Matériaux nanocomposites nanostructurés (cristallisés et matière molle) : de leur élaboration, à leurs propriétés.
logo_tutelle logo_tutelle logo_tutelle 
Matériaux nanocomposites nanostructurés (cristallisés et matière molle) : de leur élaboration, à leurs propriétés.

Cylindrical phase of block copolymer matrix oriented upon a silicon substrate
(F. Aubrit, F. Gobeaux, P. Guenoun & F. Testard)

L'incorporation de nano-objets ou la nanostructuration (à une échelle < 100 nm) au sein d'un matériau (solide cristallisé ou matière molle) permettent d'élaborer des "nanomatériaux" aux propriétés physico-chimiques nouvelles (réactivité chimique, propriétés mécanique ou électrique, biologique...). Les structurations obtenues peuvent s'étendre du niveau moléculaire, au niveau mésoscopique, jusqu'au niveau macroscopique, chaque niveau d'organisation pouvant apporter des propriétés physico-chimiques originales.

De nouvelles techniques et procédés sont mis au point pour la réalisation de ces nanomatériaux à l'état solide : chimie, broyage,  manipulation de poudres, mélange, ultra sons, irradiation... Dans ces nanomatériaux secs et durs, les grains nanométriques sont en contact direct avec une densité d'interfaces très élevée.

Pour l'élaboration de "matière molle" nanostructurée, d'autres procédés passent par des voies liquides (fluidique et microfluidique) en mettant à profit des propriétés chimiques ou même biologiques d'objets d'origine organique ou inorganique de taille mésoscopique, de formes diverses, soumis à l'agitation thermique et interagissant sous l'effet de forces de dispersion ou électrostatiques.

Au sein des liquides ou dans les matériaux, les mécanismes d'auto-assemblage au cours de l'élaboration (couplage entre entités élémentaire, diffusion, auto-organisation, effets dynamiques...) sont le plus souvent très présents.

La mise au point de ces procédés d'élaboration présente encore de nombreux aspects très fondamentaux (nature des interactions entre "grains de matière", thermodynamique associée, diagramme de phase et transitions associées...) inséparable de l'attrait industriel pour ces nanomatériaux aux propriétés si originales. Concernant la matière molle on peut noter l'importance de l'étude de leur formulation et des propriétés de transport de poudres, de pâtes, de boues, d'émulsions ou de matières plastiques, dont il faut maîtriser l'écoulement et les propriétés mécaniques.



The incorporation of nano-objects or the nanostructuration (at a scale <100 nm) within a material (crystallized solid or soft material) allows developing  "nanomaterials" with new physico-chemical properties (chemical reactivity, mechanical or electrical, biological ... properties). The obtained structures can extend from the molecular level, at the mesoscopic level, up to the macroscopic level, each level of organization bringing original physicochemical properties.

New techniques and processes are developed for the elaboration of these nanomaterials in the solid state: chemistry, grinding, manipulation of powders, mixing,  , ultrasounds, irradiation ... In these hard nanomaterials, the nanometric grains are in direct contact with a very high interface density.

For the development of nanostructured "soft matter", other processes use liquid channels (fluidic and microfluidic) by taking advantage of the chemical or even biological properties of objects of organic or inorganic origin of mesoscopic size, shapes various, subjected to thermal agitation and interacting under the effect of dispersion or electrostatic forces.

In liquids or within materials, the self-assembly mechanisms during the elaboration (elementary coupling between entities, diffusion, self-organization, dynamic effects ...) are most often very present.

The development of these production processes still has many very fundamental aspects (nature of the interactions between "grains of matter", associated thermodynamics, phase diagram and transitions ...), which cannot be separated from the industrial appeal for these nanomaterials. with so original properties. Concerning the soft matter, it can noted the importance of the study of their formulation and their properties of transport of powders, pastes, sludge, emulsions or plastic materials, whose flow and properties must be controlled mechanical.

#18 - Màj : 25/07/2023

19 novembre 2010
Faits marquants scientifiques

Anne-Charlotte Le Gulluche, Guylaine Ducouret, Ludovic Olanier, Annie Brûlet, Olivier Sanseau, Paul Sotta, and Alba Marcellan

