| Centre
Paris-Saclay
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST | English
Univ. Paris-Saclay

Les sujets de thèses

12 sujets IRAMIS

Dernière mise à jour : 02-12-2020


««

• Physique du solide, surfaces et interfaces

 

Calcul neuromorphique avec la dynamique non-linéaire d'ondes de spin

SL-DRF-21-0418

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Grégoire de Loubens

Date souhaitée pour le début de la thèse : 01-10-2020

Contact :

Grégoire de Loubens
CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 71 60

Directeur de thèse :

Grégoire de Loubens
CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 71 60

Page perso : http://iramis.cea.fr/Pisp/gregoire.deloubens

Labo : http://iramis.cea.fr/spec/Phocea/Vie_des_labos/Ast/ast_groupe.php?id_groupe=179

Voir aussi : https://cordis.europa.eu/project/id/899646/fr

Bien que le calcul neuromorphique contribue grandement au développement de l’intelligence artificielle, les implémentations matérielles de réseaux de neurones sont encore peu nombreuses. En particulier, il est difficile de réaliser de tels réseaux avec un très grand nombre d’interconnexions entre neurones physiques, pourtant nécessaires pour atteindre les performances promises par ce type d’architecture. Dans cette thèse, nous nous proposons d’explorer une voie originale qui pourrait résoudre à terme ce problème d’hyperconnectivité. Dans les microstructures magnétiques, les modes propres d'excitation (ondes de spin) sont couplés entre eux via des interactions non linéaires. L’idée est d’utiliser ce système dynamique fortement non linéaire pour accomplir des tâches de calcul neuromorphique. Les modes d’ondes de spin, définis dans l’espace réciproque, jouent le rôle de neurones, tandis que leurs interactions non-linéaires, dont l’amplitude est contrôlée par la population dans chaque mode, jouent le rôle de synapses. En étudiant expérimentalement les mécanismes de redistribution de l’énergie entre ondes de spin dans des microstructures ferromagnétiques sous différents régimes d’excitation, et en s’appuyant sur des simulations micromagnétiques de la dynamique de l’aimantation, l’objectif de cette thèse sera d’identifier des configurations permettant une implémentation hardware efficace pour effectuer du calcul neuromorphique, qui serait utile entre autres pour le traitement des signaux de télécommunications.
Electronique quantique attoseconde dans les semiconducteurs

SL-DRF-21-0455

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Attophysique (ATTO)

Saclay

Contact :

Willem Boutu

Hamed MERDJI

Date souhaitée pour le début de la thèse : 01-09-2021

Contact :

Willem Boutu
CEA - DRF/IRAMIS/LIDYL/ATTO

0169085163

Directeur de thèse :

Hamed MERDJI
CEA - DRF/IRAMIS/LIDyL/ATTO

0169085163

Page perso : http://iramis.cea.fr/LIDYL/Phocea/Page/index.php?id=99

Labo : http://iramis.cea.fr/LIDYL/Phocea/Page/index.php?id=99

Aujourd'hui, l’électronique gigahertz est maîtrisée et le régime terahertz est tout juste accessible. Les technologies quantiques doivent anticiper dès maintenant les progrès récents sur les évolutions de loi de Moore mais dans le domaine quantique. En effet, grâce aux technologies innovantes proposées par les lasers femtoseconde les composants électroniques vont progresser vers la gamme pétahertz impliquant de contrôler la dynamique électronique à l’échelle attoseconde. Le candidat étudiera dans les diélectriques et les semi-conducteurs les propriétés de mobilité ultra-rapide et élevée des électrons lorsqu'ils sont exposés à des champs lasers femtosecondes intenses. Nous étudierons comment le fort courant d'électrons peut être contrôlé à des fréquences pétahertz dans la bande de conduction, par le champ laser. Outre ces aspects temporels, il a été montré théoriquement que ces lasers pouvaient transférer du spin ou bien du moment angulaire permettant ainsi de façonner l’état quantique du système. La thèse se focalisera sur les applications en information quantique par topologie sur des semiconducteurs 2D
Etude théorique de nouvelles nanostructures à base de graphène

SL-DRF-21-0343

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Groupe Mésocopie Modélisation et Thermoélectricité (GMT)

Saclay

Contact :

Yannick DAPPE

Date souhaitée pour le début de la thèse : 01-05-2020

Contact :

Yannick DAPPE
CNRS - DRF/IRAMIS/SPEC/GMT

+33 (0)1 69 08 84 46

Directeur de thèse :

Yannick DAPPE
CNRS - DRF/IRAMIS/SPEC/GMT

+33 (0)1 69 08 84 46

Page perso : http://iramis.cea.fr/Pisp/yannick.dappe/

Labo : http://iramis.cea.fr/spec/GMT/

Un sujet de thèse est proposé au sein du Groupe de Modélisation et Théorie du SPEC (UMR 3680 CNRS – CEA Saclay).

