Physique à Haute Intensité / High intensity Physics

Responsable du groupe PHI :

Sandrine DOBOSZ DUFRENOY

Merci de consulter le nouveau site PHI

Aujourd'hui capable de produire des impulsions lasers de quelques cycles optiques, à la fois sans piedestal et extrêmement intenses (> 1021 W/cm2), le domaine de l'optique a franchi des ordres de grandeur - en moins de 15 ans - en passant des énergies de quelques eV's au domaine du GeV. Compte tenu des progrès constants et spectaculaires accomplis dans les laboratoires chaque année, il est tout à fait envisageable que le régime du TeV soit atteint, dans un proche avenir.

Dans ce contexte, la compréhension du caractère ultra-relativiste de l'interaction entre la lumière et la matière est une question d'un intérêt scientifique considérable qui doit mener à la réalisation d'applications spectaculaires.

Le groupe de Physique à Haute Intensité (PHI) s'est lancé dans ce domaine en très forte croissance en privilégiant deux aspects complémentaires : l'utilisation des radiations produites pour mieux comprendre la physique de l'interaction et l'utilisation de ces sources de rayonnement aux propriétés hors du commun pour développer des applications originales.

En effet, les propriétés uniques de ces sources produites par laser résident dans leur variété (électrons, ions de différentes espèces et charges, photons, neutrons, ...), leur durée ultra-brève (quelques picosecondes ou moins) et leur brillance. Ces sources de lumière ou de particules ultra-compactes présentent un intérêt grandissant dans de nombreux domaines aussi variés que la médecine (protonthérapie, radiothérapie , imagerie, diagnostics ..), la chimie (radiolyse, étude de surface, réactions chimiques, catalyse, structure moléculaire...), la physique (diagnostics pour la physique des plasmas, détecteurs, etc...), la science des matériaux (radiographie, diffraction électronique et de photons) ou encore le domaine de la sûreté (contrôle de colis, frontière ...).

Ainsi, en étroite collaboration avec de nombreuses équipes du plateau de Saclay (LULI, LOA, LPGP, CPhT), de Bordeaux (CELIA, CESTA) et internationales (INFN Pise, RAL,...) et en relation directe avec les futures installations lasers (APOLLON, LUIRE, ELI, GEMINI,...), nous participons au développement de cette nouvelle et excitante branche de la physique.

      

Head of the group PHI :

Sandrine DOBOSZ DUFRENOY

Click here to consult the new website of PHI

With the possibility of producing pedestal-free, few optical cycle laser pulses of extreme intensity laser intensities (> 1021 W/cm2 ), the field of optics, has abruptly moved - in less than 15 years - from a few eV's to the present MeV-GeV. It is foreseeable that, in the near future, the TeV regime will be reached.

The understanding of the ultra-relativistic character of the interaction between light and matter is a considerable scientific challenge and led to novel spectacularly applications.

The PHI group is thrown is this ultra-fast growing field through two complementary aspects: constructing some basis for this new physics (in using laser-produced radiation to diagnose the interaction) and promoting the applications (in using laser-produced radiation as external sources).

The unique properties of laser-generated beams include their variety (electrons, ions, photons, neutron,...), their short duration -as short as a few femtoseconds- and their high peak brightness, which could lend themselves to applications as compact light and particle sources in many fields, including medicine (therapy, imaging, diagnostics, drug development etc), chemistry (radiolysis, surface studies, chemical reactions, catalysis, molecular structure), physics (plasma physics diagnostics, detectors etc) and material science (radiography, electron and photon diffraction), security (material inspection, border control, etc).

In close collaboration with many teams from the "Plateau de Saclay" (LULI, LOA, LPGP, CpTh), from Bordeaux (CELIA, CESTA) and new sources under development (APOLLON, LUIRE, ELI, GEMINI,...), this dual enriching strategy will be pursued and amplified.

 
#1255 - Màj : 16/01/2023
Thèmes de recherche

Interaction laser-matière en champ fort

 La thématique "Interaction laser-matière en champ fort" associe trois groupes de recherche du LIDyL : Attophysique Le groupe ATTO étudie la production par génération d'harmoniques d'ordre élevé dans un gaz d'impulsions de lumière dans l'extrême UV (10-100nm), de durée ultra-brève, typiquement une centaine d'attosecondes (1as=10-18s).......

