Faits marquants scientifiques 2012

01 octobre 2012

Si un aimant peut être "permanent", la dynamique des spins à l'origine de l'aimantation peut être ultra-rapide à l'échelle nanométrique, dans le domaine femtoseconde (10-15 s). Les possibilités actuelles de génération d’impulsions ultra-brèves dans le domaine X-UV  ouvrent de nouvelles perspectives pour les études dans ce domaine. Elles permettent en particulier d'observer, à cette échelle de temps et à des échelles spatiales de l'ordre de la longueur d'onde (< 100 nm), la réponse d'une structure nanométrique magnétique soumis à une stimulation externe. Il devient par exemple possible d'étudier la dynamique ultra-rapide de la perte d'aimantation sous l'effet d'une forte irradiation lumineuse, sur des échantillons magnétiquement nanostructurés (multicouches de cobalt– palladium). Ces études, réalisées par une collaboration de physiciens franciliens associés à des physiciens de l'Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), permettent de mieux comprendre la dynamique de spin, ouvrant ainsi la voie vers la réalisation de dispositifs magnétiques ultra-rapides.

 

06 août 2012

L'état électronique d'une molécule réagit très rapidement - à l'échelle de la femtoseconde (10-15 s), voire de l'attoseconde (10-18 s) - à toute perturbation telle qu'une excitation laser, une vibration qui modifie la position relative des noyaux atomiques qui la constitue, ou encore au cours d'une réaction chimique. Suivre en temps réel l'évolution des orbitales électroniques demande ainsi des techniques d'observation permettant d'atteindre cette résolution temporelle attoseconde.

Une telle sonde ultra-rapide est fournie par la réponse non linéaire de la molécule à un champ laser intense. Dans cette réponse, l’électron de valence peut être extrait de la molécule (avec une certaine probabilité d'ionisation), accéléré et "renvoyé" vers la molécule ionisée (recollision), où il peut se désexciter (recombinaison vers l’orbitale de valence), en émettant une impulsion intense de lumière UV attoseconde. De l’analyse complète de cette émission lumineuse (mesure de l'amplitude, phase et polarisation), il est possible de reconstruire le paquet d’ondes électronique dans les orbitales de valence avec une résolution spatiale subnanométrique et de suivre leur dynamique avec une résolution temporelle attoseconde.

 

03 avril 2012
Pour observer des phénomènes ultrarapides tels que le mouvement des électrons au sein de la matière, les chercheurs ont besoin de sources capables de produire des rayonnements lumineux extrêmement brefs et énergétiques. Si des dispositifs capables d’émettre des impulsions dans le domaine de l’attoseconde (10-18 seconde) existent déjà, de nombreuses équipes s’efforcent de repousser les limites de leur intensité et de leur durée.

 

12 décembre 2012

Les molécules ionisées interviennent dans beaucoup de réactions chimiques, et participent pour une part importante à la chimie de la très haute atmosphère ou des nuages interstellaires. Les données sur la spectroscopie vibrationnelle de ces ions sont ainsi indispensables pour mieux comprendre la dynamique et l'énergétique de ces milieux dilués.

Les spectroscopies de photoélectrons sont des méthodes de choix pour caractériser ces molécules et leurs états vibrationnels, mais sont souvent inopérantes lorsque la structure de la molécule neutre est très différente de celle de l'ion. Le Laboratoire Francis Perrin (URA 2453, CEA - CNRS) en collaboration avec l’équipe de Chimie Théorique du Laboratoire Modélisation et Simulation Multi Echelle (MSME UMR 8208 CNRS, Univ Paris-Est Marne-La-Vallée) a participé à la mise au point d'une nouvelle méthode de spectroscopie permettant d'atteindre les données recherchées, difficilement accessibles par les méthodes usuelles.

 

13 juillet 2012

La stabilité et la dynamique conformationnelle des biomolécules sont fortement influencées par la dynamique des liaisons hydrogène et par celle des transferts d'hydrogène dont ces liaisons sont le vecteur. Assez naturellement, une activité importante se développe depuis de nombreuses années pour comprendre finement quelles déformations moléculaires entrent en jeu lorsqu'une réaction de transfert d'hydrogène a lieu via une liaison hydrogène. La molécule d'acétylacétone (notée AcAc sur la figure) est souvent utilisée pour aborder cette question d'un point de vue fondamental car sous la forme qui est montrée sur la figure (la plus stable en phase gazeuse), c'est l'une des molécules les plus simples possédant une liaison hydrogène intramoléculaire qui place un atome d'hydrogène en bonne position pour être transféré d'un atome à un autre (ici les deux atomes d'oxygène en rouge sur la figure). Cette problématique renvoie à une autre, beaucoup plus générale qui forme l'essence de la dynamique réactionnelle, une discipline en chimie-physique: apporter les données expérimentales assez détaillées pour permettre de modéliser et prévoir comment plusieurs degrés de liberté se couplent pour conduire à une réaction chimique.