Il s’agit d’un travail théorique portant sur les propriétés électroniques de matériaux carbonés nouveaux tels que des nano-grilles de graphène (réseau parfaitement périodique de trous calibrés dans un plan de graphène), flakes de graphène (macromolécules monodisperses, dont la forme est contrôlée) ou rubans de graphène. Ces matériaux présentent des nouvelles propriétés d’intérêt dans les domaines de l’optique, l’électronique ou la spintronique. Ce travail consistera à étudier la structure atomique et électronique de ces matériaux, dans le cadre de leur synthèse, afin d’en extraire les propriétés de transport électronique ainsi que leur réponse optique. Les méthodes utilisées seront la Théorie de la Fonctionnelle de la Densité (DFT), ainsi que des méthodes de type liaisons fortes, qui permettront de déterminer la structure électronique de ces objets avec différents degrés de précision et pour différentes tailles de systèmes. A partir de la structure électronique, les propriétés de transport seront déterminées dans un formalisme de fonctions de Green. Il s’agira également de simuler les images de microscopie électronique a effet tunnel (STM) ainsi que les spectres tunnels correspondant, afin de les comparer aux données expérimentales. Les propriétés optiques (absorption et luminescences) seront calculées à partir des résultats DFT précédents. Il s’agira ici de déterminer les fonctions de réponse via des approches combinées DFT/liaisons fortes. Une partie du travail consistera à développer le modèles liaisons fortes permettant de traiter les plus grandes structures.



Ce projet s’inscrit dans le cadre d’une collaboration entre différentes équipes du plateau de Saclay : des chimistes en charge de la synthèse de ces matériaux (CEANIMBE et ICMMO Paris XI), un groupe de microscopie en champ proche (ISMO) et un groupe d’opticiens (LAC Paris XI). Les travaux théoriques seront réalisés lors de cette collaboration ce qui assurera un cadre de comparaisons et de feedback théorie/expériences extrêmement fructueux. Le/la candidat(e) devra avoir une formation dans le domaine de la physique théorique de la matière condensée et les approches numériques correspondantes. Il/elle devra également porter un intérêt particulier à la compréhension des techniques expérimentales attenantes.
Films minces d’oxynitrures multiferroïques pour une opto-spintronique intégrée

SL-DRF-21-0338

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Antoine BARBIER

Date souhaitée pour le début de la thèse : 01-10-2021

Contact :

Antoine BARBIER
CEA - DRF/IRAMIS/SPEC/LNO

01.69.08.39.23

Directeur de thèse :

Antoine BARBIER
CEA - DRF/IRAMIS/SPEC/LNO

01.69.08.39.23

Page perso : http://iramis.cea.fr/Pisp/137/antoine.barbier.html

Labo : http://iramis.cea.fr/spec/LNO/

Voir aussi : https://www.synchrotron-soleil.fr/fr

Les oxydes dopés N et/ou les oxynitrures constituent une classe de composés en plein essor présentant un large panel de propriétés utilisables, en particulier pour les nouvelles technologies de production d'énergie décarbonnées et pour l’optoelectronique. En effet, l'insertion d'azote dans le réseau cristallin d'un oxyde semiconducteur permet en principe de moduler la valeur de sa bande interdite et ainsi d'obtenir de nouvelles fonctionnalités. La production de films minces monocristallins correspondants, est un défi important. Dans ce travail de thèse, des oxydes monocristallins dopés N seront élaborés par épitaxie par jets moléculaires assistée de plasma atomique. Le BaTiO3 fournira la ferroélectricité et un spectre d'absorption favorable, tandis qu'une ferrite ferrimagnétique additionnelle, éventuellement dopée N, donnera un caractère (opto)multiferroique artificiel. Les structures résultantes seront étudiées quant à leurs caractéristiques ferroélectriques ainsi que leurs couplages magnétoélectriques et optoélectroniques en fonction du dopage N. Ces observations seront corrélées à une compréhension détaillée des structures cristallines et électroniques.