Model hybrid hydrogels reinforced by silica nanoparticles were designed by polymerizing and cross-linking the gels in situ. The polymer–particle interactions were tuned by using either poly(dimethylacrylamide) (PDMA), which adsorbs on silica, or poly(acrylamide) (PAAm), which does not. Besides, the dispersion state of silica nanoparticles was tuned from well-dispersed to aggregated by changing the pH from 9, which ensures repulsive interactions between nanoparticles and good dispersion state, to about 6, which affects the surface chemistry of silica and promotes aggregation. The dispersion states were characterized by small-angle X-ray scattering (SAXS). The mechanical behavior of hybrid gels with aggregated nanoparticles is markedly different from those where silica is well-dispersed within the matrix. PDMA-based hybrid gels display pronounced nonlinear behavior, somehow similar to those observed in filled elastomers. The nonlinearities are even more pronounced in gels with aggregated particles, with strong strain stiffening along with large dissipation. For those samples, reinforcement can be attributed to the combination of both reversible interactions between PDMA and silica nanoparticles, which provide strain stiffening and recovery, and the response of the silica network. Recovery processes observed in hybrid gels with dispersed particles are preserved when silica particles are aggregated, but the characteristic time needed to fully recover the mechanical response is extended from a few seconds to several hours. In PAAm-based hybrid gels with aggregated silica nanoparticles, no recovery processes are observed. This implies that the properties, namely, the very high linear tensile modulus and high dissipated energy, are driven by the rigid network formed by nanoparticle aggregation, which provides high dissipative capabilities, especially when compared to PAAm-based hybrid gels with dispersed silica, that remain soft and fragile. These gels exhibit a quite inhomogeneous structure, with permanent damage under elongation. The nonlinear dynamical behavior of hybrid gels was investigated by large amplitude oscillatory shear (LAOS) experiments. While unfilled gels show no nonlinearity up to very large strain amplitude, marked nonlinear effects combining a drop in modulus (similar to the Payne effect) and strain stiffening for increasing strain amplitude are observed in PDMA-based hybrid gels, certainly due to polymer adsorption onto nanoparticles. PAAm-based hybrid gels also show nonlinearity, with a drop in modulus for increasing strain but no strain stiffening, indicating that the presence of fillers alone can induce nonlinearity in the absence of strong, reversible polymer–particle interactions. PAAm-based hybrid gels with aggregated silica show very high stiffness and high dissipative properties at the expense of stretchability, though. Also, the structure seems to be permanently damaged under stress, revealing the importance of silica–polymer interactions for permanent mechanical reinforcement. Altogether, the analysis of the nonlinear behavior indicates the importance of combining dynamic adsorption of polymer chains on silica nanoparticles with mechanical reinforcement provided by the silica network.



Sumit Mehan, Laure Herrmann, Jean-Paul Chapel, Jacques Jestin, Jean-Francois Berret and Fabrice Cousin

We investigate the formation/re-dissociation mechanisms of hybrid complexes made from negatively charged PAA2k coated g-Fe2O3 nanoparticles (NP) and positively charged polycations (PDADMAC) in aqueous solution in the regime of very high ionic strength (I). When the building blocks are mixed at large ionic strength (1 M NH4Cl), the electrostatic interaction is screened and complexation does not occur. If the ionic strength is then lowered down to a targeted ionic strength Itarget, there is a critical threshold Ic = 0.62 M at which complexation occurs, that is independent of the charge ratio Z and the pathway used to reduce salinity (drop-by-drop mixing or fast mixing). If salt is added back up to 1 M, the transition is not reversible and persistent out-of-equilibrium aggregates are formed. The lifetimes of such aggregates depends on Itarget: the closer Itarget to Ic is, the more difficult it is to dissolve the aggregates. Such peculiar behavior is driven by the inner structure of the complexes that are formed after desalting. When Itarget is far below Ic, strong electrostatic interactions induce the formation of dense, compact and frozen aggregates. Such aggregates can only poorly reorganize further on with time, which makes their dissolution upon resalting almost reversible. Conversely, when Itarget is close to Ic more open aggregates are formed due to weaker electrostatic interactions upon desalting. The system can thus rearrange with time to lower its free energy and reach more stable out-of-equilibrium states which are very difficult to dissociate back upon resalting, even at very high ionic strength.

Contact LLB : Fabrice Cousin (LLB/MMB)


"The desalting/salting pathway: a route to form metastable aggregates with tuneable morphologies and lifetimes"
S.Mehan, L. Herrmann, J.-P. Chapel, J. Jestin, J.-F. Berret and  F. Cousin, Soft Matter 17 (2021) 8496-8505.

J.C.Riedl, M.Sarkar, T.Fiuza, F.Cousin, J.Depeyrot, E.Dubois,G.Mériguet,R.Perzynski and V.Peyre

Some of the most promising fields of application of ionic liquid-based colloids imply elevated temperatures. Their careful design and analysis is therefore essential. We assume that tuning the structure of the nanoparticle-ionic liquid interface through its composition can ensure colloidal stability for a wide temperature range, from room temperature up to 200 °C.


Virginie Vergnat, Benoît Heinrich, Michel Rawiso, René Muller, Geneviève Pourroy and Patrick Masson

Embedding nanoparticles (NPs) with organic shells is a way to control their aggregation behavior. Using polymers allows reaching relatively high shell thicknesses but suffers from the difficulty of obtaining regular hybrid objects at gram scale. Here, we describe a three-step synthesis in which multi-gram NP batches are first obtained by thermal decomposition, prior to their covalent grafting by an atom transfer radical polymerization (ATRP) initiator and to the controlled growing of the polymer shell. Specifically, non-aggregated iron oxide NPs with a core principally composed of γ-Fe2O3 (maghemite) and either polystyrene (PS) or polymethyl methacrylate (PMMA) shell were elaborated. The oxide cores of about 13 nm diameter were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). After the polymerization, the overall diameter reached 60 nm, as shown by small-angle neutron scattering (SANS). The behavior in solution as well as rheological properties in the molten state of the polymeric shell resemble those of star polymers. Strategies to further improve the screening of NP cores with the polymer shells are discussed.


