| | | | | | | webmail : intra-extra| Accès VPN| Accès IST| Contact
Univ. Paris-Saclay
21 juillet 2020
Interplay of 4 f-3d interactions and spin-induced ferroelectricity in the green phase Gd2BaCuO5
logo_tutelle logo_tutelle 
Interplay of 4 f-3d interactions and spin-induced ferroelectricity in the green phase Gd2BaCuO5

Schematics of the crystal structure of Gd2BaCuO5

Premakumar Yanda, I. V. Golosovsky, I. Mirebeau, N. V. Ter-Oganessian, Juan Rodríguez-Carvajal and A. Sundaresan

In most of the spin-induced multiferroics, the ferroelectricity is caused by inversion symmetry breaking by complex spin structures of the transition-metal ions. Here, we report the importance of interplay of 4 f -3d magnetic interactions in inducing ferroelectricity in the centrosymmetric (Pnma) green phase compound Gd2BaCuO5. With decreasing temperature, a long-range incommensurate ordering of both Gd3+ and Cu2+ spins at TN = 11.8 K occurs with the modulation vector k = (0, 0, g) and a lock-in transition to a strongly noncollinear structure with kc = (0, 0, 1/2) at Tloc ∼ 6 K. Both spin structures induce electric polarization consistent with the polar magnetic space groups Pm1 (α, 0, g)ss and Paca21, respectively. Based on the symmetry analysis of magnetoelectric interactions, we suggest that the ferroelectricity in both commensurate and incommensurate phases is driven by a complex interplay of two-spins and single-spin contributions from magnetic ions located in noncentrosymmetric environments. Our study demonstrates that the green phase family of compounds may serve as a playground for studying the multiferroic phenomena, where the interplay of 4 f -3d interactions demonstrates an alternative route to find magnetoelectric materials.

https://www.doi.org/10.1103/PhysRevResearch.2.023271

 
#3246 - Màj : 21/07/2020

 

Retour en haut