| Centre
Paris-Saclay
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST
Univ. Paris-Saclay
1 sujet /LLB/GDP

Dernière mise à jour : 28-06-2022


 

Nouveaux grenats magnétocaloriques

SL-DRF-22-0379

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Laboratoire Léon Brillouin (LLB)

Groupe Diffraction Poudres (GDP)

Saclay

Contact :

Françoise DAMAY-ROWE

Date souhaitée pour le début de la thèse : 01-10-2022

Contact :

Françoise DAMAY-ROWE
CNRS-UMR 12 - LLB - Laboratoire de Diffusion Neutronique

01 69 08 49 54

Directeur de thèse :

Françoise DAMAY-ROWE
CNRS-UMR 12 - LLB - Laboratoire de Diffusion Neutronique

01 69 08 49 54

Page perso : https://iramis.cea.fr/Pisp/francoise.damay/

Labo : https://iramis.cea.fr/llb/NFMQ/

Afin de remplacer l'hélium liquide de plus en plus rare, il est devenu indispensables de rechercher des réfrigérants alternatifs, pour, par exemple, refroidir les aimants supraconducteurs utilisés dans l'imagerie par résonance médicale. Les matériaux magnéto-caloriques, avec leur pouvoir de refroidissement entropique lorsqu'ils sont soumis à un champ magnétique, constituent une telle solution de remplacement. Les grenats à base de gadolinium développés récemment présentent des effets magnéto-caloriques parmi les plus importants ; cependant, le pouvoir de refroidissement de ces matériaux atteint son maximum en dessous de 2 K, température trop faible pour de nombreuses applications de l'hélium liquide.



L'objectif de ce projet de thèse est de trouver de nouveaux grenats de terres rares avec de meilleures performances magnéto-caloriques, par des substitutions adéquates sur les trois sites cationiques disponibles de la structure du grenat. L'originalité du projet est l'étude d'oxydes de grenat à haute entropie pour atteindre cet objectif. L'utilisation des techniques de diffusion neutronique sera un atout essentiel pour corréler les substitutions chimiques avec les changements d'anisotropie magnétique et les états fondamentaux dans un champ magnétique appliqué, pour une compréhension approfondie des paramètres clés contrôlant l'effet magnéto-calorique.

 

Retour en haut