Michal Swierczewski, Plinio Maroni, Alexis Chenneviere, Mohammad M. Dadras, Lay-Theng Lee, Thomas Bürgi

Nanoscale particles attract much attention due to their size-dependent optical, electrical and chemical properties. Of particular interest are ultrasmall metal nanoclusters which experience strong quantum confinement effect leading to profound changes in the atomic packing structure. The synthesis of these atomically precise metal clusters, typically with metal cores smaller than 2 nm in diameter, makes use of stabilizing functional molecules such as thiol ligands, hence deriving the common name – monolayer-protected clusters (MPCs). The next stage toward applications and at the same time a challenge in the field, is the manipulation and controlled organization of MPCs into two dimensional (2D) superlattices which would exhibit a collective response of the desired kind. Multiple examples of deposition techniques have been extensively studied, including droplet evaporation, spin-coating and chemical vapor deposition. However, a common drawback of all these methods is the failure to form large-scale structures of closely packed particles. Here, we study the formation and deposition of extended thin films of Au38(SC2H4Ph)24 nanoclusters onto solid supports by the Langmuir-Blodgett (LB) method. A combination of techniques, atomic force microscopy (AFM), high magnification transmission electron microscopy (TEM), X-ray reflectivity (XRR), and grazing incidence wide-angle X-ray scattering (GIWAXS) is applied to reveal the morphology and the degree of vertical and in-plane ordering of the transferred films. We find that while a degree of order is initially obtained between the clusters, temporal annealing of the compressed films successfully removes mesoscopic defects between islands of nanoclusters but that it does so at the cost of reducing the local order within the domains. To our knowledge, this is the first reported example of the deposition on an extended scale (several cm2) of ordered gold nanoclusters in the small size regime of 1 – 2 nm.

T. Fiuza, M. Sarkar, J. C. Riedl, A. Cebers, F. Cousin, G. Demouchy, J. Depeyrot, E. Dubois, F. Gelebart, G. Meriguet, R. Perzynski and V. Peyre

Ferrofluids based on maghemite nanoparticles (NPs), typically 10 nm in diameter, are dispersed in an ionic liquid (1-ethyl 3-methylimidazolium bistriflimide – EMIM-TFSI). The average interparticle interaction is found to be repulsive by small angle scattering of X-rays and of neutrons, with a second virial coefficient A2 = 7.3. A moderately concentrated sample at F = 5.95 vol% is probed by forced Rayleigh scattering under an applied magnetic field (up to H = 100 kA m1 ) from room temperature up to T = 460 K. Irrespective of the values of H and T, the NPs in this study are always found to migrate towards the cold region. The in-field anisotropy of the mass diffusion coefficient Dm and that of the (always positive) Soret coefficient ST are well described by the presented model in the whole range of H and T. The main origin of anisotropy is the spatial inhomogeneities of concentration in the ferrofluid along the direction of the applied field. Since this effect originates from the magnetic dipolar interparticle interaction, the anisotropy of thermodiffusion progressively vanishes when temperature and thermal motion increase.


Liu Chang; Hu Wenxian; Jiang Hanqiu; Liu Guoming; Han Charles; Sirringhaus Henning; Boué François; Wang Dujin

The determination of intrinsic chain stiffness of conjugated polymers is challenging, in particular, for scattering techniques because of their strong light absorption and structural instability due to the complicated intra-/intermolecular interactions. In this work, the chain conformation and aggregation formation of a high charge mobility donor–acceptor polymer (DPPDTT) are systematically investigated by using small-angle neutron scattering (SANS) and static/dynamic light scattering (SLS/DLS). On the one hand, chloroform was chosen as a good solvent, in which SANS reveals a rod-like geometry with a radius of 15 Å. Once the absorption effect is properly accounted for, SLS shows a power law of 1 between the radius of gyration (Rg) and molecular weight (Mw) and a negative second virial coefficient (A2). On the other hand, 1,2-dichlorobenzene was chosen as a poor solvent, in which SANS, SLS/DLS, and atomic force microscopy (AFM) reveal a strong temperature-/concentration-dependent assembling behavior. The results provide a general picture of the multiscale assembly process of conjugated polymers.

Li Shi, Florent Carn, Arsen Goukassov, Eric Buhler, and François Boué

Mixing negatively charged polyelectrolyte (PEL) with positively charged gold nanoparticles (Au NPs) in aqueous solution results in electrostatics complexes of different shapes and compactness. Here, when complexing with a semirigid PEL hyaluronic acid (HA), we obtain crystals made of nanoparticles in a new region of the phase diagram, as evidenced by small-angle Xray scattering (SAXS). The Au NPs were initially well dispersed in solution; their size distribution is well controlled but does not need to be extremely narrow. The bacterial hyaluronic acid, polydispersed, is commercially available. Such rather simple materials and mixing preparation produce a highly ordered crystalline phase of electrostatic complexes. The details of the interactions between spherical nanoparticles and linear polymer chains remain to be investigated. In practice, it opens a completely new and unexpected method of complexation. It has high potential, in particular because one can take advantage of the versatility of Au NPs associated with the specificity of biopolymers, varied due to natural biodiversity.

Andrew M. Jimenez, Dan Zhao, Kyle Misquitta, Jacques Jestin and Sanat K. Kumar

Understanding the structure and dynamics of the bound polymer layer (BL) that forms on favorably interacting nanoparticles (NPs) is critical to revealing the mechanisms responsible for material property enhancements in polymer nanocomposites (PNCs). Here we use small angle neutron scattering to probe the temporal persistence of this BL in the canonical case of poly(2-vinylpyridine) (P2VP) mixed with silica NPs at two representative temperatures. We have observed almost no long-term reorganization at 150 °C (∼Tg,P2VP + 50 °C), but a notable reduction in the BL thickness at 175 °C. We believe that this apparently strong temperature dependence arises from the polyvalency of the binding of a single P2VP chain to a NP. Thus, while the adsorption–desorption process of a single segment is an activated process that occurs over a broad temperature range, the cooperative nature of requiring multiple segments to desorb converts this into a process that occurs over a seemingly narrow temperature range.