 Interaction laser-matière en champ fort
 Simulation numérique et calcul haute performance

Simulation numérique et calcul haute performance

Au LIDYL, les simulations numériques permettent de modéliser l'interaction de la lumière avec la matière en particulier sous l'effet d'impulsions laser de très haute intensité et extrêmement brèves (domaine attoseconde (10-18 s).

Voir aussi
Voir aussi
fs pulse tunability : Regular fs laser provides possibly tunable photons only whithin the broadband of the cristal used, to the detriment of the pulse duration. Femtochemistry requires photon excitation on the absorption band of the studied system. The challange is also to tune the wavelenght of the pump photon, keeping the feature of the laser in term of pulse duration and with a resonable energy.
Faits marquants scientifiques
18 août 2022
En utilisant les impulsions lumineuses ultracourtes du laser à électrons libres FERMI à Trieste (Italie), une large collaboration de physiciens à laquelle participe une équipe du LIDYL, a pu étudier pour la première fois dans le domaine de l'ultraviolet extrême (UVX), l’interaction cohérente entre atomes et photons, phénomène quantique prédit théoriquement par Rabi, dès 1937.
07 juillet 2022
Le LIDYL du CEA-Iramis et le Lawrence Berkeley National Lab, sont finalistes pour le prix Gordon Bell, prix décerné chaque année par l'Association for Computing Machinery - ACM, pour leurs recherches collaboratives, en partenariat avec le grand équipement national de calcul intensif - GENCI, le RIKEN, Center for Computational Science (Japon), et les sociétés ATOS et Arm.
26 janvier 2022
L'exploration des propriétés du vide, aujourd'hui décrites par l’électrodynamique quantique (QED), reste un des objectifs de la physique fondamentale contemporaine. Il est en particulier prédit que pour un éclairement laser au-delà de la limite de Schwinger (> 4.7x1029 W/cm2), il est possible de séparer les paires électron-trou virtuelles résultant des fluctuations du vide.
26 janvier 2022
Depuis des siècles, les physiciens s’interrogent sur la nature du vide, c’est à dire sur ce qu’il reste, quand on a tout enlevé…Une manière d’envisager ce problème est de tenter d'ouvrir le vide, un peu comme un objet dont on a envie de comprendre le fonctionnement.
27 mars 2021
Les chercheurs d'une collaboration entre le Laboratoire d'Optique Appliquée (LOA, ENSTA-X-CNRS) à Palaiseau et l'équipe "Physique à haute intensité" de l'IRAMIS/LIDYL sont parvenus pour la première fois à accélérer des électrons par laser dans le vide (Vacuum Laser Acceleration - VLA) jusqu'à des énergies relativistes en utilisant un champ électrique longitudinal.
06 septembre 2019
Une collaboration entre les équipes du LIDYL au CEA Saclay et de l'ATP du Lawrence Berkeley National Lab (LBNL) vient d'élucider les mécanismes d’absorption d’un faisceau laser ultra-intense, lors de sa réflexion sur un plasma dense formé à la surface d’une cible solide. Ces mécanismes, jusqu’alors non identifiés pour des intensités lasers > 1018 W.
10 janvier 2019
L’avènement des lasers femtosecondes (1fs = 10-18s) de puissance avec la technique "Chirped Pulse Amplification" (CPA) [1] permet aujourd’hui de délivrer des intensités lumineuses gigantesques (> 1021 W.cm-2) associées à des champs électriques ultra-intenses de l’ordre de 1013 V.m-1.
27 mars 2018