Le (la) candidate abordera l’ensemble des techniques d’ultra-vide, la croissance par épitaxie par jets moléculaires, des mesures de magnétométrie et de photo-électrolyse de l’eau, ainsi qu’un large panel de méthodes de caractérisations basées sur l’exploitation des centres rayonnement synchrotron les plus avancés.
Fragmentation dans les systèmes frustrés

SL-DRF-21-0381

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Laboratoire Léon Brillouin (LLB)

Groupe 3 Axes (G3A)

Saclay

Contact :

SYLVAIN PETIT

Date souhaitée pour le début de la thèse : 01-10-2021

Contact :

SYLVAIN PETIT
CEA - DRF/IRAMIS/LLB

01 69 08 60 39

Directeur de thèse :

SYLVAIN PETIT
CEA - DRF/IRAMIS/LLB

01 69 08 60 39

Page perso : http://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=spetit

Labo : http://iramis.cea.fr/llb/nfmq/

Ces dernières années, l'étude des liquides de spin suscite un vif intérêt en physique de la matière condensée. Ces nouveaux états quantiques de la matière sont en effet décrits à l'aide de champs de jauge émergents et présentent une intrication quantique à grande échelle. L'état glace de spin, par exemple, ne présente pas de brisure spontanée de symétrie, mais est néanmoins organisé localement. La règle qui décrit cette organisation est une loi de conservation locale et s'interprète comme un champ de jauge émergent.



On cherche ici à décrire les situations où apparaissent des défauts à cette règle, c'est à dire, dans le langage du champ de jauge, des "charges", aussi appelées monopoles. Ces descriptions sont basées sur une décomposition de Helmoltz du champ, d'où le terme de "fragmentation" magnétique.



Ce projet propose une approche numérique du problème, à l'aide d'une simulation directe des équations du mouvement au niveau des spins, en tenant compte de termes sources de ces monopoles. Ces simulations sont en outre basées sur un échantillonnage Monte-Carlo de l'espace des phases, un travail complexe dans le cadre de systèmes dits frustrés comme les glaces de spin. L'enjeu est donc de mettre au point un double numérique, au plus près des expériences menées par ailleurs sur ces systèmes et de proposer une interprétation en termes de fragmentation. Ces simulations se doivent aussi d'être prédictives, afin de dresser le portrait-robot des phases en présence ainsi que de leurs spectres d'excitation.

Glace de spin couplée à un bain de phonons

SL-DRF-21-0382

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Laboratoire Léon Brillouin (LLB)

Groupe 3 Axes (G3A)

Saclay

Contact :

SYLVAIN PETIT

Date souhaitée pour le début de la thèse :

Contact :

SYLVAIN PETIT
CEA - DRF/IRAMIS/LLB

01 69 08 60 39

Directeur de thèse :

SYLVAIN PETIT
CEA - DRF/IRAMIS/LLB

01 69 08 60 39

Page perso : http://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=spetit

Labo : http://iramis.cea.fr/llb/nfmq/

Ces dernières années, l'étude des liquides de spin suscite un vif intérêt en physique de la matière condensée. Ces nouveaux états quantiques de la matière sont en effet décrits à l'aide de champs de jauge émergents et présentent une intrication quantique à grande échelle. L'état glace de spin, par exemple, ne présente pas de brisure spontanée de symétrie, mais est néanmoins organisé localement. La règle qui décrit cette organisation est une loi de conservation locale et s'interprète comme un champ de jauge émergent.



On cherche ici à décrire les situations où par le biais du couplage magnéto-élastique, les mouvements de point zéro des atomes induisent des fluctuations magnétiques. De ce fait, le champ de jauge fluctue dans le temps, ce qui donne naissance à un champ électrique en plus du champ magnétique. Cette phase nouvelle est appelée glace de spin quantique.