Les matériaux composites, dont on peut faire judicieusement varier la composition, permettent de combiner les propriétés de ses constituants. Ainsi, l’ajout de matériaux inorganiques (ou charge) dans une matrice polymère permet d’améliorer les propriétés d’usage de ces matériaux, telles que leurs propriétés mécaniques, électriques ou optiques, et aussi d'alléger le matériau ou d'en diminuer le coût.

Dans l’industrie du pneumatique, et en particulier dans la formulation des bandes de roulement, on utilise ainsi des matrices élastomères que l'on renforce par des particules de silice. L'étude réalisée au LLB, en collaboration avec Michelin, montrent qu'il est possible de jouer sur les effets d'entropie de mélange et la balance des contributions entropique/enthalpique des interactions, pour piloter la dispersion des particules dans la matrice et contrôler les propriétés macroscopiques des matériaux.


Annelies Sels, Giovanni Salassa, Fabrice Cousin, Lay-Theng Lee, Thomas Bürgi,
Nanoscale 26 (2018) 12754.

Aromatic dithiol linkers were used to prepare aggregates of Au25(SR)18 clusters (SR: thiolate) via ligand exchange reactions. Fractions of different aggregate sizes were separated by size exclusion chromatography (SEC). The aggregates were characterized by UV-vis absorption spectroscopy, matrix assisted laser desorption ionization (MALDI) mass spectrometry, nuclear magnetic resonance (NMR) spectroscopy (including diffusion-ordered spectroscopy, DOSY) and small angle X-ray scattering (SAXS).

At 2:1 cluster: dithiol ratio, small aggregates (dimers, trimers) and also larger aggregates consisting of 10-20 Au25 clusters were formed, according to DOSY, besides unreacted (monomeric) Au25(SR)18. MALDI mass spectrometry shows signals consistent with dimers and trimers (doubly charged). The SAXS curves for the small aggregates can be well fitted by a pearl-necklace model. For the bigger aggregates the SAXS curves evidence a characteristic separation distance between the clusters within the aggregates, which is imposed by the length of the linker. The SAXS curves of these larger aggregates can be well fitted with a core-shell sphere model with a sticky hard-sphere structure factor, in agreement with closely packed aggregates.

The absorption spectra of smaller aggregates resemble the one of individual Au25(SR)18 clusters; however, and most importantly, the larger aggregates show completely different, less structured spectra with a new band emerging at 840 nm. We assign this drastic change in the absorption spectra and the new band to the electronic coupling between the clusters through the all aromatic linker. In accordance with this view, aggregates formed with a linker containing methylene groups, thus breaking conjugation, do not show the band at 840 nm. By addition of monothiols to the larger aggregates their size can be reduced through an “unlinking” reaction. This reaction also affects the band at 840 nm, which moves to higher energy when reducing the aggregate size, as would be expected within a particle in a box model. The electronic coupling between the clusters through the linker is the basis for future applications in nanoelectronics.

Souha Ben Mahmoud, Wafa Essafi, Annie Brûlet and François Boué

The chain conformation in sulfonated polystyrene PSSNa of a degree of sulfonation 0.34 ≤ f ≤ 1, i.e., of various hydrophobicity, is followed in mixtures of water and increasing content of tetrahydrofuran (THF), a good solvent of the hydrophobic polystyrene moieties (which improves the solvent quality of the mixture). This is achieved by measuring the chain form factor by small-angle neutron scattering using the zero average contrast method (ZAC). Polymer concentrations 0.17 and 0.34 M correspond in our case to the semidilute regime or its limit with dilute regime depending on the chain conformation. The main result is the monitoring with added THF of the pearl necklace conformation. This heterogeneous structure, made of wormlike chain parts (strings) and pearls, was observed formerly in water: when f decreases, the string contribution decreases, and the pearls size, characterized by a maximum in Kratky q2S1(q) representation, slightly increases. Here we see that in the presence of increasing content of added THF (i) the pearls contribution decreases, as expected, and (ii) their size does not change by more than 10% in most cases (30% at the most). Among different modeling, the most complete has been done following the pearl necklace models of Schweins, Huber et al. and Lages, Huber et al.; beyond the size and distribution of pearls, it addresses the radius of gyration, the correlation distance between spheres, weakly visible, and, importantly their number N. The values of Rg, as well as the modeling, suggest that while the sphere size varies a few, N decreases clearly with added good solvent. A link with the simulation of Liao et al. can be found. A second result, important in practice, is that all modeling of the scattering establishes that THF addition makes vanish an excess of low q scattering due to large compact spheres present in water. A third result is obtained after a “THF treatment” procedure, consisting of adding THF and then removing it by evaporation: (i) the spherical aggregates are washed out, and (ii) the pearl necklace conformation of the chain returns to the one in water solution before treatment. Therefore, the pearl necklace conformation of the hydrophobic polyelectrolyte in aqueous solution appears to be in an annealed equilibrium state resulting from hydrophobic attraction and electrostatic repulsion.

