| | | | | | | webmail : intra-extra| Accès VPN| Accès IST| Contact

Caractérisation de matériaux pour l'énergie / Characterization of materials for energy

Les différentes filières énergétiques, telles que l'énergie nucléaire ou encore les nouvelles technologies autour de l'hydrogène, vecteur énergétique, ou le photovoltaïque, demandent des matériaux adaptés, dont il faut tester la durabilité et la fiabilité.

Caractérisation de matériaux pour l'énergie / Characterization of materials for energy
Electronic structure and atomistic modelisation

Electronic structure and atomistic modelisation

Several IRAMIS teams are involved in calculations of the electronic structure (ab-initio , tight binding, Hückel methods, etc...) and more generally in the modeling of matter at the atomic scale, which also includes more phenomenological methods (empirical potentials, model Hamiltonians, etc...) These modeling tools are mainly developed and used in physics (spectroscopy, transport, magnetism), chemistry (reactivity, dynamics) and for the study of materials (diffusion, growth, defects).

Energy conversion

The development of new technologies for energy implies mastering the process of conversion between the different forms (solar, thermal, chemical, electrical, mechanical, etc.), as well as storage processes: Solar energy can be directly transformed into electrical energy via the photovoltaic process and stored in accumulators. It can also be transformed directly into chemical energy (hydrogen) by photocatalysis.

Energy conversion
Environmental chemistry and pollution control

Environmental chemistry and pollution control

This topic shared between the CEA, the CNRS, the 'Institut de Physique du Globe' of Paris and the University Pierre and Marie Curie (Paris VI) called upon environment and Earth sciences with physics and chemistry. Developed research combines tests at the laboratory, ground studies and powerful analysis tools like the neutron activation or the nuclear microprobe. This research relates to mainly magmatology and volcanology which implement two approaches of chemical geodynamics.

Etudes métallurgiques par diffusion de neutrons / Metallurgical studies by neutron scattering

Les neutrons constituent une sonde particulièrement intéressante pour étudier la structure des matériaux : ceci en particulier grâce à leur faible absorption permettant de travailler sur des pièces d'épaisseur centimétrique, et aussi grâce à la relative facilité de réaliser des expériences en conditions complexes (températures élevées, matériau sous contraintes, ...).

Etudes métallurgiques par diffusion de neutrons / Metallurgical studies by neutron scattering
From molecules to molecular materials

From molecules to molecular materials

To get objects with original features, making molecular materials is addressed by assembling building blocks, as atoms, simple or complex molecules or nanostructures (carbon nanotubes, and graphene sheets in particular) on metallic, inorganic or organic supports, glass ... by "bottom-up" processes.

Human and Environmental Toxicology

Today, industrial and scientific activities employing radioactive elements produce considerable amounts of waste that may pose a risk to the environment and to public health due to their chemical and ionizing properties. Understanding the transfer mechanisms of such anthropogenically derived elements in the environment and their possible accumulation in living organisms is necessary for the assessment of their environmental toxicity.

Human and Environmental Toxicology
Interfaces, complex fluids and microfluidics

Interfaces, complex fluids and microfluidics

Depending on the field (low-carbon energies, nanoscience for information and health technologies (fundamental research for IT and HIT), radiation-matter interaction), several IRAMIS teams are involved in this topic.

IRAMIS and the European Large Instruments

  From their activities of Basic Research, the scientists of IRAMSI are very present around the French and foreign Large Research Instruments: le Laboratoire Léon Brillouin (LLB), within IRAMIS, and also:  l'Institut Laüe-Langevin, the synchrotron facilities (ESRF, ELETTRA et SOLEIL,....),  the GANIL ...

IRAMIS and the European Large Instruments
Materials and irradiation

Materials and irradiation

Research on this topic focuses on fundamental studies of the behavior under irradiation of a wide variety of materials used in the context of nuclear power (metal alloys, glass, ceramics, polymers). The experiments involve external irradiation tools (ion accelerators or electrons), and at the same time benefit from important simulation efforts.