Ce projet propose une approche numérique du problème, à l'aide d'une simulation directe des équations du mouvement au niveau des spins, en tenant compte d'une force aléatoire susceptible de faire changer l'état de spin localement et donc d'induire ces fluctuations. Ces simulations sont en outre basées sur un échantillonnage Monte-Carlo de l'espace des phases, un travail complexe dans le cadre de systèmes dits frustrés comme les glaces de spin. L'enjeu est de mettre au point un outil numérique capable de prédire la stabilité des phases en présence, de proposer une interprétation en termes de champs émergents et de caractériser le spectre des excitations. On s'attachera à rester au plus près des expériences menées par ailleurs au laboratoire, sur des systèmes modèles (pyrochlore et grenats de terre rare) où l'on pense que ces fluctuations sont à l'œuvre.
Imagerie champ proche de second harmonique de structures antiferromagnetiques chirales

SL-DRF-21-0432

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

jean-yves Chauleau

Michel VIRET

Date souhaitée pour le début de la thèse : 01-10-2020

Contact :

jean-yves Chauleau
CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 72 17

Directeur de thèse :

Michel VIRET
CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 71 60

Page perso : http://iramis.cea.fr/spec/Phocea/Membres/Annuaire/index.php?uid=jchaulea

Labo : http://iramis.cea.fr/spec/lno/

Les objectifs de cette thèse sont l'étude des objets topologiques antiferromagnétiques dans des matériaux multiferroïques magnéto-électriques. Ces textures ferroélectriques/antiferromagnétiques peuvent être assez difficiles à observer, en particulier à cause de leur taille inférieure à 100 nm. La génération de seconde harmonique, approche d’optique non linéaire, s'est avérée être un moyen puissant et élégant d'imager des textures multiferroïques complexes. Ce travail de doctorat sera centré sur l'utilisation de techniques d'optique non linéaire en champ proche pour étudier les mécanismes intrinsèques de la génération et de la manipulation de véritables skyrmions antiferromagnétiques.
Mauvais métal et phonons mous dans les composés para-électriques quantiques

SL-DRF-21-0238

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Laboratoire Léon Brillouin (LLB)

Groupe 3 Axes (G3A)

Saclay

Contact :

Philippe Bourges

Date souhaitée pour le début de la thèse : 01-09-2021

Contact :

Philippe Bourges
CEA - DRF/IRAMIS/LLB/NFMQ

0169086831

Directeur de thèse :

Philippe Bourges
CEA - DRF/IRAMIS/LLB/NFMQ

0169086831

Page perso : http://iramis.cea.fr/Pisp/113/philippe.bourges.html

Labo : http://www-llb.cea.fr/NFMQ/

Voir aussi : https://www.lpem.espci.fr/spip.php?article72

Le composé SrTiO3 dopé est un mauvais métal où la résistivité ne sature pas à haute température quand le libre parcours moyen devient de l’ordre de la distance interatomique. Nos mesures préliminaires de diffusion de neutrons montrent que la proximité de la phase ferroélectrique, correspondant à un état para-électrique quantique, joue un rôle essentiel dans l’augmentation de la masse des porteurs (C. Collignon, Ph. Bourges, B. Fauqué et K. Behnia, Phys. Rev. X 10, 031025 (2020)). D’autre part, la proximité de cette instabilité structurale (associée à un phonon mou dont l’énergie diminue anormalement quand on refroidit) favoriserait la supraconductivité dans SrTiO3 à faible dopage bien que ces deux types d’ordre n’aient a priori rien en commun.



Motivés par ces travaux, nous proposons un sujet de thèse qui s’intéressera à l’étude de l’effet du dopage électronique dans des systèmes para-électriques quantiques. On s’intéressera à l’évolution de la structure électronique (par des mesures de transports électrique et thermoélectrique) et en parallèle à la structure cristalline ainsi qu’à la dynamique associée (spectre des phonons par des mesures de diffusion de neutrons). L’étude s’intéressera dans un premier temps au cas du composé SrTiO3 dopé (La, Nb, réduction en oxygène) puis aux composés KTaO3 et PbTe dopés. L’ensemble de ces travaux permettront de comprendre la nature des nouveaux états électronique de la matière qui apparaissent dans les matériaux para-électriques quantiques dopés.
Microscopie magnétique locale par intégration de capteurs magnétorésistifs

SL-DRF-21-0176

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Aurélie Solignac

Myriam PANNETIER-LECOEUR

Date souhaitée pour le début de la thèse : 01-10-2020

Contact :

Aurélie Solignac
CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 95 40

Directeur de thèse :

Myriam PANNETIER-LECOEUR
CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 74 10