DOI: 10.1021/acs.macromol.8b00990

Anne-Sophie Robbes, Fabrice Cousin , Florian Meneau, and Jacques Jestin

We probe by SANS the conformation of polymer chains of the matrix in various nanocomposites based on the same building blocks, namely spherical magnetic nanoparticles of maghemite (γ-Fe2O3) as fillers and polystyrene (PS) for the matrix. Given that the nanoparticles can be arranged in oriented chains during the processing by an external magnetic field and/or grafted by tethered PS chains with a grafting density of ∼0.15 chains/nm2, very different organizations of the nanofillers were tested according to different particle–polymer interactions: (i) homogeneous isotropic dispersion of aggregates of bare nanoparticles; (ii) chains of bare nanoparticles oriented along one direction over the whole sample; (iii) perfect dispersion of grafted nanoparticles; (iv) homogeneous isotropic dispersion of large aggregates of grafted nanoparticles; and (v) chains of large aggregates of grafted nanoparticles objects oriented along one direction over the whole sample. Measurements were performed by the extrapolation to the zero concentration method made possible by the fact that γ-Fe2O3 has the same neutron scattering length density (SLD) as a deuterated polystyrene, so that the nanoparticles scattering is matched in a deuterated PS matrix, whether they are grafted or not. This robust method enables to check that only the polymer chain form factor is effectively probed in a very accurate way. This allows us to show some deviations of the radius of gyration induced by the nanoparticles: (i) for the case of very weak interaction between the polymer and the bare particles, the radius of gyration is swollen by 16% whatever the filler dispersion and orientation; (ii) for the athermal interaction between grafted particles and polymer, the radius of gyration is either unchanged when particles are individually dispersed or compressed of almost 11% when particles are forming overlapped clusters. Despite the remaining relatively small deviations, this is to our best knowledge the first unambiguous experimental evidence on a single system of the influence of the well-known nanofiller dispersion onto the mean chain conformation in nanocomposites for different polymer–particles interactions ranging from attractive to repulsive.

Ce que nous révèle la structure des biominéraux...

Chez les organismes vivants, les processus de biominéralisation régulent la croissance des tissus minéralisés, tels que les dents, les os, les coquilles… Ces procédés restent fascinants à étudier pour une meilleure compréhension du monde naturel qui nous entoure et de sa diversité, d'autant plus que ces recherches peuvent contribuer à l'élaboration de procédés biomimétiques pour la réalisation de nouveaux matériaux.

Une équipe interdisciplinaire française, à laquelle participe l'équipe du LIONS de l'UMR NIMBE, s'est intéressée à la bio-formation du carbonate de calcium, dont la structure complexe est encore largement incomprise. La texture complexe de matériaux naturels, observés auprès du synchrotron de l'ESRF par une méthode originale de diffraction de rayons X développée par l'Institut Frenel, est décrite et les résultats publiés dans la revue "Nature Materials". Un point de départ pour comprendre l'élaboration de ce composé, et définir les conditions physiques, chimiques et biologiques nécessaires pour produire de façon synthétique ce type de biominéraux.

Le graphène est un matériau carbonné bidimensionnel aux propriétés structurales, électroniques et de conduction thermique originales que l'on cherche à exploiter. Au-delà de la simple utilisation de feuillets de graphène (pour l'électronique haute fréquence, ou en tant qu'anode d'accumulateurs...), d'autres applications sont aussi envisagées, pour lesquelles le feuillet de graphène doit être nanostructuré, pour améliorer ses propriétés optiques ou catalytiques ou permettre la réalisation de capteurs ciblés.

Une collaboration du LSI avec des équipes italiennes de l’Université de Bologne et du Politecnico de Turin, ainsi que l’équipe allemande de l’accélérateur d’ions lourds du GSI (Darmstadt) propose une technique originale d'irradiation aux ions lourds rapides d'un monofeuillet de graphène pris en sandwich dans un système multicouche polymère-graphène-cuivre. Le traitement chimique, mis au point au LSI, rend possible l’obtention d’un graphène nanoporeux 2D supporté, robuste et facilement manipulable. La méthode de synthèse nécessite peu d’étapes et est facilement industrialisable sur de grandes surfaces.

Les structures carbonées nanométriques (nanotubes, fullerènes, plan de graphène,…) possèdent des propriétés de conduction électronique remarquables, dont on essaye de tirer parti pour réaliser de nouveaux dispositifs (capteurs, composant électronique, …), mais à condition de maitriser les différents procédés de leur mise en œuvre. Une équipe de l'IRAMIS/NIMBE vient d'apporter la démonstration d'un procédé générique de fonctionnalisation locale par microscopie électrochimique, à partir de films minces de graphène oxydé.

Le graphène oxydé peut être aisément déposé sur une très grande variété de substrats, et l’étape clé de notre méthode consiste à réduire localement cette couche carbonée à l’aide d’une microélectrode plongée dans une solution électrolytique. Les zones réduites, de taille micrométriques, deviennent alors conductrices, permettant d'y fixer une très grande variété de fonctions chimiques par simple électrogreffage de sels de diazonium.

Ce procédé, à base de graphène initialement oxydé, permet d'implanter localement et de façon contrôlée une grande diversité de fonctions chimiques à la surface de divers substrats, en particulier des isolants.


Les vésicules, simples compartiments dont la membrane isole deux milieux aqueux, sont proposées comme nano-réacteurs chimiques ou comme vecteurs pouvant transporter et délivrer à un emplacement ciblé des molécules d’intérêt, en imitation de fonctions biologiques (l'étude de l'échange entre cellules via des vésicules est l'objet du Prix Nobel de Physiologie-Médecine 2013). Constituée d'une simple membrane, une vésicule représente aussi un modèle grossier, mais le plus simple, d’une cellule biologique.

