4 sujets /NIMBE/LEDNA

Dernière mise à jour :


 

Hybrides nanodiamants/TiO2 pour la production d'hydrogène vert par photocatalyse

SL-DRF-23-0679

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Hugues GIRARD

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Hugues GIRARD
CEA - DRF/IRAMIS/NIMBE/LEDNA

0169084760

Directeur de thèse :

Hugues GIRARD
CEA - DRF/IRAMIS/NIMBE/LEDNA

0169084760

Page perso : https://iramis.cea.fr/nimbe/Phocea/Membres/Annuaire/index.php?uid=hgirard

Labo : https://iramis.cea.fr/nimbe/ledna/

Parmi les carburants solaires, le dihydrogène est particulièrement prometteur grâce à son pouvoir énergétique élevé (142 kJ/mol). Néanmoins, sa production par une filière décarbonnée reste un sujet d’étude, ainsi que les procédés de stockage et de transport associés.

Le sujet de thèse proposé vise à développer la synthèse d' hybrides ND/TiO2 pour la production de dihydrogène par dissociation photocatalytique de l’eau,, en suivant notamment deux stratégies : (i) par assemblage des nanoparticules en voie aqueuse, notamment via des phénomènes électrostatiques ou (ii) en incorporant des nanodiamants durant la synthèse de nanostructures de TiO2. Des traitements de recuit en post-synthèse seront aussi étudiés, afin d’optimiser l’interface ND/TiO2. Dans ce travail, différents types de nanodiamants seront considérés, différents soit par leur source (issus de détonation ou de broyage), leur forme (sphériques ou facettés), leur diamètre (5-100 nm) ou leur chimie de surface. De même, pour le TiO2, différentes structures (rutile ou anatase), qualités cristallines ou morphologies (nanoparticules ou nanotubes) seront étudiées, en utilisant des synthèses par voie hydrothermale et sol-gel. L’effet de pré-traitements sur TiO2 sera aussi abordé. Les matériaux hybrides ainsi formés seront caractérisés par un ensemble de spectroscopies (XPS, FIT, Raman) et microscopies (SEM, HRTEM, CryoTEM) disponibles dans les deux laboratoires. Les performances de ces matériaux pour la production de dihydrogène par dissociation de l’eau par photocatalyse sous irradiation visible et solaire seront finalement évaluées à l’ICPEES. Les cinétiques de production d’hydrogène seront déterminées ainsi que les rendements quantiques en fonction de la concentration de photocatalyseurs, de la nature et de la concentration de l’agent sacrificiel et de l’irradiance.

Mise en forme de nanotubes de carbone alignés comme nouveaux microporeux pour couche de diffusion de gaz des piles à combustible

SL-DRF-23-0046

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Mathieu PINAULT

Arnaud MORIN

Date souhaitée pour le début de la thèse : 01-12-2022

Contact :

Mathieu PINAULT
CEA - DRF/IRAMIS/NIMBE/LEDNA

01-69-08-91-87

Directeur de thèse :

Arnaud MORIN
CEA - DRT/DEHT

0438785986

Page perso : https://iramis.cea.fr/Pisp/mathieu.pinault/

Labo : https://iramis.cea.fr/nimbe/ledna/

Ce travail de thèse s’intéresse au développement d’une nouvelle structure de microporeux pour couche de diffusion de gaz de PEMFC. Le développement de nouveaux matériaux pour piles de type PEM est une nécessité pour améliorer la densité de puissance fournie, réduire le coût des matériaux et le prix du système. Les PEMFC souffrent de problématiques reliées à la distribution d’eau liquide à l’intérieur de la pile, et notamment dans ses couches poreuses. Le microporeux est une des couches poreuses dont le rôle est d’optimiser cette répartition d’eau. Développer une nouvelle structure de microporeux peut permettre d’apporter des informations supplémentaires sur les paramètres influant la gestion de l’eau dans la cellule, et également donner une voie d’amélioration des performances de la pile. . Dans le cadre du projet PEPR (Programme et Equipements Prioritaires de Recherche) H2 PEMFC95, les Départements CEA de l’IRAMIS (Saclay) et de l’Hydrogène pour le Transport (LITEN-DEHT Grenoble) vont collaborer sur l’élaboration de matériaux de GDL optimisés et innovants à base de nanotubes de carbone, plus adaptées aux conditions de fonctionnement définies. Les tapis de NTC alignés ont en effet démontré leur efficacité en tant que couche microporeuse [1]. Les performances sont au moins similaires à la meilleure couche de diffusion de gaz de l'état de la technique en fonction des conditions, et une amélioration jusqu'à 30% de la densité de puissance a pu être obtenue, sans aucun traitement hydrophobe. Pour ce sujet de thèse, nous proposons de poursuivre les développements de ces couches de diffusion intégrant des NTC pour leur intérêt en terme de stabilité vis-à-vis de l’oxydation et leur hydrophobicité en réalisant des couches microporeuses présentant une porosité variable. L’objectif de les substituer à la GDL tout en améliorant la compréhension sur son rôle et d’une manière générale sur les phénomènes de transport dans un cœur de PEMFC. Pour ce faire, le travail comporte deux volets. Un volet matériaux avec des aspects de fabrication et de caractérisation des propriétés fonctionnelles et un volet électrochimie avec des mesures en pile à combustible
Caractérisation in situ et en temps réel de nanomatériaux par spectroscopie de plasma