Materials and nanosciences, fundamental studies and applications

This scientific axis covers the activities related to the research in materials science and more generally in hetero-systems (i.e., interfaces, alloys, composites materials, and confined systems). The topics cover the study of the detailed st ructure of nanoobjects, the interactions between nano-objects, and the role of nanost ructures in composite materials. The techniques used for these studies range from diffraction to small angle scattering and reflectivity.

Materials and nanosciences, fundamental studies and applications
Matter under Extreme Conditions

Matter under Extreme Conditions

  The MEC laboratory is a fundamental research lab where two closely related topics are investigated, on the one hand the interaction of matter with a strong laser field, i.e., at high power density, on the other hand the matter at very high energy density, i.e., hot dense plasmas. The MEC lab is composed of 3 interacting research groups, namely Attophysics, Physics at High Intensity (PHI), and High Energy Density Matter (HEDM).

Molecular assembly and nanostructured materials

In many liquid or solid materials of our everyday life matter appears as highly divided. The precise organization of the finely divided components from the microscopic to the macroscopic scale has a huge implication on the properties of these materials. Many of these nanostructured materials are classified as "soft matter".

Molecular assembly and nanostructured materials
Nano-chemistry, nano-objects

Nano-chemistry, nano-objects

The development of nanotechnology based nowdays on the assembly (or even self-assembly) of building blocks that are nanoparticles. The goal is to make use of the intrinsic properties of nanoparticles such as their plasmonic capacities, high surface area or reactivity and of their assembly, to obtain new functional devices such as nanofiltration membranes or photonic crystals.

Nanomagnetism, spintronic and multiferroic materials

This research topic focuses on the development and study of: magnetic materials or multiferroic oxides (ferroelectricity associated with magnetism)* the magnetization dynamics in hybrid nanostructures and its coupling to the spin currents (spintronics) development of ultra-sensitive magnetic sensor and the associated modeling.

Nanomagnetism, spintronic and multiferroic materials
Nanophotonics, Plasmonics

Nanophotonics, Plasmonics

Photonics is the science and technology of the production of photons, their propagation and their absorption by matter. The photonic properties of condensed matter depends on the intrinsic properties of its constituents (molecules, crystalline lattice,...) but, as importantly, on their organization at the nanoscale.

Nanostructured materials and nanocomposites

In very many situations, whether it be in fluids or materials for every day use, or in biological systems, matter is present in a highly dispersed form. It follows an extraordinary range of behaviour due to structural combinations, from the molecular to the mesoscopic and macroscopic scale.

Nanostructured materials and nanocomposites
Organic and molecular electronics

Organic and molecular electronics

With organic and molecular electronics, a data processing based on various types of nano-objects (molecules, biomolecules, nanoparticles, carbon nanotubes, graphene,...) is emerging.

Physics and life

Three research programs of the IRAMIS found an natural extension towards biology: Molecular engineering, where studies of co-operative interactions of molecules in solution found a direct extension towards studies of proteins and of the various assembly modes of biological interest molecules, Matter with high density of energy, where radiolysis, molecule radiation interactions, can be directly transposed to molecules like the ADN, Divided ultra matter, where nanostructured materials, nanophysics and biology converge.

Physics and life
Physique de la matière condensée, étude par l’interaction rayonnement matière / Condensed matter studies by radiation-matter interaction

Physique de la matière condensée, étude par l’interaction rayonnement matière / Condensed matter studies by radiation-matter interaction

Les grandes installations de l’IRAMIS, telles que les spectromètres de diffusion, de diffraction et les stations d’imagerie de neutrons du LLB ou l’accélérateur SIRIUS du LSI, sont particulièrement adaptées à l’étude des propriétés physiques de la matière condensée.

Quantum chemistry and molecular simulations

Theoretical chemistry studies (quantum chemistry, classical and ab initio molecular dynamics simulations) at LCCEF focus on lanthanides and actinides compounds. Domains of application are medical imaging (e.g., MRI) and nuclear sciences. The goal of these theoretical studies is to design new molecular frameworks in liquid state. Some methodological developments are also conducted.