La présente étude a porté sur des vésicules encloses par une membrane composée de copolymères auto-assemblés (polymersomes), dont les propriétés de résistance mécaniques et de perméabilité sont très élevées. Ce travail de recherche, en collaboration entre une équipe du SIS2M et une de l'Université de Bordeaux-ENSBCP, publié dans ACS Nano, montre que des polymersomes faits de copolymères diblocs peuvent former des vésicules à double parois, sous l'effet des contraintes intenses subies lors d'un choc osmotique (comme celui qu'elle peuvent recevoir lors d'une injection dans un liquide riche en espèces chimiques comme le sang).

Ces effets ont été largement explorés, car la forme des vésicules est un paramètre essentiel de la bio-distribution et de l'internalisation cellulaire (endocytose), pour lesquelles les polymersomes sont d’excellents candidats à l’heure actuelle.


Stabiliser des gouttes d’huile dans l’eau n'est pas si simple, ces deux liquides ayant une tendance naturelle à se séparer afin de minimiser l'aire de leur interface de contact. Ceci est pourtant indispensable dans la vectorisation de certains médicaments, ou la réalisation de crèmes en cosmétique. Inversement, on peut aussi rechercher à empêcher la dissolution de particules actives et solubles dans un solvant. Dans ce cadre, la dispersion contrôlée de gouttelettes, stabilisées dans l’eau par des méthodes de nanostructuration, fait partie des approches possibles.

Des chercheurs du CEA, de l’ECE-Paris, du CNRS et de l’Université Paris-sud ont réalisé un travail innovant sur cette problématique, en explorant par des techniques de diffusion de neutrons, la distribution de gouttelettes au sien d'un colloïde, stabilisé de façon originale par l'association de deux principes : la dispersion de particules cristallisées en milieu organique, et leur stabilisation dans l’eau par un enrobage avec des particules d'argiles nanométriques. Ce travail présenté dans Soft Matter du 28 octobre 2012 ouvre de nouvelles perspectives d’applications susceptibles d’intéresser les entreprises pharmaceutiques ou de cosmétiques.


Savoir graver des nanostructures de manière simple et économique est un enjeu primordial en microélectronique ou pour de futures applications optiques. Les nanostructures obtenues par auto-assemblage de molécules permettent d’atteindre aisément les résolutions souhaitées (~ qques 10 nm), mais il faut savoir maitriser leur orientation et éliminer les nombreux défauts inhérents à ce type d'organisation spontanée. Pour les structures obtenues par séparation de phases de copolymères diblocs, ces objectifs peuvent être atteints en contraignant une mince couche de copolymères par impression avec un moule nanostructuré. Cette méthode simple et les principes qui la fondent viennent d’être publiés dans Advanced Materials.


Contact CEA : Pascal Boulanger

Une dizaine d'année après leurs premières synthèses en laboratoire, les tapis de nanotubes de carbone alignés sont envisagés dans de nombreux domaines d’applications (membranes de filtration, composants électroniques passifs et actifs, matériaux composites,…) combinant propriétés individuelles des nanotubes et nano-structuration spécifique. Mais le développement de ces applications demande une méthode de synthèse industrielle, sûre, peu chère et applicable sur de grandes surfaces. Dans cette marche vers le produit technologique, l'équipe du SPAM vient de franchir un pas important en maîtrisant la production de tapis de nanotubes alignés, aux propriétés contrôlables (longueur et diamètre des tubes, densité) et d'une grande homogénéité sur des surfaces de grande taille. Ce résultat est le fruit d’un effort de recherche fondamental soutenu, depuis plusieurs années par cette équipe pionnière, vers une meilleure compréhension des mécanismes de croissance de telles nanostructures

Jacques Jestin, Nicolas Jouault, Chloé Chevigny, François Boué, Laboratoire Léon Brillouin, CEA Saclay

Un moyen d'améliorer les propriétés mécaniques des matériaux plastiques est de les renforcer par des nanoparticules, en formant ainsi un matériau composite. Une étude structurale détaillée par diffusion de neutrons, couplée à des essais mécaniques, d'échantillons de polystyrène renforcés par des grains de silice a été réalisée au Laboratoire Léon Brillouin (LLB) au CEA Saclay. Cette étude montre toute l'importance de savoir maîtriser la distribution des particules entrant dans la composition du matériau. Une solution originale au problème par le greffage de petites chaînes de polymère à la surface des particules est aussi étudiée. Cette étude modèle trouve de nombreuses applications, en particulier dans le domaine du pneumatique.


Contact : P. Viel

L'étude de molécules complexes ou de matériaux biologiques individuels nécessite de  savoir immobiliser ces objets sans altérer leurs fonctions actives. A l'image des bandes de papier tue-mouches ou plus précisément comme un scotch double face d'épaisseur moléculaire, le LCSI a développé des surfaces possédant des propriétés auto-adhésives capables de "coller" un grand nombre de matériaux organiques, minéraux et même biologiques. La fonctionnalisation de la surface du substrat est obtenue par le greffage pérenne de monocouches moléculaires robustes.


Des chercheurs du Laboratoire de chimie et biologie des métaux (CEA-CNRS-Université J. Fourier, au CEA de Grenoble), du Laboratoire de chimie des surfaces et interfaces (CEA de Saclay) ainsi qu'une équipe du Laboratoire d'innovation pour les technologies des énergies nouvelles et les nanomatériaux (CEA de Grenoble) ont combiné nanosciences et chimie bio-inspirée pour élaborer, pour la 1ère fois, un matériau capable de catalyser sans platine aussi bien la production d'hydrogène que son utilisation dans les piles à combustible.