Fort de l'expérience développées ces dernières années en simulation de la tranmission d'impulsions lumineuses ultra-courtes à travers des systèmes optiques simples ou relativement complexes, l'équipe PHI du Lidyl propose une méthode pour modifier à volonté et de façon conséquente la vitesse de propagation du maximum d'intensité d'une impulsion lumineuse, cette vitesse pouvant même devenir négative ! Le dispositif proposé est simple et consiste à jouer sur le large domaine spectral que présente une impulsion courte (femtoseconde : 10-15 s) et le chromatisme du dispositif.
17 avril 2017
Les vortex optiques sont des faisceaux de lumière à plan d’onde hélicoïdaux porteurs de moment angulaire orbital (OAM), comme le montre leur capacité à induire un mouvement de rotation de la matière.
18 juillet 2016
Une équipe du CEA Lidyl a réussi à mesurer pour la première fois la structure spatio-temporelle complète d’une impulsion laser de très haute puissance.
14 décembre 2015
Deux équipes du CEA LIDYL et du Laboratoire d'Optique Appliquée (LOA) ont réussi à mettre en évidence pour la première fois l'accélération d'électrons "dans le vide", par un faisceau laser intense.
03 octobre 2015
Les plasmons sont des oscillations collectives électroniques qui peuvent être excitées avec des photons le long d'une interface, par exemple entre une surface solide et le vide. L'onde électromagnétique et les charges oscillent à la même fréquence, mais leurs longueurs d'onde sont différentes.
20 mai 2014
Un enjeu majeur pour l'étude des interactions laser-matière à ultrahaute intensité est de trouver des méthodes simples pour à la fois contrôler ces interactions, et les caractériser à de très petites échelles spatiales (micron) et temporelles (attoseconde à femtoseconde).
08 février 2014
Les recherches sur l’interaction laser-matière à très haute intensité ont deux motivations principales : la compréhension, dans ce régime extrême, de l’interaction fortement non-linéaire entre lumière et matière et l'exploration de ses applications potentielles.
14 octobre 2013
L'interaction d'une impulsion laser intense avec une surface solide fait violemment osciller le cortège électronique, entrainant l'émission de protons. C'est une méthode pour obtenir une source de protons de haute énergie pour de nombreuses applications (imagerie et proton thérapie par exemple).
26 novembre 2012
La dynamique des électrons au sein des atomes et des molécules est extrêmement rapide, typiquement de l'ordre de la centaine d'attosecondes (1 as=10-18 s).
25 septembre 2008
 Highlight in Physicsworld.com (2008 September, 19th) Researchers from Italy, France and Germany have shown that a tabletop laser can be used to accelerate a beam of electrons suitable for use in radiotherapy. The group, led by Antonio Giulietti of the Institute for Physical Chemistry Processes in Pisa, believes that such laser-based particle acceleration could considerably reduce the size and simplify the operation of radiotherapy facilities.
20 septembre 2006
Fabien Quere et le Groupe Physique à Haute Intensité (PHI) - DRECAM – Service de Physique des Atomes et des Molécules (SPAM)
Que se passe t-il lorsqu'un miroir (morceau de verre) est soumis à des impulsions ultra-brèves et ultra-intenses, telles que ses électrons oscillent à des vitesses proches de la vitesse de la lumière ? Ces conditions peuvent être obtenues lors de la seconde réflexion d'une impulsion laser sur un miroir plasma.
19 mai 2003
Gilles Doumy & le Groupe PHI, CEA Saclay, DSM/DRECAM/Service de Physique des Atomes et des Molécules (SPAM)
Les impulsions laser ultra-brèves, d'une durée de quelques dizaines de femtosecondes (1 fs = 10-15 s), permettent d'obtenir des puissances considérables avec une énergie par impulsion relativement modeste.
Publications HAL