Page perso : http://iramis.cea.fr/Pisp/aurelie.solignac/

Labo : http://iramis.cea.fr/spec/LNO/

Dans le but de caractériser les propriétés magnétiques à l’échelle locale de matériaux magnétiques comme des aciers, des nanoparticules ou des roches magnétiques, un microscope magnétique ultrasensible et quantitatif a été développé au Laboratoire de Nanomagnétisme et Oxydes. Ce microscope combine un microscope sonde locale à balayage de type AFM (Atomic Force Microscope) et un capteur magnétique intégré dans un bras de levier AFM. Les capteurs magnétiques utilisés sont des capteurs à magnétorésistance (MR) géante et tunnel, basés sur l’électronique de spin et pouvant détecter des champs magnétiques de l’ordre du nT/vHz. L’AFM permet un contrôle de la hauteur de la pointe et son déplacement, tandis que le capteur MR intégré dans la pointe AFM mesure le champ magnétique à chaque position sur l’échantillon.



Cet outil innovant a été jusqu’ici appliqué à la nanométrologie des champs magnétiques statiques à l’échelle locale. Durant cette thèse le but est d’investiguer d’autres applications possibles en utilisant notamment une propriété spécifique des capteurs MR : leur large gamme de fréquence en détection allant du DC à plusieurs centaines de MHz voire le GHz. Ainsi les propriétés de susceptibilité magnétique de nanoparticules magnétiques uniques pourront être étudiées, notamment dans le cadre de l’utilisation des nanoparticules dans les applications biomédicales par exemple (biopuces, tests bandelette…). Une deuxième application visée est la magnonique ou l’utilisation des ondes de spin (plutôt que des charges) afin de transporter et traiter l’information avec un minimum de pertes d’énergie. Les capteurs MR sont en effet de très bons candidats pour être des détecteurs miniaturisables de ces ondes de spins et permettent leur cartographie.



Dans le cadre de cette thèse, des développements seront nécessaires afin d’optimiser la réponse des capteurs en fonction de l’application visée. Les performances des capteurs seront étudiées en termes de magnétorésistance et de bruit lorsqu’ils sont intégrés dans les bras de levier flexibles. La thèse comportera un aspect microfabrication en salle blanche et un aspect mesures de magnétotransport et de bruit, qui sera réalisé dans la chambre magnétique blindée de la plateforme Ultra Bas Bruit. Le microscope et l’électronique de détection du capteur devront être eux aussi adaptés aux mesures à haute fréquence afin d’exploiter le potentiel du microscope pour des applications innovantes.

Photoanodes nanostructurées d’hématite catalytiquement activées pour une photoélectrolyse plus efficace

SL-DRF-21-0388

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Dana STANESCU

Cindy ROUNTREE

Date souhaitée pour le début de la thèse :

Contact :

Dana STANESCU
CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 75 48

Directeur de thèse :

Cindy ROUNTREE
CEA - DRF/IRAMIS/SPEC/SPHYNX

+33 1 69 08 26 55

Page perso : http://iramis.cea.fr/Pisp/dana.stanescu/

Labo : http://iramis.cea.fr/spec/lno/

Voir aussi : https://www.synchrotron-soleil.fr/fr/lignes-de-lumiere/hermes; https://www.pluginlabs-universiteparissaclay.fr/fr/entity/201526866-plateforme-de-microscopie-a-force-atomique-multifonctionnelle-et-interdisciplinaire-imfafm

Le sujet de thèse porte sur l’étude de photo-anodes nanostructurées d’hématite, activées catalytiquement par une couche « catalyseur » déposée en surface (M-OOH, avec M = Fe, Ni, Co, Cu, Zn) pour une production plus efficace d'hydrogène par photo-électrolyse de l’eau.



Par ce sujet, nous proposons d’optimiser le processus de photo-électrolyse de l’eau qui s’inscrit dans une démarche plus qui n’oppose pas les sources énergies, mais propose un mix énergétique pour la réussite d’une économie circulaire basée sur des technologies « bas carbone ». Ainsi l’utilisation des matériaux abondants, la production, la régénération des dispositifs, seront au cœur de l’étude.



