, verres, céramiques, polymères).

Nanostructures et biomolécules : biomédecine et nanotoxicité

Du fait de leur taille, les nanoparticules peuvent interagir avec les éléments du vivant, de la cellule à la molécule biologique. Ceci peut être mis à profit en médecine pour cibler des traitements, mais peut aussi présenter des effets indésirables, lors d'une forte exposition. Les équipes de l'IRAMIS travaillent selonp ces deux voies, qui ont une importance sociétale majeure.

Nanostructures et biomolécules : biomédecine et nanotoxicité
Physique et vivant / Physics and life

Physique et vivant / Physics and life

Trois " métiers " de l'IRAMIS trouvent une extension naturelle vers la biologie :  L'ingénierie moléculaire, où les études d'interactions coopératives de molécules en solution trouvent une suite directe dans l'étude des protéines et des différents modes d'assemblage de molécules d'intérêt biologique, L'étude de la matière à haute densité d'énergie, où les travaux sur la radiolyse et les interactions rayonnement-molécule, se transposent directement à des molécules comme l'ADN, L'étude de la matière ultra divisée, domaine dans lequel les matériaux nanostructurés, la nanophysique et la biologie convergent naturellement.

Transformations catalytiques pour l’énergie

L’IRAMIS développe de nouveaux catalyseurs avec l'objectif de développer le stockage des énergies alternatives sous forme chimique, ou la conversion du CO2, la transformation de la biomasse,  et le recyclage des déchets polymériques, trois  sources de molécules de base pour l’industrie chimique, aujourd’hui issues de produits pétroliers.

Transformations catalytiques pour l’énergie
Chimie quantique et simulations moléculaires

Chimie quantique et simulations moléculaires

La chimie théorique utilise les méthodes de la chimie quantique et du calcul ab initio, pour modéliser les structures des molécules. A travers des potentiels d'interaction modéles tirés de ces simulations, la dynamique moléculaire classique permet de décrire leur comportement des assemblages chimiques. Au NIMBE/LCMCE cette activité porte essentiellement sur des composés de lanthanides ou d'actinides.

Nano-chimie, nano-objets / Nano-chemistry, nano-objects

Le développement des nanotechnologies s'appuie de plus en plus sur la logique d'assemblage spontané (auto-assemblage) ou non, des briques élémentaires que sont les nanoparticules.

Nano-chimie, nano-objets / Nano-chemistry, nano-objects
Matériaux nanocomposites nanostructurés (cristallisés et matière molle.) : de leur élaboration, à leurs propriétés.

Matériaux nanocomposites nanostructurés (cristallisés et matière molle.) : de leur élaboration, à leurs propriétés.

L'incorporation de nano-objets ou la nanostructuration (à une échelle < 100 nm) au sein d'un matériau (solide cristallisé ou matière molle) permettent d'élaborer des "nanomatériaux" aux propriétés physico-chimiques nouvelles (réactivité chimique, propriétés mécanique ou électrique, biologique...).

Matériaux nanostructurés pour l’énergie / Nanostructured materials for energy

L’IRAMIS développe des matériaux nanostructurés pour les dispositifs photovoltaïques (PV) organique ou hybride : nanoparticules de silicium dopées ou non incluses dans différentes matrices, molécules spécifiques aux couches d’interface de cellules PV organiques, nanotubes de carbone fonctionnalisés par des chromophores, nanoparticules d’oxydes TiO2 dopées ou non en azote pour les cellules solaires à colorant cellules PV à base de Perovskite.

Matériaux nanostructurés pour l’énergie / Nanostructured materials for energy
Capteurs chimiques et biochimiques, diagnostic médical / Chemical and biochemical sensors, medical diagnosis

Capteurs chimiques et biochimiques, diagnostic médical / Chemical and biochemical sensors, medical diagnosis

De nombreuses méthodes sont développées par les équipes de l'IRAMIS pour développer des capteurs chimiques sensibles, sélectifs  et efficaces. Pour ceci les nanotechnologies sont largement mises à contributions, avec l'utilisation de matériaux nanoporeux ou encore  d'objets fonctionnalisés. + microfluidique nano-objets  (effets plasmoniques, magnétiques, ...

Chimie environnementale et dépollution / Environmental chemistry and depollution

Les nanotechnologies offrent de nombreuses méthodes innovantes pour le piégeage de nombreux éléments polluants, chimiques, biologiques ou encore des métaux lourds.  Des méthodes de dépollution à l'aide de filtres à base de matériaux nanoporeux ou de fibres de carbone fonctionnalisées sont ainsi développées au LICSEN.

Chimie environnementale et dépollution / Environmental chemistry and depollution
Science des matériaux et chimie pour l'archéologie et le patrimoine / Material science and chemistry for archaeology and cultural heritage

Science des matériaux et chimie pour l'archéologie et le patrimoine / Material science and chemistry for archaeology and cultural heritage

Au delà des études visant à mieux comprendre et prédire l'altération des métaux anciens, l'équipe du LAPA utilise la science des matériaux et les méthodes de la chimie pour comprendre certains aspects des sociétés antiques en lien avec leur niveau technologique.

Corrosion long terme de matériaux métalliques / Long term corrosion of multimaterials containing metals

Plusieurs pays envisagent de développer une technologie de barrières multiples pour la sécurité du stockage des déchets nucléaires. Une question centrale est de savoir modéliser le comportement sur le long terme (soit 100 à 1000 ans) des matériaux utilisés, en particulier des containers, en acier faiblement allié, et de la matrice vitrifiée.

Corrosion long terme de matériaux métalliques / Long term corrosion of multimaterials containing metals
Synthèse et analyse en phase gazeuse  de nano-objets / Synthesis analysis in gas phase of nano-objects

Synthèse et analyse en phase gazeuse de nano-objets / Synthesis analysis in gas phase of nano-objects

La plupart des synthèses chimiques sont réalisées en milieu liquide. Pour l'élaboration de nanoparticules et les nanomatériaux, de multiples méthodes de synthèse en phase gaz se révèlent particulièremetn utiles et performantes .

 

 

Retour en haut