Dernières publications PHI


Toutes les publications PHI dans HAL-CEA

Thèses
4 sujets /LIDYL/PHI

Dernière mise à jour :


 

Exploration de la dynamique de dépôt d’énergie aux temps courts d’électrons accélérés par laser dans le cadre de l’effet Flash en radiothérapie

SL-DRF-24-0351

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Physique à Haute Intensité (PHI)

Saclay

Contact :

Gérard BALDACCHINO

Sandrine DOBOSZ DUFRÉNOY

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Gérard BALDACCHINO
CEA - DRF/IRAMIS/LIDYL

01 69 08 57 02

Directeur de thèse :

Sandrine DOBOSZ DUFRÉNOY
CEA - DRF/IRAMIS/LIDyL/PHI

01.69.08.63.40

Page perso : https://iramis.cea.fr/LIDYL/Phocea/Pisp/index.php?nom=gerard.baldacchino

Labo : https://iramis.cea.fr/LIDYL/index.php

Voir aussi : https://iramis.cea.fr/LIDYL/Phocea/Pisp/index.php?nom=sandrine.dobosz

L’objectif du projet de thèse est d’analyser les processus physico-chimiques consécutifs aux débits de dose extrêmes que l’on peut obtenir maintenant dans l’eau avec les impulsions ultra-brèves (fs) d’électrons relativistes accélérés par laser. En effet, des premières mesures montrent que ces processus ne sont probablement pas équivalents à ceux obtenus avec des impulsions plus longues (µs) dans l’effet FLASH utilisé en radiothérapie. Pour y arriver, nous proposons d’analyser la dynamique de formation/recombinaison de l’électron hydraté, espèce emblématique de la radiolyse de l’eau pour qualifier et quantifier l’effet de débit de dose sur des temps de plus en plus courts. Ceci pourra se faire en trois étapes en accompagnement de la progression technologique nécessaire et maintenant accessible, pour avoir une dose par impulsion suffisante pour détecter directement l’électron hydraté. D’abord, avec l’installation existante UHI100 en utilisant la capture de l’électron hydraté en produisant une espèce stable ; puis en produisant une espèce moins stable mais détectable en temps réel et en augmentant le taux de répétition de l’accélérateur laser-plasma. Finalement, en testant un nouveau concept appelé « cible hybride », basé sur l’utilisation d’un miroir plasma comme injecteur d’électrons couplé à un accélérateur laser-plasma. Délivrant des doses plus importantes que les accélérateurs laser-plasma, avec un spectre énergétique resserré, on pourra développer une détection pompe-sonde permettant d’accéder aux temps les plus courts, et à la formation dans les grappes d’ionisation, de l’électron hydraté et en mesurant son rendement initial.
Générateur compact de faisceaux paires electrons-positrons/muons-antimuons

SL-DRF-24-0806

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Physique à Haute Intensité (PHI)

Saclay

Contact :

Luca Fedeli

Henri VINCENTI

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Luca Fedeli
CEA - DRF/IRAMIS/LIDyL/PHI

+33 1 69 08 19 59

Directeur de thèse :

Henri VINCENTI
CEA - DRF/IRAMIS/LIDyL/PHI

0169080376

Page perso : https://iramis.cea.fr/LIDYL/Phocea/Pisp/index.php?nom=henri.vincenti

Labo : https://iramis.cea.fr/LIDYL/PHI/

Voir aussi : https://ecp-warpx.github.io/

###Contexte

Le contexte de ce sujet de thèse est celui des accélérateurs d’électrons laser-plasma, qui peuvent être obtenus en focalisant un laser de puissance dans un jet de gaz. Au foyer laser, le champ électrique est tellement intense qu’il ionise quasi-instantanément le milieu gazeux et forme un plasma sous-dense, au sein duquel l’impulsion laser peut se propager. Dans son sillage, cette impulsion excite des structures plasmas accélératrices pouvant soutenir des champs électrostatiques de l’ordre de 100GV/m. Au sein de ces structures, des électrons du plasma peuvent être piégés et accélérés à des énergies relativistes (quelques GeV) sur des distances centimétriques. Ces champs électrostatiques étant trois ordres de grandeurs supérieurs à ceux fournis par les cavités radiofréquences, les accélérateurs laser-plasma sont des candidats prometteurs pour miniaturiser les accélérateurs d’électrons afin : (i) de démocratiser leur usage à des applications existantes mais restreintes à quelques installations dans le monde et (ii) permettre de nouvelles applications de ces accélérateurs à des secteurs stratégiques clés (recherche fondamentale, industrie, médecine, défense).

Parmi les applications faisant l’objet d’une forte concurrence internationale, on note :

> L’utilisation de ces accélérateurs pour fournir la première machine de radiothérapie d’électrons à haute énergie (100MeV) pour les traitements médicaux

> L’utilisation de ces accélérateurs comme brique de base d’un futur grand collisionneur d’électrons/positrons au TeV pour la physique des hautes énergies

> L’utilisation de ces accélérateurs pour construire une source compacte et mobile de muons relativistes pour pouvoir réaliser de la tomographie de muons active. Un tel outil serait un atout majeur dans les secteurs de l’industrie (e.g., diagnostic de sécurité des réacteurs dans le nucléaire civile) et de la défense (non-prolifération). A noter que dans ces deux secteurs, l’agence DARPA américaine a déjà financé en 2022 un programme ambitieux (Muons for Science and Security, MuS2) afin de fournir un premier design conceptuel d’une machine à muons relativistes utilisant un accélérateur laser-plasma (cf. https://www.darpa.mil/news-events/2022-07-22)