Ce résultat, majeur dans la perspective d'une économie de l'hydrogène, plus compétitive, fait l'objet d'une publication dans la revue Science.

D. Kopetzki, Y. Michina, T. Gustavsson, D. Carrière

Les molécules amphiphiles présentent une tête hydrophile et une chaîne hydrophobe. Sous certaines conditions, elles peuvent s'auto-organiser sous forme de vésicules sphériques creuses emprisonnant un cœur aqueux dans une bicouche de tensioactif, le diamètre de l'ensemble variant de quelques dizaines de nanomètres à plusieurs microns. En choisissant soigneusement les conditions de croissance, les chercheurs du SIS2M montrent que l'on peut synthétiser des vésicules extrêmement robustes avec des propriétés d'encapsulation originales.

Ces systèmes sont largement étudiés pour de nombreuses problématiques fondamentales (mécanisme d'auto-assemblage, propriétés physiques de la membrane, etc...) dont la compréhension peut ouvrir de nouvelles perspectives (libération contrôlée de principes actifs, nano-réacteurs chimiques, conversion d'énergie, etc...). Usuellement, ces vésicules (dans ce cas aussi appelées "liposomes") sont formées à partir de phospholipides, constituants des membranes cellulaires. Il serait avantageux de les remplacer par des molécules aux propriétés semblables mais avec des fonctions chimiques plus facilement modifiables ou disponibles, telles que les vésicules formées à partir d'acides gras. Si l'on sait effectivement former de telles vésicules d'acides gras dans des conditions précises de température et de pH, il faut cependant trouver le moyen de les stabiliser : elles sont en effet très sensibles aux conditions externes et se détruisent aisément pour donner des micelles ou des cristaux.

J. Charlier, A. Ghorbal, F. Grisotto, S. Palacin

Le développement et la réalisation de dispositifs en micro- et bio-électronique nécessite souvent de déposer des couches de substances organiques sur des surfaces conductrices ou semi-conductrices. Pour ceci l'accroche chimique (ou greffage) est très efficace. La miniaturisation souhaitée des composants demande de pouvoir réaliser aujourd'hui ce greffage de façon très localisée, à l'échelle du micron, voire sub-micronique.

Pour lier de façon localisée une molécule à une surface, on expose usuellement la surface macroscopique d'un substrat à de très faibles quantités de solution. La localisation peut aussi être assistée par un faisceau lumineux ou une chimie spécialisée. La plupart de ces techniques requièrent de nombreuses étapes de transformation et leur mise en œuvre est souvent fastidieuse et onéreuse. Dans ce contexte, nous montrons qu'il est possible par une démarche originale d'effectuer un greffage local en une seule étape, ne nécessitant aucune technique de masquage et à base de technologies légères de faible coût.

Nous avons montré récemment [1-4] qu'il était déjà possible de décorer, localement et en une seule étape, par un film organique (électro-greffage de monomères vinyliques), la surface d'un échantillon composite présentant des zones de conductivité différente (Au/Si, Si/Si dopé). La sélectivité spatiale du dépôt est obtenue dans ce cas en jouant simplement sur le potentiel imposé, qui permet de promouvoir le transfert électronique (et donc le greffage du polymère) vers l'une des surfaces à l'exclusion de l'autre. Le motif prédéfini est ainsi parfaitement respecté, avec une résolution latérale uniquement limitée par l'épaisseur du film (de quelques nm à quelques centaines de nm).

D. Sen, O. Spalla, O. Taché, P. Haltebourg, A. Thill

ESRF Highlights 2007

The synthesis of ordered, homogeneous porous grains is an expanding area of materials research. One strategy for their formation is to dry the spray of a complex mixture containing nanoparticles and templating agents [1]. In this process, a continuous flow of micrometric droplets, made from the initial dilute solution, is dried along a hot tube in order to evaporate the solvent. Self-organisation of the constituents takes place during the evaporation. Organic moieties can even be removed via further calcination. The local structure of the final grains strongly depends on the initial compositions. Small-angle X-ray scattering can be used to investigate the ordered structural features of the final spray-dried grains at the nanometric scale [2]. However, the morphology of the grains at a larger scale depends critically on the kinetics of drying.

Two different regimes may be distinguished for the solvent evaporation from a complex nanoparticles solution confined in a droplet. Firstly, when the evaporation front moves faster than the time required for a particle to diffuse on the length scale of the drop, the grains may be heterogeneous. The final grains can be doughnut-like or even core-shell with an empty space inside, which has sometimes been observed by scanning electron microscopy (SEM). Secondly, when the drying is slower than the characteristic diffusion time of the nanoparticles, the evaporation occurs in a quasi equilibrium distribution of the nanoparticles inside the droplet and the formation of a dense spherical grain is anticipated.

For a solution containing a mixture of 5 nm silica nanoparticles with 50 nm polybromostyrene sulfonate we found that a large proportion of doughnuts were obtained, even when a slow evaporation rate was used (Peclet number Pe = dif/evap = 0.01). One of the doughnuts is shown Figure 59. Together with the sphere-doughnut transition, the inner homogeneity of this type of material remains a crucial question for their further applications.

