Interaction lumière-matière
logo_tutelle 
Interaction lumière-matière

Zone d'’interaction laser - jet supersonique (A. Gonin, IRAMIS).

La lumière, onde électromagnétique, porteuse d'un champ électrique et magnétique oscillant interagit fortement avec les particules chargées et principalement avec les électrons des atomes, des molécules ou de la matière condensée sous toutes ses formes. Elle intervient ainsi directement dans de nombreux processus physiques et chimiques.

C'est aussi un formidable outil d’investigation de la matière sous toutes ses formes. Les photosciences au sein du LIDYL couvrent un large ensemble d'études mettant en jeu l’interaction lumière-matière en tant que processus fondamental ou comme outil d’analyse.

Avec la possibilité de générer des impulsions laser de très courte durée (dans le domaine attoseconde - 10-18-10-15 s, il devient possible d'interagir avec la matière, à l'échelle de temps caractéristique de la dynamique des électrons dans la matière. Cette possibilité ouvre la voie à de multiples recherches, et plus particulièrement au LIDYL à l'étude (liste non exhaustive) :

  • des processus d’excitation et de relaxation électronique ultra-rapide dans les solides et les matériaux aux électrons fortement corrélés,
  • de la génération d’harmoniques d’ordre élevé de durée ultra-courte dans les cristaux optique non linéaire
  • de la génération de rayonnement laser cohérent de très courte longueur d’onde (jusqu'au domaine X), applicable au développement de nouvelles techniques de microscopie. (collaboration avec la PME Imagine Optic).
  • du couplage direct entre le champ électrique et le spin des électrons, offrant un contrôle ultrarapide des propriétés magnétiques
  • des phénomènes élémentaires topologiques,  en surface et aux interfaces.
  • de réactions photochimiques, y compris dans les macromolécules biologiques (ADN).

Voir plus particulièrement les recherches menées dans les équipes DICO et ATTO du LIDYL.

 
#76 - Màj : 05/01/2024
Faits marquants scientifiques

On décrit la réalisation et l’optimisation d’un dispositif original de doublement de fréquence large bande, d’impulsions ultra courtes (longueur d’onde de l’impulsion fondamentale 800 nm, durée FTL 45 fs). Le principe repose sur l’utilisation d’un rayonnement fondamental chirpé en fréquence, de fronts d’impulsion tiltés et d’une géométrie non colinéaire. La géométrie non colinéaire permet, avec un choix judicieux de l’angle entre les deux faisceaux à la fréquence fondamentale, de réaliser au premier ordre l’égalité des vitesses de phase et de groupe dans le cristal doubleur. Il en découle la possibilité d’employer des cristaux notablement plus épais qu’en géométrie colinéaire sans diminution du spectre en fréquence et par conséquent de réduire l’éclairement incident nécessaire pour atteindre un rendement de conversion donné. En limitant l’éclairement incident sur le cristal doubleur (ici LBO ou BBO), on peut éviter les processus non linéaires « parasites » d’ordre supérieur. On montre analytiquement que la durée du second harmonique (ici à la longueur d’onde de 400 nm) peut être sensiblement plus courte que celle de l’onde fondamentale. Expérimentalement, en bon accord avec les prévisions des simulations numériques, des impulsions de 30 à 35 fs à 400 nm (durée FTL après re-compression), avec un profil spatial d’excellente qualité ont été obtenues. Avec un cristal de LBO de 6 mm d’épaisseur et de 40 mm de diamètre, des énergies de l’ordre de 20 mJ par impulsion ont été atteintes sur LUCA à 400 nm. Le principe de la méthode peut a priori être étendu au cas du triplement voire du quadruplement de fréquence.

 

Un des axes de recherche essentiel dans le domaine des  impulsions laser ultra-brèves (femtoseconde 10-15 s) concerne la stabilisation de la position de la porteuse dans l’enveloppe de l'impulsion (dite CEP pour "Carrier Envelope Phase"). Un procédé innovant pour corriger les fluctuations lentes de CEP est proposé par le CEA/SLIC (Saclay Laser-matter Interaction Centre)en collaboration avec la Société Amplitude Technologies (AT). Il est fondé sur l’utilisation de l’effet électro-optique (EO) linéaire, qui permet d’envisager la réalisation d'un système correctif compact, simple et à coût modéré et dont le temps de réponse rend possible un fonctionnement à taux de répétition élevé.

Contact : David Garzella

G. Lambert1,2,3, T. Hara2,4, D. Garzella1, T. Tanikawa2, M. Labat1,3, B. Carre1, H. Kitamura2,4, T. Shintake2,4, M. Bougeard1, S. Inoue4, Y. Tanaka2,4, P. Salieres1, H. Merdji1, O. Chubar3, O. Gobert1, K. Tahara2, M.-E. Couprie3

1Service des Photons, Atomes et Molécules, DSM/DRECAM, CEA-Saclay, 91191 Gif-sur-Yvette, France
2RIKEN SPring-8 Centre, Harima Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
3Groupe Magnétisme et Insertion, Synchrotron Soleil, L'Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette, France
4XFEL Project Head Office/RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan

 

Retour en haut