###Enjeux

Afin de rendre possible les applications mentionnées précédemment, il faut lever d’importantes limitations des accélérateurs laser-plasma actuels. Une limitation importante est le peu de charge à haute énergie (100MeV à plusieurs GeV) fournie par ces accélérateurs. La cause physique derrière ce manque de charge provient principalement du fait que les techniques d’injection de charge actuelle reposent sur l’injection d’électrons depuis le gaz, qui est très peu dense en électrons. Afin de résoudre cette limitation, nous avons récemment proposé un nouveau concept d’injection à partir d’un système physique remarquable appelé miroir plasma. Ce concept est basé sur une cible hybride gaz-solide. Quand le laser à haute intensité interagit avec cette cible, il ionise complètement le solide et le gaz. La partie solide de la cible a une densité électronique tellement élevée qu’elle réfléchit le laser incident, en formant un “miroir plasma”. Dans la partie gazeuse de la cible, le laser se propage et génère des structures accélératrices comme dans les schémas conventionnels. Suite à la réflexion sur le miroir plasma, des jets d’électrons ultra-denses peuvent être précisément injectés dans les structures accélératrices formées par le laser réfléchi. Comme le solide peut fournir une charge beaucoup plus élevée que le gaz et que la charge est injectée à partir d’une région fortement localisée, ce schéma a le potentiel d’augmenter la charge accélérée tout en préservant la qualité du faisceau accéléré.
Le groupe PHI est à la pointe au niveau international dans l’étude et le contrôle de ces systèmes. En partenariat avec le LOA, nous avons démontré (à l’aide de lasers de classe 100 TW) que ce nouveau concept permet d’augmenter considérablement la charge dans ces accélérateurs tout en conservant la qualité du faisceau.

###Objectifs

Dans ce contexte, l’objectif 1 de la thèse sera de produire un accélérateur laser-plasma avec injecteur miroir plasma à plusieurs GeV sur des installations lasers de classe PetaWatt (type laser APOLLON). Avec un laser de classe PW, cet accélérateur laser-plasma devrait produire des faisceaux d’électrons de plusieurs 100pC à 4GeV avec une dispersion en énergie de quelques %. Une telle qualité de faisceau constituerait une avancée majeure dans le domaine.

L’objectif 2 sera ensuite d’envoyer ce faisceau d’électrons dans un convertisseur à haut Z pour produire des paires muons/anti-muons. Nos estimations montrent que l’on pourrait obtenir de l’ordre de 10^4 muons relativistes par tir, ce qui permettrait de fournir une radiographie de matériaux à haut Z en quelques minutes.

Ce sujet comporte à la fois des activités :

>Théoriques/numériques de modélisation à l’aide de notre code exascale WarpX (partie accélérateur laser-plasma) et du code Geant4 (partie convertisseur haut Z)

>Expérimentales (interaction laser-plasma à haute intensité, détection de muons relativistes).

Il implique plusieurs laboratoires partenaires :

>Le Laboratoire d’Optique Appliquée sur les expériences d’accélération laser-plasma (A. Leblanc),

>Le CEA-IRFU sur la partie détection (technologie micromegas, O. Limousin),

>Le Lawrence Berkeley National Lab sur la partie développement de code (WarpX).


En termes expérimental, nous utiliserons plusieurs installations laser :

>L’installation laser UHI100 pour la mise en place et le test de l’accélérateur plasma à puissance laser plus réduite,

>L’installation laser APOLLON pour la mise en place de l’accélérateur laser-plasma à puissance nominale (PW). Une première expérience implémentant le concept d’injecteur miroir plasma au PW est prévue en Mai 2024 en collaboration CEA-LOA. Suite à cette expérience, nous réaliserons ensuite une deuxième expérience (horizon 2025-2026) de production de muons sur APOLLON ou d’autres laser en Europe (dont les lasers ELI).
Simulation numérique à grande échelle et optimisation d’un nouveau concept d'injecteur pour augmenter la charge accélérée dans les accélérateurs d’électrons laser-plasma afin d’en permettre des applications scientifiques et technologiques

SL-DRF-24-0353

Domaine de recherche : Physique des plasmas et interactions laser-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Physique à Haute Intensité (PHI)

Saclay

Contact :

Luca Fedeli

Henri VINCENTI

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Luca Fedeli
CEA - DRF/IRAMIS/LIDyL/PHI

+33 1 69 08 19 59

Directeur de thèse :

Henri VINCENTI
CEA - DRF/IRAMIS/LIDyL/PHI

0169080376

Page perso : https://iramis.cea.fr/LIDYL/Phocea/Pisp/index.php?nom=henri.vincenti

Labo : https://iramis.cea.fr/LIDYL/PHI/

Voir aussi : https://www.olcf.ornl.gov/2022/10/27/warpx-named-gordon-bell-prize-finalist/

L'interaction d’un laser ultra-intense avec un jet de gaz peut être utilisée pour accélérer des paquets d'électrons très courts jusqu'à des énergies très élevées (jusqu’à plusieurs GeV) sur quelques centimètres seulement, avec une technique appelée “Laser WakeField Acceleration” (LWFA). La taille réduite de ces dispositifs et la durée très courte des paquets d'électrons en font une source potentiellement intéressante pour plusieurs applications scientifiques et technologiques. Cependant, l'LWFA ne fournit généralement pas assez de charge pour la plupart des applications envisagées, en particulier si une qualité de faisceau élevée et des énergies importantes sont également requises.

