| | | | | | | webmail : intra-extra| Accès VPN| Accès IST| Contact
Mar 23, 2022
Christiane Alba-Simionesco , Patrick Judeinstein , Stéphane Longeville, Oriana Osta , Florence Porcher , Frédéric Caupin , and Gilles Tarjus The proneness of water to crystallize is a major obstacle to understanding its putative exotic behavior in the supercooled state. It also represents a strong practical limitation to cryopreservation of biological systems.
Oct 10, 2021
J. Wolanin, L. Michel, D. Tabacchioni, J. M. Zanotti, J. Peters, I. Imaz, B. Coasne, M. Plazanet, and C. Picard With their strong confining porosity and versatile surface chemistry, zeolitic imidazolate frameworks—including the prototypical ZIF-8—display exceptional properties for various applications. In particular, the forced intrusion of water at high pressure (∼25 MPa) into ZIF-8 nanopores is of interest for energy storage.
Jun 28, 2021
Christopher D. O’Neill, Gino Abdul-Jabbar, Didier Wermeille, Philippe Bourges, Frank Krüger, and Andrew D. Huxley Quantum order by disorder revealed    Ferromagnets are ubiquitous in everyday life, present in household items ranging from fridge-magnets on a fridge door to the sensors and motors inside, while dozens can be found in an average car.
May 17, 2021
Dalila Bounoua, Lucile Mangin-Thro, Jaehong Jeong, Romuald Saint-Martin, Loreynne Pinsard-Gaudart, Yvan Sidis & Philippe Bourges, Communications Physics 3, (2020) 123. New phases with broken discrete Ising symmetries are uncovered in quantum materials with strong electronic correlations.
Oct 20, 2020
K. Beauvois, V. Simonet, S. Petit, J. Robert, F. Bourdarot, M. Gospodinov, A.A. Mukhin, R. Ballou, V. Skumryev, and E. Ressouche The research field of magnetic frustration is dominated by triangle-based lattices but exotic phenomena can also be observed in pentagonal networks. A peculiar noncollinear magnetic order is indeed known to be stabilized in Bi2Fe4O9 materializing a Cairo pentagonal lattice.
Mar 17, 2020
A. C. Ferreira, S. Paofai, A. Létoublon, J. Ollivier, S. Raymond, B. Hehlen, B. Rufflé, S. Cordier, C. Katan, J. Even & P. Bourges   Hybrid organolead perovskites (HOP) have started to establish themselves in the field of photovoltaics, mainly due to their great optoelectronic properties and steadily improving solar cell efficiency. Study of the lattice dynamics is key in understanding the electron-phonon interactions at play, responsible for such properties.
Dec 21, 2019
M. Ruminy, S. Guitteny, J. Robert, L.-P. Regnault, M. Boehm, P. Steffens, H. Mutka, J. Ollivier, U. Stuhr, J. S. White, B. Roessli, L. Bovo, C. Decorse, M. K. Haas, R. J. Cava, I. Mirebeau, M. Kenzelmann, S. Petit, and T. Fennell Tb2Ti2O7 presents an ongoing conundrum in the study of rare-earth pyrochlores.
Feb 22, 2018
Magnetic skyrmions are topologically stable, vortex-like objects surrounded by chiral boundaries that separate a region of reversed magnetization from the surrounding magnetized material. They are closely related to nanoscopic chiral magnetic domain walls, which could be used as memory and logic elements for conventional and neuromorphic computing applications that go beyond Moore’s law.
Dec 21, 2017
D. Bounoua, R. Saint-Martin, S. Petit, P. Berthet, F. Damay, Y. Sidis, F. Bourdarot, and L. Pinsard-Gaudart, Phys. Rev. B 95, 224429 The low energy magnetic excitations spectra of the pristine and doped quasi-one-dimensional spin chains cuprates SrCuO2 have been investigated by inelastic neutron scattering.
Aug 24, 2017
Crystal-electric-field excitations and spin dynamics in Ce3Co4Sn13 semimetallic chiral-lattice phase Kazuaki Iwasa, Yuka Otomo, Kazuya Suyama, Keisuke Tomiyasu, Seiko Ohira-Kawamura, Kenji Nakajima, and Jean-Michel Mignot Inelastic neutron scattering experiments have been conducted to investigate the spin dynamics and crystal-electric-field level scheme of the Ce 4f4f electrons in Ce3Co4Sn13Ce3Co4Sn13 .


Retour en haut