L’équipe MOMA de l’Institut des Sciences Moléculaire d’Orsay (ISMO), en collaboration avec l’équipe de Dynamique Réactionnelle du laboratoire Francis Perrin (LFP) a développé une méthode très originale permettant de visualiser (peut-être contrôler dans le futur) comment des déformations de grande amplitude associées aux rotations gênées des groupements méthyles de la molécule d’acétylacétone AcAc (schématisés par les flèches courbes dans le caisson gauche de la figure) se combinent pour stimuler le transfert d’hydrogène entre les deux atomes d’oxygène de la molécule (également indiqué par une flèche sur la figure). Cette collaboration a été initiée par le projet ANR GOUTTELIUM et se poursuit via le projet NOSTADYNE financé par le Triangle de la Physique. La molécule AcAc a été isolée dans une matrice de para-hydrogène, un solide quantique qui ne perturbe pas la déformation des molécules qui y sont hébergées. A la température du solide (4K), la relaxation de spin nucléaire des groupes méthyle est très lente ce qui a permis de montrer qu'il y a intrication entre la pseudo rotation des méthyles et le mouvement de grande amplitude lié au transfert de l’atome d’hydrogène. La méthode expérimentale qui a conduit à ce résultat (voir référence ci-dessous) est apparue comme un moyen élégant, quoiqu'indirect, pour répondre à une longue controverse sur le rôle de la rotation des méthyles dans le transfert d’hydrogène de la molécule AcAc. L’enjeu était important puisque AcAc est considérée comme prototype des molécules possédant une liaison hydrogène interne.

12 décembre 2012

Les molécules ionisées interviennent dans beaucoup de réactions chimiques, et participent pour une part importante à la chimie de la très haute atmosphère ou des nuages interstellaires. Les données sur la spectroscopie vibrationnelle de ces ions sont ainsi indispensables pour mieux comprendre la dynamique et l'énergétique de ces milieux dilués.

Les spectroscopies de photoélectrons sont des méthodes de choix pour caractériser ces molécules et leurs états vibrationnels, mais sont souvent inopérantes lorsque la structure de la molécule neutre est très différente de celle de l'ion. Le Laboratoire Francis Perrin (URA 2453, CEA - CNRS) en collaboration avec l’équipe de Chimie Théorique du Laboratoire Modélisation et Simulation Multi Echelle (MSME UMR 8208 CNRS, Univ Paris-Est Marne-La-Vallée) a participé à la mise au point d'une nouvelle méthode de spectroscopie permettant d'atteindre les données recherchées, difficilement accessibles par les méthodes usuelles.

 

13 juillet 2012

La stabilité et la dynamique conformationnelle des biomolécules sont fortement influencées par la dynamique des liaisons hydrogène et par celle des transferts d'hydrogène dont ces liaisons sont le vecteur. Assez naturellement, une activité importante se développe depuis de nombreuses années pour comprendre finement quelles déformations moléculaires entrent en jeu lorsqu'une réaction de transfert d'hydrogène a lieu via une liaison hydrogène. La molécule d'acétylacétone (notée AcAc sur la figure) est souvent utilisée pour aborder cette question d'un point de vue fondamental car sous la forme qui est montrée sur la figure (la plus stable en phase gazeuse), c'est l'une des molécules les plus simples possédant une liaison hydrogène intramoléculaire qui place un atome d'hydrogène en bonne position pour être transféré d'un atome à un autre (ici les deux atomes d'oxygène en rouge sur la figure). Cette problématique renvoie à une autre, beaucoup plus générale qui forme l'essence de la dynamique réactionnelle, une discipline en chimie-physique: apporter les données expérimentales assez détaillées pour permettre de modéliser et prévoir comment plusieurs degrés de liberté se couplent pour conduire à une réaction chimique.

L’équipe MOMA de l’Institut des Sciences Moléculaire d’Orsay (ISMO), en collaboration avec l’équipe de Dynamique Réactionnelle du laboratoire Francis Perrin (LFP) a développé une méthode très originale permettant de visualiser (peut-être contrôler dans le futur) comment des déformations de grande amplitude associées aux rotations gênées des groupements méthyles de la molécule d’acétylacétone AcAc (schématisés par les flèches courbes dans le caisson gauche de la figure) se combinent pour stimuler le transfert d’hydrogène entre les deux atomes d’oxygène de la molécule (également indiqué par une flèche sur la figure). Cette collaboration a été initiée par le projet ANR GOUTTELIUM et se poursuit via le projet NOSTADYNE financé par le Triangle de la Physique. La molécule AcAc a été isolée dans une matrice de para-hydrogène, un solide quantique qui ne perturbe pas la déformation des molécules qui y sont hébergées. A la température du solide (4K), la relaxation de spin nucléaire des groupes méthyle est très lente ce qui a permis de montrer qu'il y a intrication entre la pseudo rotation des méthyles et le mouvement de grande amplitude lié au transfert de l’atome d’hydrogène. La méthode expérimentale qui a conduit à ce résultat (voir référence ci-dessous) est apparue comme un moyen élégant, quoiqu'indirect, pour répondre à une longue controverse sur le rôle de la rotation des méthyles dans le transfert d’hydrogène de la molécule AcAc. L’enjeu était important puisque AcAc est considérée comme prototype des molécules possédant une liaison hydrogène interne.