Le premier objectif de cette thèse est de comprendre la physique de base d'un nouveau schéma d'injection LWFA récemment conçu dans notre groupe: une cible solide couplée à un jet de gaz pour accélérer beaucoup plus de charge que les schémas d'injection conventionnels, tout en préservant la qualité du faisceau. Des campagnes de simulation numérique à grande échelle et des techniques d’apprentissage automatique seront utilisées pour optimiser les propriétés des électrons accélérés. Enfin, l’interaction de ces faisceaux d’électrons avec des échantillons sera simulée à l’aide d’un code Monte Carlo afin d'évaluer leur potentiel pour des applications telles que la Muon Tomography et la radiobiologie/radiothérapie. L’activité proposée est essentiellement numérique, mais avec la possibilité de participer aux activités expérimentales de l’équipe.

Le(a) doctorant(e) aura l'opportunité de participer aux activités d'une équipe dynamique avec de fortes collaborations nationales et internationales. Il/elle acquerra également les compétences nécessaires pour participer à des expériences d'interaction laser-plasma dans des installations d'envergure internationale. Enfin, il/elle acquerra les compétences nécessaires pour participer au développement d'un logiciel complexe écrit en C++ moderne et conçu pour utiliser efficacement les superordinateurs plus puissants au monde: le code Particle-In-Cell WarpX (prix Gordon Bell en 2022). L’activité de développement sera réalisée en collaboration avec l’équipe guidée par le Dr. J.-L. Vay à LBNL (US), où le/la doctorant(e) pourrait avoir l’opportunité de passer quelques mois au cours de la thèse.
Implémentation d’un nouveau concept d'injecteur pour augmenter la charge accélérée dans les accélérateurs d’électrons laser-plasma afin d’en permettre des applications scientifiques et technologiques

SL-DRF-24-0352

Domaine de recherche : Physique des plasmas et interactions laser-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Physique à Haute Intensité (PHI)

Saclay

Contact :

Luca Fedeli

Henri VINCENTI

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Luca Fedeli
CEA - DRF/IRAMIS/LIDyL/PHI

+33 1 69 08 19 59

Directeur de thèse :

Henri VINCENTI
CEA - DRF/IRAMIS/LIDyL/PHI

0169080376

Page perso : https://iramis.cea.fr/LIDYL/Phocea/Pisp/index.php?nom=henri.vincenti

Labo : https://iramis.cea.fr/LIDYL/PHI/

Voir aussi : https://www.olcf.ornl.gov/2022/10/27/warpx-named-gordon-bell-prize-finalist/

