Les sujets de thèses

3 sujets IRAMIS//NIMBE

Dernière mise à jour :


««

• Interactions rayonnement-matière

 

Approches multimodales autour de l’imagerie Raman pour la caractérisation des microplastiques et nanoplastiques dans les cellules et organismes

SL-DRF-24-0966

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Jean-Philippe RENAULT

Stephanie Devineau

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Jean-Philippe RENAULT
CEA - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 50

Directeur de thèse :

Stephanie Devineau
CEA - LIONS


Page perso : https://iramis.cea.fr/nimbe/Phocea/Membres/Annuaire/index.php?uid=jrenault

Labo : https://iramis.cea.fr/nimbe/lions/

Voir aussi : https://iramis.cea.fr/nimbe/Phocea/Membres/Annuaire/index.php?uid=sdevineau

La pollution par les microplastiques pose des risques écologiques en raison de leur lente dégradation, leur transport à longue distance et leur accumulation dans les organismes. Bien que de nombreuses études aient documenté leur présence dans divers environnements, la dégradation des microplastiques en nanoplastiques et leur impact sont moins connus. Les micro/nanoplastiques peuvent traverser les barrières biologiques et se retrouver dans des organes animaux ou humains, soulevant des questions sur leur taille, leur devenir et leur toxicité. Cette thèse vise à caractériser les micro/nanoplastiques dans des milieux biologiques en développant l’imagerie Raman et des approches multimodales.

Deux modèles biologiques seront étudiés : la biodégradation des microplastiques dans les biofilms bactériens et leur biodistribution dans les larves de poissons zèbres. Le projet s’inscrit dans le cadre de l’ANR Mentalist, utilisant les expertises en microscopie Raman, toxicologie, microbiologie et imagerie du poisson zèbre pour analyser et mesurer la toxicité des microplastiques in vivo.
Nanoréacteurs tubulaires durables à polarisation radiale pour la catalyse

SL-DRF-24-0870

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Pierre PICOT

Sophie LE CAER

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Pierre PICOT
CEA - DRF/IRAMIS/NIMBE/LIONS/


Directeur de thèse :

Sophie LE CAER
CNRS - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 58

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=ppicot

Labo : https://iramis.cea.fr/nimbe/lions/

L'augmentation de la demande en énergie et la nécessité de réduire l’utilisation des combustibles fossiles afin de limiter le réchauffement climatique ont ouvert la voie à un besoin urgent de technologies de collecte d'énergie propre. Une solution intéressante consiste à utiliser l'énergie solaire pour produire des carburants. Ainsi, les matériaux bon marché tels que les semi-conducteurs ont fait l'objet de nombreuses études pour les réactions photocatalytiques. Parmi eux, les nanostructures 1D sont prometteuses en raison de leurs propriétés intéressantes (surfaces spécifiques élevées et accessibles, environnements confinés, transport d'électrons sur de longues distances et séparation des charges facilitées) L'imogolite, une argile naturelle sous la forme d'un nanotubes creux, appartient à cette catégorie. Sa particularité ne vient pas de composition chimique (Al, O et Si) mais de sa courbure intrinsèque qui induit une polarisation permanente de la paroi séparant efficacement les charges photo-induites. Ce nanotube appartient à une famille partageant la même structure locale avec différentes morphologies courbées (nanosphère et nanotuile). En outre, plusieurs modifications de ces matériaux sont possibles (couplage avec des nanoparticules métalliques, fonctionnalisation de la cavité interne), ce qui permet de moduler leurs propriétés. Ces matériaux sont ainsi de bons candidats comme nanoréacteurs pour les réactions photocatalytiques. Pour l'instant, la preuve de concept (i.e. le nanoréacteur pour des réactions photocatalytiques) n'a été obtenue que pour la forme nanotube. L'objectif de cette thèse est ainsi d'étudier toute la famille (nanotube, nanosphère et nanotuile, avec diverses fonctionnalisations) en tant que nanoréacteurs pour des réactions de réduction du proton et du CO2 déclenchées sous illumination
nanoréacteurs tubulaires durables à polarisation radiale pour la catalyse

SL-DRF-24-0284

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Pierre PICOT

Sophie LE CAER

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Pierre PICOT
CEA - DRF/IRAMIS/NIMBE/LIONS/


Directeur de thèse :

Sophie LE CAER
CNRS - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 58

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=ppicot

Labo : https://iramis.cea.fr/NIMBE/LIONS/

Les exigences combinées liées à l'augmentation de la production d'énergie et à la nécessité de réduire les combustibles fossiles pour limiter le réchauffement de la planète ont ouvert la voie à un besoin urgent pour des technologies de collecte d'énergie propre. Une solution intéressante consiste à utiliser l'énergie solaire pour produire des carburants. Ainsi, les matériaux bon marché tels que les semi-conducteurs ont fait l'objet de nombreuses études pour les réactions photocatalytiques. Parmi eux, les nanostructures 1D sont prometteuses en raison de leurs propriétés intéressantes (surfaces spécifique et accessibles élevées, environnements confinés, meilleure séparation des charges). L'imogolite, une argile naturelle sous la forme d'un nanotubes creux, appartient à cette catégorie. Bien qu'elle ne soit pas directement photoactive dans le domaine de la lumière visible (bande interdite élevée), elle présente une polarisation permanente de sa paroi en raison de sa courbure intrinsèque. Cette propriété fait d'elle un co-photocatalyseur potentiellement utile pour la séparation des charges. De plus, ce nanotube appartient à une famille partageant la même structure locale avec différentes morphologies courbées (nanosphère et nanotuile). En outre, plusieurs modifications de ces matériaux sont possibles (dopage de la paroi avec des métaux, couplage avec des nanoparticules métalliques, fonctionnalisation de la cavité interne), ce qui permet d'ajuster la bande interdite. Pour l'instant, la preuve de concept (c'est-à-dire le nanoréacteur pour des réactions photocatalytiques) n'a été obtenue que pour la forme nanotube.

L'objectif de cette thèse est ainsi d'étudier toute la famille (nanotube, nanosphère et nanotuile, avec diverses fonctionnalisations) en tant que nanoréacteurs pour des réactions de réduction du proton et du CO2 déclenchées sous irradiation.

 

 

Retour en haut