Quantum chemistry and molecular simulations

Statistical physics and complex systems

The understanding and control of the structure, texture, composition, kinetics of evolution of materials and thus of their physical chemical or mechanical properties are a major stake in wide fields. In much cases, the materials which one wishes to use for a given application are intrinsically evolutionary. Out of equilibrium dynamics may affect the mechanic, magnetic or electric properties of a number of materials.

Statistical physics and complex systems
Statistical physics in mechanics

Statistical physics in mechanics

Understanding the relations between materials microstructure and their mechanical properties is of outmost importance in  geophysics and for industrial design. Concerning material failure, the competition between stress enhancement in the vicinity of cracks and disorder in the material microstructure makes it rather complex to predict. However, the tools of out-of-equilibrium statistical physics provide the proper framework to describe crack growth.

Strongly correlated quantum materials and magnetism

This scientific axis encompasses research activities on a large variety of magnetic and/or strongly correlated electron systems. Included are studies of unconventional superconductors (cuprates, pnictides), geometrically frustrated pyrochlore magnets (spin ices), novel magnetic orders in 4f-electron systems (heavy fermions, Kondo insulators), multiferroic compounds with interplay between electric and magnetic orders, manganites with giant magnetoresistance properties, and molecular magnets.

Strongly correlated quantum materials and magnetism

Supramolecular, structural and coordination chemistry

In this domain, the field of study of DRECAM covers the molecule to the controlled assembly of molecules. This approach extends from the fine comprehension of molecule - metal coordination and interaction, to the construction and the synthesis of molecular assemblies having specific properties (structure, complexation, solubility, biological activity) and finally to their characterization by specific tools such as solid or liquid NMR, X-ray or neutron scattering and near field microscopies.

Supramolecular, structural and coordination chemistry
Surfaces and nanostructures

Surfaces and nanostructures

The outstanding properties of nanostructures (morphology, magnetism, catalytic ...) are today more and more exploited. These nanostructures are usually obtained on a substrate where interatomic forces induce the spontaneous organization of matter at the nanometer scale. Studying the structures of surfaces and their dynamical properties (at equilibrium, fluctuations, growth, evaporation …) allows pointing out the basic laws for the matter organization at this scale.

Synthèse et analyse en phase gazeuse de nano-objets / Synthesis analysis in gas phase of nano-objects

La plupart des synthèses chimiques sont réalisées en milieu liquide. Pour l'élaboration de nanoparticules et les nanomatériaux, de multiples méthodes de synthèse en phase gaz se révèlent particulièremetn utiles et performantes .

Synthèse et analyse en phase gazeuse  de nano-objets / Synthesis analysis in gas phase of nano-objects
Systèmes désordonnés et matériaux / Disordered systems, materials

Systèmes désordonnés et matériaux / Disordered systems, materials

Liquides élémentaires Liquides complexes (ionique et olymèriques) Liquides conditionnés (sous haute pression, confiné, solutions) Verres d'oxyde et chalcogenures Cristallisation Transition vitreuse Simple liquids Complex liquids (ionic and polymeric) Liquids in special conditions (high pressure, confined, in solutions) Oxyde glasses and chalcogenures Crystallization Glass transition  

Transformations catalytiques pour l’énergie

L’IRAMIS développe de nouveaux catalyseurs avec l'objectif de développer le stockage des énergies alternatives sous forme chimique, ou la conversion du CO2, la transformation de la biomasse,  et le recyclage des déchets polymériques, trois  sources de molécules de base pour l’industrie chimique, aujourd’hui issues de produits pétroliers.

Transformations catalytiques pour l’énergie
Nano-chimie, nano-objets / Nano-chemistry, nano-objects

Nano-chimie, nano-objets / Nano-chemistry, nano-objects

Le développement des nanotechnologies s'appuie de plus en plus sur la logique d'assemblage spontané (auto-assemblage) ou non, des briques élémentaires que sont les nanoparticules.