L'interaction d’un laser ultra-intense avec un jet de gaz peut être utilisée pour accélérer des paquets d'électrons très courts jusqu'à des énergies très élevées (jusqu’à plusieurs GeV) sur quelques centimètres seulement, avec une technique appelée “Laser WakeField Acceleration” (LWFA). La taille réduite de ces dispositifs et la durée très courte des paquets d'électrons en font une source potentiellement intéressante pour plusieurs applications scientifiques et technologiques. Cependant, l’LWFA ne fournit généralement pas assez de charge pour la plupart des applications envisagées, en particulier si une qualité de faisceau élevée et des énergies importantes sont également requises. L’objectif de cette thèse est d’implémenter dans plusieurs laboratoires lasers à la pointe (en France et à l'international) un nouveau schéma d'injection LWFA récemment conçu dans notre groupe: une cible solide couplée à un jet de gaz pour accélérer beaucoup plus de charge que les schémas d'injection conventionnels, tout en préservant la qualité du faisceau. L'activité proposée est majoritairement expérimentale, mais avec la possibilité de participer aux activités de simulation numérique à grande échelle qui sont nécessaires pour réaliser le design d’une expérience et en interpréter les résultats. Le(a) doctorant(e) aura l'opportunité de participer aux activités d'une équipe dynamique avec de fortes collaborations nationales et internationales. Il/elle acquerra également les compétences nécessaires pour participer à des expériences d'interaction laser-plasma dans des installations d'envergure internationale. Enfin, il/elle aura la possibilité de participer à l’activité de modélisation numérique du groupe, réalisée sur les superordinateurs plus puissants au monde avec un code Particle-In-Cell open source à la pointe (WarpX, prix Gordon Bell en 2022).
Stages
Images
Accélérer des électrons à haute énergie avec des impulsions de lumière laser
Accélérer des électrons à haute énergie avec des impulsions de lumière laser
Accélérer des électrons à haute énergie avec des impulsions de lumière laser
SLIC Lasers help to slim down radiotherapy equipment
SLIC Lasers help to slim down radiotherapy equipment
Impulsions de quelques cycles optiques
Impulsions de quelques cycles optiques
Les miroirs plasmas : de la physique des conditions extrêmes aux nouvelles sources de lumières
Les miroirs plasmas : de la physique des conditions extrêmes aux nouvelles sources de lumières
Les miroirs plasmas : de la physique des conditions extrêmes aux nouvelles sources de lumières
Génération d\'impulsions uniques ultra-brèves : \
Génération d\'impulsions uniques ultra-brèves : \
Génération d\'impulsions uniques ultra-brèves : \
Génération d\'impulsions uniques ultra-brèves : \
Membres du groupe PHI
L\'efficacité d\'un bon réseau, même transitoire, pour renforcer le couplage impulsion laser-plasma
L\'efficacité d\'un bon réseau, même transitoire, pour renforcer le couplage impulsion laser-plasma
L\'efficacité d\'un bon réseau, même transitoire, pour renforcer le couplage impulsion laser-plasma
Surface structurée et impulsion laser femtoseconde, pour une émission de protons de haute énergie
Surface structurée et impulsion laser femtoseconde, pour une émission de protons de haute énergie
Surface structurée et impulsion laser femtoseconde, pour une émission de protons de haute énergie
Ptychographie sur réseaux plasmas transitoires
Brevet :  Dispositif et procédé de caractérisation d\'un faisceau de lumière.
Brevet : Procédé de structuration spatiale controlée optiquement d\'un plasma sur une cible solide
Première mesure de la structure spatio-temporelle  complète d\'un faisceau laser ultra intense
Première mesure de la structure spatio-temporelle  complète d\'un faisceau laser ultra intense
Première mesure de la structure spatio-temporelle  complète d\'un faisceau laser ultra intense
Le surf des électrons sur une onde de surface
Le surf des électrons sur une onde de surface
Le surf des électrons sur une onde de surface
Le surf des électrons sur une onde de surface
Vortex optiques à ultra-haute intensité et dans le domaine XUV
Vortex optiques à ultra-haute intensité et dans le domaine XUV
Vortex optiques à ultra-haute intensité et dans le domaine XUV
Vortex optiques à ultra-haute intensité et dans le domaine XUV
Génération  d\'impulsions lumineuse de vitesse arbitraire et contrôlée
fs pulse tunability
 Code de calcul massivement parallèle pour une simulation ab-initio de l’interaction laser-matière à ultra-haute intensité : atteindre une compression de 1025 W.cm-2
Physique à Haute Intensité / High intensity Physics
Brevet : Procédé et système de contrôle de la vitesse de propagation d\'une impulsion laser
Brevet : Procédé de caractérisation spatio-spectrale d\'une source laser impulsionnelle polychromatique
Dynamique chaotique de l\'interaction entre une impulsion laser ultra-intense et un plasma dense
Accélération efficace d’électrons dans le vide avec un champ laser longitudinal
Caractérisation spatio-temporelle d\'impulsions attosecondes de très haute intensité
Miroir plasma : un pas supplémentaire pour approcher la limite de Schwinger et sonder le vide
Les chercheurs du LIDYL parmi les finalistes au Gordon Bell prize / LIDYL scientists among the finalists for the Gordon Bell prize
Un atome bien \
Miroir Plasma : le miroir qui nettoie vos impulsions femtosecondes
Miroir Plasma : le miroir qui nettoie vos impulsions femtosecondes
Miroir Plasma : le miroir qui nettoie vos impulsions femtosecondes
 Interaction laser-matière en champ fort
 Simulation numérique et calcul haute performance

 

Retour en haut