Thèse

Mesure de la décohérence et de l’intrication quantique dans la photoémission attoseconde

Interactions rayonnement-matière
Physique atomique et moléculaire
Le projet de thèse est axé sur l’étude avancée de la dynamique de photoémission attoseconde. L’objectif est d’accéder en temps réel aux processus de décohérence induits, par exemple, par l’intrication quantique électron-ion. Pour ce faire, l’étudiant-e développera des techniques de spectroscopie attoseconde utilisant un nouveau laser Ytterbium à taux de répétition élevé.

Sujet détaillé :
Ces dernières années, des progrès spectaculaires ont été réalisés dans la génération d’impulsions attosecondes (1 as=10-18 s), récompensés par le prix Nobel 2023 [1]. Ces impulsions ultracourtes sont générées à partir de la forte interaction non linéaire entre des impulsions laser brèves et intenses et des jets de gaz [2]. Elles ont ouvert de nouvelles perspectives pour l’exploration de la matière à l’échelle de temps intrinsèque de l’électron : la spectroscopie attoseconde permet d’étudier en temps réel le processus quantique de photoémission et de filmer en 3D l’éjection du paquet d’ondes électronique [3, 4]. Cependant, ces études se sont limitées à des dynamiques pleinement cohérentes par manque d’outils expérimentaux et théoriques pour traiter la décohérence et l’intrication quantique. Récemment, deux techniques ont été proposées pour réaliser une tomographie quantique du photoélectron dans son état asymptotique final [5, 6].

L’objectif de ce projet de thèse est de développer la spectroscopie attoseconde afin d’accéder à l’évolution en temps réel de la décohérence et de l’intrication au cours de la photoémission. Les techniques tomographiques seront mises en œuvre sur la plateforme laser ATTOLab à l’aide d’une nouvelle source laser Ytterbium. Cette nouvelle technologie laser émergente offre une stabilité cinq fois supérieure et un taux de répétition dix fois supérieur à celui de la technologie actuelle Titane-Saphir. Ces nouvelles capacités représentent une avancée majeure dans le domaine et permettent, par exemple, d’utiliser des techniques de coïncidence de particules chargées pour étudier la dynamique de la photoémission et de l’intrication quantique avec une précision sans précédent.

Ce projet de thèse s’inscrit dans le cadre du réseau européen QU-ATTO (https://quatto.eu/), récemment financé, qui ouvre de nombreuses perspectives de collaboration avec des laboratoires européens. Des collaborations étroites sont notamment déjà en cours avec les groupes des Profs. Anne L’Huillier à Lund et Giuseppe Sansone à Fribourg. En raison de la règle de mobilité, les candidats ne doivent pas avoir résidé (travail, études) en France plus de 12 mois depuis août 2022.
L’étudiant recevra une solide formation en optique ultrarapide, physique atomique et moléculaire, science attoseconde, optique quantique, et acquerra une large maîtrise des techniques de spectroscopie XUV et de particules chargées.

Références :
[1] https://www.nobelprize.org/prizes/physics/2023/summary/
[2] Y. Mairesse, et al., Science 302, 1540 (2003)
[3] V. Gruson, et al., Science 354, 734 (2016)
[4] A. Autuori, et al., Science Advances 8, eabl7594 (2022)
[5] C. Bourassin-Bouchet, et al., Phys. Rev. X 10, 031048 (2020)
[6] H. Laurell, et al., Nature Photonics, https://doi.org/10.1038/s41566-024-01607-8 (2025)
SL-DRF-25-0743
Master degree Fundamental Physics
1 septembre 2025
Paris-Saclay
Ondes et Matière (EDOM)
Saclay
CEA
Direction de la Recherche Fondamentale
Institut rayonnement et matière de Saclay
Service Laboratoire Interactions, Dynamique et Lasers
Attophysique
CEA
Tél. : 0169081744
Email :
CEA
Tél. : 0169086339
Email :