Matériaux nanostructurés pour l’énergie / Nanostructured materials for energy

L’IRAMIS développe des matériaux nanostructurés pour les dispositifs photovoltaïques (PV) organique ou hybride : nanoparticules de silicium dopées ou non incluses dans différentes matrices, molécules spécifiques aux couches d’interface de cellules PV organiques, nanotubes de carbone fonctionnalisés par des chromophores, nanoparticules d’oxydes TiO2 dopées ou non en azote pour les cellules solaires à colorant cellules PV à base de Perovskite.

Matériaux nanostructurés pour l’énergie / Nanostructured materials for energy
Capteurs chimiques et biochimiques, diagnostic médical / Chemical and biochemical sensors, medical diagnosis

Capteurs chimiques et biochimiques, diagnostic médical / Chemical and biochemical sensors, medical diagnosis

De nombreuses méthodes sont développées par les équipes de l'IRAMIS pour développer des capteurs chimiques sensibles, sélectifs  et efficaces. Pour ceci les nanotechnologies sont largement mises à contributions, avec l'utilisation de matériaux nanoporeux ou encore  d'objets fonctionnalisés. + microfluidique nano-objets  (effets plasmoniques, magnétiques, ...

Chimie environnementale et dépollution / Environmental chemistry and depollution

Les nanotechnologies offrent de nombreuses méthodes innovantes pour le piégeage de nombreux éléments polluants, chimiques, biologiques ou encore des métaux lourds.  Des méthodes de dépollution à l'aide de filtres à base de matériaux nanoporeux ou de fibres de carbone fonctionnalisées sont ainsi développées au LICSEN.

Chimie environnementale et dépollution / Environmental chemistry and depollution
Photoscience, Lasers, Plasmas

Photoscience, Lasers, Plasmas

Photosciences: Light plays a role in many physical and chemical processes; it is also an exceptional tool in the investigation of matter. Photo-scientists within laboratories of IRAMIS study the interaction between light and matter as a fundamental process and an analysis tool. Lasers: Photoscience is becoming increasingly important due to the rise of ultra-short light pulses, often ultra-intense.

Solids, surfaces interfaces and materials

Solids, surfaces, interfaces and materials: The ability to understand and foresee properties and functionalities for future materials relies on the comprehension of various fields of science and technical skills, ranging from the most fundamental to potential applications.

Solids, surfaces interfaces and materials
Corrosion long terme de matériaux métalliques / Long term corrosion of multimaterials containing metals

Corrosion long terme de matériaux métalliques / Long term corrosion of multimaterials containing metals

Plusieurs pays envisagent de développer une technologie de barrières multiples pour la sécurité du stockage des déchets nucléaires. Une question centrale est de savoir modéliser le comportement sur le long terme (soit 100 à 1000 ans) des matériaux utilisés, en particulier des containers, en acier faiblement allié, et de la matrice vitrifiée.

Science des matériaux et chimie pour l'archéologie et le patrimoine / Material science and chemistry for archaeology and cultural heritage

Au delà des études visant à mieux comprendre et prédire l'altération des métaux anciens, l'équipe du LAPA utilise la science des matériaux et les méthodes de la chimie pour comprendre certains aspects des sociétés antiques en lien avec leur niveau technologique.

Science des matériaux et chimie pour l'archéologie et le patrimoine / Material science and chemistry for archaeology and cultural heritage
Physico-chemistry and Chemical-physics

Physico-chemistry and Chemical-physics

  A chemical reaction depends not only of atoms and molecules involved but also of their short range environment. Understanding a chemical reaction demands a fundamental approach taking into account both temporal and spatial features. Therefore, IRAMIS implements with lasers, time-resolved spectroscopies in the range from femtosecond to the millisecond, to study the dynamics of molecular systems, like for example DNA biomolecules, or chromophore molecules for photovoltaics.

 

Retour en haut