Physique et chimie femtoseconde-attoseconde / Femtosecond-attosecond physics and chemistry
While the pulse durations of infrared lasers are reaching the fundamental limitation imposed by the duration of the optical cycle (a few femtoseconds), High-order Harmonic Generation has recently opened a new field by accessing the attosecond regime (1as = 10-18 s). HHG spectra are made of lines corresponding to the odd multiples of the fundamental laser frequency, and can cover a very broad spectral range, from visible light to soft X-rays.
Matter under Extreme Conditions
The MEC laboratory is a fundamental research lab where two closely related topics are investigated, on the one hand the interaction of matter with a strong laser field, i.e., at high power density, on the other hand the matter at very high energy density, i.e., hot dense plasmas. The MEC lab is composed of 3 interacting research groups, namely Attophysics, Physics at High Intensity (PHI), and High Energy Density Matter (HEDM).
Three research programs of the IRAMIS found an natural extension towards biology: Molecular engineering, where studies of co-operative interactions of molecules in solution found a direct extension towards studies of proteins and of the various assembly modes of biological interest molecules, Matter with high density of energy, where radiolysis, molecule radiation interactions, can be directly transposed to molecules like the ADN, Divided ultra matter, where nanostructured materials, nanophysics and biology converge.
Physico-chemistry and Chemical-physics
A chemical reaction depends not only of atoms and molecules involved but also of their short range environment. Understanding a chemical reaction demands a fundamental approach taking into account both temporal and spatial features. Therefore, IRAMIS implements with lasers, time-resolved spectroscopies in the range from femtosecond to the millisecond, to study the dynamics of molecular systems, like for example DNA biomolecules, or chromophore molecules for photovoltaics.
Photosciences: Light plays a role in many physical and chemical processes; it is also an exceptional tool in the investigation of matter. Photo-scientists within laboratories of IRAMIS study the interaction between light and matter as a fundamental process and an analysis tool. Lasers: Photoscience is becoming increasingly important due to the rise of ultra-short light pulses, often ultra-intense.
Physique de la matière condensée, étude par l’interaction rayonnement matière
Les grandes installations de l’IRAMIS, telles que les spectromètres de diffusion, de diffraction et les stations d’imagerie de neutrons du LLB, sont particulièrement adaptées à l’étude des propriétés physiques de la matière condensée.