Les nanofils d’hématite seront déposées par voie chimique dans une solution aqueuse, une technique de dépôt versatile et adaptée à une production à grande échelle. Le doctorant sera responsable de plusieurs aspects du projet: (1) la mesure de l’efficacité des photo-anodes activées catalytiquement, (2) l’étude de leur stabilité dans le temps, (3) la régénération des photo-anodes dans une démarche de recyclage « actif ». A cet égard, le candidat aura l'opportunité d’utiliser diverses techniques de préparation et de caractérisation: le dépôt des photo-anodes par voie chimique, la réalisation des électrodes de travail en carbone vitreux, la caractérisation photo-électrochimique, la microscopie en champ proche (AFM), microscopie en transmission des rayons X (STXM). L'étudiant en thèse bénéficiera d'une collaboration continue entre IRAMIS / SPEC et le Synchrotron SOLEIL, ligne de lumière HERMES.
Résonance Magnétique Nucléaire du tritium : un nouvel outil pour comprendre la spéciation du tritium dans les matériaux d’intérêt nucléaire

SL-DRF-21-0267

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Structure et Dynamique par Résonance Magnétique (LCF) (LSDRM)

Saclay

Contact :

Thibault CHARPENTIER

Date souhaitée pour le début de la thèse : 01-10-2020

Contact :

Thibault CHARPENTIER
CEA - DRF/IRAMIS/NIMBE/LSDRM

33 1 69 08 23 56

Directeur de thèse :

Thibault CHARPENTIER
CEA - DRF/IRAMIS/NIMBE/LSDRM

33 1 69 08 23 56

Page perso : http://iramis.cea.fr/Pisp/112/thibault.charpentier.html

Labo : http://iramis.cea.fr/nimbe/lsdrm/

Le tritium, isotope radioactif de l’hydrogène, est un élément chimique omniprésent dans l’industrie du nucléaire, autant au sein des réacteurs à fission que dans les réacteurs du futur à fusion (ITER), pour lesquels il constitue le combustible principal. Cependant, le tritium, élément léger, a la propriété d’être aisément piégé dans de nombreux matériaux, ce qui est à l’origine de quantités importantes de déchets tritiés.



Le CEA dispose d’installations uniques au monde permettant de manipuler des matériaux tritiés et d’élaborer une chimie du tritium, qu’il est intéressant de combiner avec les méthodes d’analyse par spectroscopie de résonance magnétique nucléaire (RMN) du tritium dans des conditions de haute-résolution (rotation de l’échantillon à l’angle magique - MAS). Le niveau de sophistication atteint par la RMN MAS laisse entrevoir de nombreuses perspectives pour comprendre finement les mécanismes d’incorporation et de piégeage du tritium dans de nombreux matériaux d’intérêt pour le nucléaire (métaux, plastiques, ciments...). L’hélium-3, isotope issu de la désintégration du tritium, est un autre isotope aisément identifiable par RMN.



L’objet de cette thèse est de développer et explorer les potentialités de la RMN du tritium dans une large gamme de matériaux actuellement étudiés, en collaboration avec les principaux acteurs des filières tritium du CEA.
Transport ultrarapide de courants de spin purs par des isolants antiferromagnétiques

SL-DRF-21-0431

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

jean-yves Chauleau

Jean-Baptiste MOUSSY

Date souhaitée pour le début de la thèse : 01-11-2020

Contact :

jean-yves Chauleau
CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 72 17

Directeur de thèse :

Jean-Baptiste MOUSSY
CEA - DRF/IRAMIS

01-69-08-72-17

Page perso : http://iramis.cea.fr/spec/Phocea/Membres/Annuaire/index.php?uid=jchaulea

Labo : http://iramis.cea.fr/spec/lno/

Les courants de spin purs jouent un rôle majeur dans la spintronique moderne. Maîtriser leur transport à des échelles de temps ultracourtes (sub-picoseconde) représente une des briques fondamentales pour étendre les concepts de la spintronique au domaine terahertz. L’objectif principal de cette thèse est l’étude du transport ultrarapide de l’information de spin à travers des isolants antiferromagnétiques (AF). Ces matériaux suscitent désormais un intérêt considérable, principalement en raison de leurs capacités ultrarapides. Nous proposons ici d’explorer les différentes caractéristiques du transport terahertz courant de spin pur dans les antiferromagnétiques en utilisant des techniques d’optique résolues en temps (magnéto-optique et seconde harmonique génération) et de spectroscopie teraHertz.

 

Retour en haut