V. Padmanabhan, J. Daillant, L. Belloni, S. Mora, M. Alba, and O. Konovalov

ESRF Highlights 2007

The study of aqueous salt solutions continues to attract various research groups because of their fundamental importance in various physicochemical, biological and atmospheric processes. The air/water interface plays a crucial role in such processes and differs to a large extent when compared to bulk. To further understand the role of the interface, direct access to the surface excess or the knowledge of the concentration profiles of ions will not only improve our present understanding but also help to predict the properties associated with it. Ions, though of the same valency, tend to interact differently with proteins (salting in or salting out as predicted by Hofmeister) or differ in their degree of adsorption at the air-water interface. In recent times, there have been considerable efforts by various research groups using different sophisticated surface sensitive probes to understand the organisation of the ions and its impact on the solvent features and also through molecular dynamic simulation.

A l’heure où nous nous interrogeons sur les réserves de combustibles fossiles de notre planète et sur les conséquences de l’effet de serre sur le réchauffement du globe, l’hydrogène est considéré comme le vecteur énergétique d’avenir pour les transports. Les recherches conduites par le CEA portent sur toutes les étapes de cette filière : production, stockage, transport, distribution et utilisation. Dans cette filière, l'hydrogène produit à partir d'énergie primaire, solaire, nucléaire, éolien, chimique... est embarqué dans le réservoir du véhicule et une pile à combustible, élément permettant la conversion propre (sans émission de CO2) de l'énergie chimique en énergie électrique, associée à un moteur électrique remplace alors le moteur à essence de nos voitures.

Parmi les différents types de piles adaptées aux applications de transport, les plus intéressantes sont de type PEMFC (Proton Exchange Membrane Fuel Cell). Ces piles contiennent en particulier une membrane polymère capable de jouer le rôle d’électrolyte solide. Dupont De Nemours commercialise une membrane à base de polymère perfluoré sulfoné, le Nafion®. Cette membrane présente cependant quelques inconvénients comme une autonomie médiocre (< 5000h de fonctionnement), une fragilité mécanique, l’incapacité à fonctionner en milieu anhydre… L’équipe des "Polymères Irradiés" du LSI essaie de répondre à ces problèmes en proposant un nouveau type de membrane.

P. Viswanath, J. Daillant, L. Belloni, M. Alba, DRECAM/SCM - Service de Chimie Moléculaire
S. Mora (LCVN, Montpellier) et O. Konovalov (ESRF)

Fiche fait marquant au format PDF

Dissoudre du sel (NaCl) dans l'eau n'est pas anodin. En solution, le sodium et les chlore se séparent sous forme ionique Na+ et Cl-, s'entourent de molécules d'eau et se dispersent. Ceci modifie profondément la nature du solvant qui devient ainsi, par exemple, bon conducteur. Au niveau de la surface, la distribution des ions reste cependant encore très mal connue, bien que de nombreuses propriétés "de contact" en dépendent.

Ainsi, pourquoi HCl diminue-t-il la tension de surface de l'eau alors que NaCl l'augmente? Pourquoi KCl est-il deux fois plus efficace que NaCl pour cristalliser le lysozyme(i) ? Les questions de ce type, qui illustrent la spécificité ionique, abondent en biologie, science de l'environnement et de l'atmosphère, sciences des matériaux, physico-chimie… Ces effets, dont certains ont été décrits dès les travaux de Hofmeister en 1888 [1], n'ont cependant toujours pas trouvé d'explication globale. Jusqu'à présent, seules des lois empiriques ont pu être dégagées à partir d'observations généralement macroscopiques. La difficulté tient à ce que ces effets sont dus essentiellement à des couplages forts à très courte portée (en dessous du nanomètre) entre ions et molécules de solvant, et au manque de mesures de profils ioniques aux interfaces.
G. Rizza, DRECAM/Laboratoire des Solides Irradiés, Ecole Polytechnique

Les applications des nanoparticules sont nombreuses mais dépendant généralement de leur taille. Ainsi, les propriétés optiques (réflectivité sélective, absorption, propriétés optiques non linéaires) d’un matériau diélectrique peuvent être modifiées en introduisant dans la matrice hôte des particules métalliques de taille nanométrique bien définie. Contrôler la taille, la morphologie et l’environnement chimique des nanoparticules, permet de modifier par exemple de façon contrôlée la valeur de la résonance du plasmon de surface et donc les propriétés macroscopiques de la matrice hôte.

N. Malikovaa, A. Cadènea, V. Marrya, E. Duboisa, P. Turqa, J.-M. Zanottib, S. Longevilleb,

aLaboratoire Liquides Ioniques et Interfaces Chargées, CNRS et Univ. P&M Curie
bLaboratoire Léon Brillouin, CEA-CNRS

On trouve très tôt des traces de l’utilisation des argiles dans les activités humaines : poterie et matériaux de construction bien sûr, mais aussi fabrication de papier et de médicaments... Ces premiers artisans ne l’auraient probablement pas formulé de la sorte, mais d’un point de vue physicochimique, les argiles sont des matériaux stratifiés à grains fins, dont la structure locale leur confère de remarquables propriétés de rétention d’eau et d’échange ionique (Fig.1).

M. Pinault1, M. Mayne-L'Hermite1, C. Reynaud1 ,H. Khodja2 ,V. Pichot3 , P. Launois3

1CEA Saclay - DSM/IRAMIS/Service des Photons, Atomes et Molécules - Laboratoire Francis Perrin
2CEA Saclay - DSM/IRAMIS/Laboratoire Pierre Sue
3Laboratoire de Physique des Solides, CNRS UMR 8502, Univ. Paris Sud, 91405 Orsay


Retour en haut