29 mai 2012

La description des interactions contrôlant la forme d’une protéine est cruciale dans la compréhension des mécanismes cellulaires, mais reste difficile à réaliser sur les systèmes biologiques en raison de leur complexité.

Dans ce contexte, l’utilisation de molécules modèles rend accessible à l’expérience de nombreuses problématiques biologiques se situant au cœur des grands enjeux sociétaux actuels. La spectroscopie IR/UV en phase gazeuse de petits peptides en est un remarquable exemple. L’étude de peptides contenant le résidu méthionine a récemment montré que les liaisons hydrogène NHamide---Sméthionine sont particulièrement fortes. Elles sont, par exemple, aussi fortes que les liaisons hydrogène “classiques” NHamide---OCamide qui définissent la structure secondaire des protéines.

L’analyse des structures de protéines répertoriées à ce jour révèle que le type de liaison NHamide---Sméthionine observé expérimentalement se produit sur 12% des méthionines. La comparaison des paramètres définissant la liaison NHamide---Sméthionine montre que les liaisons formées en phase gazeuse reproduisent fidèlement les liaisons observées dans les protéines. Ceci suggère fortement que les propriétés des liaisons NHamide---Sméthionine mises en évidence en phase gazeuse, leur force en particulier, sont identiques à celles se formant naturellement dans les protéines.

L’étude des contraintes imposées au squelette peptique par ces liaisons NHamide---Sméthionine montre qu’elles réduisent le domaine des valeurs autorisées pour les angles de Ramachandran. Ce phénomène commun aux peptides en phase gazeuse et aux protéines possédant ces liaisons NHamide---Sméthionine illustre ainsi l’effet que ces liaisons peuvent avoir sur la rigidité du squelette peptidique. Ces résultats permettent déjà d’ouvrir des pistes intéressantes dans la compréhension des mécanismes d’action d’antitumoraux.

Journal of Physical Chemistry Letters 2012, 3, 755−759

26 novembre 2012

La dynamique des électrons au sein des atomes et des molécules est extrêmement rapide, typiquement de l'ordre de la centaine d'attosecondes (1 as=10-18 s). Les expériences de type pompe-sonde, où une première impulsion vient exciter le système et une seconde le sonder après un délai variable, peuvent permettre d'explorer cette dynamique, mais nécessitent des impulsions de lumière ultra-brèves, uniques et bien caractérisées à cette échelle de temps (gamme attoseconde). Depuis une dizaine d’années, d’importants efforts de recherche ont permis de générer et mesurer de telles impulsions. Une collaboration entre les chercheurs de l’IRAMIS et du Laboratoire d'Optique Appliqué (LOA) annonce la découverte d'un nouveau procédé d’une grande simplicité pour la génération d'une impulsion attoseconde unique [1], basé sur la génération d'harmoniques en présence d'une rotation ultrarapide du front d'onde de l'impulsion laser incidente. Il est ainsi possible aujourd'hui de disposer d'une source de lumière particulièrement bien adaptée aux expériences pompe-sonde permettant l'exploration de la dynamique électronique.

 

29 mai 2012

La description des interactions contrôlant la forme d’une protéine est cruciale dans la compréhension des mécanismes cellulaires, mais reste difficile à réaliser sur les systèmes biologiques en raison de leur complexité.

Dans ce contexte, l’utilisation de molécules modèles rend accessible à l’expérience de nombreuses problématiques biologiques se situant au cœur des grands enjeux sociétaux actuels. La spectroscopie IR/UV en phase gazeuse de petits peptides en est un remarquable exemple. L’étude de peptides contenant le résidu méthionine a récemment montré que les liaisons hydrogène NHamide---Sméthionine sont particulièrement fortes. Elles sont, par exemple, aussi fortes que les liaisons hydrogène “classiques” NHamide---OCamide qui définissent la structure secondaire des protéines.

L’analyse des structures de protéines répertoriées à ce jour révèle que le type de liaison NHamide---Sméthionine observé expérimentalement se produit sur 12% des méthionines. La comparaison des paramètres définissant la liaison NHamide---Sméthionine montre que les liaisons formées en phase gazeuse reproduisent fidèlement les liaisons observées dans les protéines. Ceci suggère fortement que les propriétés des liaisons NHamide---Sméthionine mises en évidence en phase gazeuse, leur force en particulier, sont identiques à celles se formant naturellement dans les protéines.

L’étude des contraintes imposées au squelette peptique par ces liaisons NHamide---Sméthionine montre qu’elles réduisent le domaine des valeurs autorisées pour les angles de Ramachandran. Ce phénomène commun aux peptides en phase gazeuse et aux protéines possédant ces liaisons NHamide---Sméthionine illustre ainsi l’effet que ces liaisons peuvent avoir sur la rigidité du squelette peptidique. Ces résultats permettent déjà d’ouvrir des pistes intéressantes dans la compréhension des mécanismes d’action d’antitumoraux.

Journal of Physical Chemistry Letters 2012, 3, 755−759



Retour en haut