SL-DRF-23-0402

Domaine de recherche : Physique atomique et moléculaire
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Marc BRIANT

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Marc BRIANT
CEA - DRF/IRAMIS/NIMBE

01 69 08 53 05

Directeur de thèse :

Marc BRIANT
CEA - DRF/IRAMIS/NIMBE

01 69 08 53 05

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=mbriant

Labo : https://iramis.cea.fr/nimbe/ledna/

L'objectif de cette thèse est de développer un dispositif expérimental permettant de réaliser l'analyse élémentaire in situ et en temps réel de nanoparticules lors de leur synthèse (par pyrolyse laser ou pyrolyse par flamme). La spectrométrie d'émission optique de plasma induit par laser (Laser-Induced Breakdown Spectroscopy: LIBS) sera utilisée pour identifier les différents éléments présents et leur stœchiométrie.



Les expériences préliminaires menées au LEDNA ont montré la faisabilité d'un tel projet et en particulier l'acquisition d'un spectre LIBS d'une nanoparticule unique. Néanmoins le dispositif expérimental doit être développé et amélioré afin d'obtenir un meilleur rapport signal sur bruit, d'augmenter la limite de détection, de tenir compte des différents effets sur le spectre (effet de taille des nanoparticules, de composition ou de structure complexe), d'identifier et de quantifier automatiquement les éléments présents.



En parallèle, d'autres informations pourront être recherchées (via d'autres techniques optiques) comme la densité de nanoparticules, la distribution de taille ou de forme.
Synthèse de nanoparticules de diamant à façon

SL-DRF-23-0347

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Hugues GIRARD

Jean-Charles ARNAULT

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Hugues GIRARD
CEA - DRF/IRAMIS/NIMBE/LEDNA

0169084760

Directeur de thèse :

Jean-Charles ARNAULT
CEA - DRF/IRAMIS/NIMBE/LEDNA

01 68 08 71 02

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=hgirard

Labo : https://iramis.cea.fr/NIMBE/LEDNA/

Les nanoparticules de diamant possèdent des propriétés chimiques, électroniques, thermiques et optiques exceptionnelles. Elles sont utilisées actuellement dans les domaines de la nano-médecine, de l’énergie, des technologies quantiques, des lubrifiants et des composites avancés [1-3]. Pour la majeure partie de ces applications, la qualité cristalline du cœur diamant est essentielle et les particules les plus étudiées sont issues de diamant massif broyé. Cependant, ces particules présentent une forte dispersion de taille, une anisotropie de forme et des concentrations d’impuretés variables. Ces aspects influent beaucoup sur leurs propriétés. Il y a donc une nécessité de mettre au point une méthode de synthèse de nanodiamants de haute qualité cristalline qui garantisse un contrôle plus fin de leur taille, de leur morphologie et de leur niveau d’impuretés.



Ce sujet de thèse se propose d’étudier la synthèse de nanodiamants par une approche bottom-up utilisant un template sacrificiel (billes ou fibres de silice) sur lequel des germes de diamant nanométriques seront fixés par interaction électrostatique. La croissance des particules de diamant sera réalisée en exposant ces objets à un plasma de croissance de dépôt chimique en phase vapeur activé par micro-ondes (MPCVD). Le dispositif de croissance de dépôt sur billes existe déjà au CEA NIMBE, il est actuellement utilisé pour la synthèse de cœur-coquilles de diamant [4]. Les paramètres de croissance seront ajustés pour sélectionner la taille, la forme et la concentration d’impuretés (azote, bore) dans les nanodiamants. Après croissance, les nanoparticules seront collectées après dissolution du template. Leur structure cristalline, leur morphologie et leur chimie de surface seront étudiées au CEA NIMBE par microscopie électronique à balayage, par diffraction des rayons X et par spectroscopies Raman, infrarouge et de photoélectrons (XPS). Une collaboration extérieure permettra de réaliser une analyse fine de la structure cristallographique et des défauts structuraux par microscopie électronique en transmission à haute résolution (HR-TEM).



Au cours de cette thèse, plusieurs types de nanodiamants seront synthétisés : tout d’abord des nanoparticules intrinsèques (sans dopage intentionnel) ensuite des nanoparticules dopées au bore. Ces deux types de particules seront ensuite modifiées en surface pour leur conférer une stabilité colloïdale. Leurs performances pour la photocatalyse seront mesurées en collaboration avec l’ICPEES de Strasbourg. Cette méthode de synthèse originale pourra aussi permettre de créer des centres colorés (azote-lacune NV ou silicium-lacune SiV) dans les nanoparticules de diamant pour exploiter leurs propriétés optiques (collaboration à initier).



Références :



[1] N. Nunn, M. Torelli, G. McGuire, O. Shenderova, Current Opinion in Solid State and Materials Science, 21 (2017) 1-9.

[2] Y. Wu, F. Jelezko, M. Plenio,T. Weil, Angew. Chem. Int. Ed. 55 (2016) 6586–6598.

[3] H. Wang, Y. Cui, Energy Applications 1 (2019) 13-18.

[4] A. Venerosy et al., Diam. Relat. Mater. 89 (2018) 122-131.

• Matière ultra-divisée, physico-chimie des matériaux

• Physique atomique et moléculaire

• Physique du solide, surfaces et interfaces

 

 

Retour en haut