| Centre
Paris-Saclay
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST | English
Univ. Paris-Saclay

Les stages

PDF
Développement et étude de matériaux composites à base de nanotubes de carbone pour application aux réservoirs de fluides cryogéniques
Development and study of composite materials based on carbon nanotubes for application to cryogenic fluid reservoirs

Spécialité

CHIMIE

Niveau d'étude

Bac+5

Formation

Ingenieur/Master

Unité d'accueil

Candidature avant le

04/04/2024

Durée

6 mois

Poursuite possible en thèse

non

Contact

CHARON Emeline
+33 1 69 08 63 16

Résumé/Summary
Le sujet de ce stage s’insère dans un projet de thèse dont l’objectif est de trouver le meilleur moyen d’intégrer des nanotubes de carbone dans des matériaux composites stratifiés, capables de ponter les microfissures de la matrice de ces composites, afin de limiter les fuites de carburant des réservoirs cryogéniques de lanceur.
The subject of this internship is part of a thesis project aimed at finding the best way of integrating carbon nanotubes into laminated composite materials, capable of bridging microcracks in the matrix of these composites, in order to limit fuel leaks from launch vehicle cryogenic tanks.
Sujet détaillé/Full description
L'émergence de nouvelles technologies de lanceurs "bas cout" motive la recherche et le développement de nouvelles architectures de matériaux à la fois légères et résistantes aux sollicitations thermomécaniques et chimiques. En particulier, le développement de nouvelles structures composites peut jouer un rôle très important en terme de gain de masse. Parmi les différents axes déjà initiés, l’allègement du réservoir cryogénique peut améliorer significativement les performances d’un étage propulsif.

Dans ce domaine, les études font état du développement de matériaux composites à matrices organiques variées (thermodurcissables ou thermoplastiques) intégrant des renforts de nature différentes : fibres de verre, fibres de kevlar ou fibres de carbone, noirs de carbone, graphène, nanoparticules de silice, et même plus récemment des nanotubes de carbone (NTC). Ces derniers, de par leurs propriétés physiques et mécaniques exceptionnelles ainsi que leur légèreté, pourraient apporter des avantages notables aux matériaux composites potentiellement utilisables pour la réalisation de réservoirs cryogéniques. Toutefois, l'état de l'art révèle un manque d'étude de ces nanomatériaux en environnement cryogénique. En effet, à notre connaissance les matériaux composites intégrant des NTC ont été étudiés en environnement azote liquide permettant ainsi de qualifier leur comportement à basse température en termes d'endommagement, mais aucune étude ne traite de la compatibilité de ces matériaux dans des environnements d'intérêt tels que l'oxygène liquide.

Dans ce contexte, une étude préliminaire réalisée entre le CEA et le CNES a permis d’élaborer des premières briques élémentaires composites innovantes intégrant des NTC. Cela a débouché sur la sélection de la matrice cyanate ester (appelée CE) et à des 1ers essais sous atmosphère d’oxygène gazeux pur (Gox), permettant de déterminer la température d’auto-inflammation du matériau. Les résultats de ces essais démontrent un effet bénéfique des NTC [1].

Le sujet de ce stage s’insère dans un projet de thèse dont l’objectif est de trouver le meilleur moyen d’intégrer des nanotubes de carbone dans des matériaux composites stratifiés, capables de ponter les microfissures de la matrice de ces composites, afin de limiter les fuites de carburant des réservoirs cryogéniques de lanceur. Connaissant les sollicitations mécaniques et thermiques, il s'agira de démontrer l'efficacité des NTC vis-à-vis de la tolérance à l'endommagement du matériau. La tolérance aux dommages est directement liée aux performances de résistance et d'étanchéité.
Pour ce faire, trois voies d’intégration des nanotubes de carbone sont envisagées :
1-Croissance des nanotubes de carbone (NTCs) directement sur fibres de carbone par CCVD [2],
2-Transfert d’un tapis de nanotubes de carbone alignés sur tissu de fibre de carbone pré-imprégnés de CE,
et 3-Dispersion aléatoire de nanotubes de carbone dans la matrice.

L’approche consistera à ajuster les paramètres de synthèse (durée, injection, atmosphère réactive…[3]) dans le but de maitriser les caractéristiques des NTC formés (alignement, longueur…). Une attention particulière sera notamment portée sur le contrôle de la longueur, du diamètre et de la densité notamment par analyse en microscopie électronique (MEB et MET) ainsi que la qualité structurale des NTC par spectrométrie Raman.

[1] J Bouillonnec, D Champonnois, K Mathis, M Pinault, M Mayne-L’Hermite, et D Miot. EUCASS proceeding 2022, 14
[2] M Delmas, M Pinault, S Patel, D Porterat, C Reynaud, M Mayne-L’Hermite. Nanotechnology 2012, 23
[3] C Castro, M Pinault, D Porterat, C Reynaud, M Mayne-L’Hermite. Carbon 2013, 61
The emergence of new "low-cost" launcher technologies is driving research and development into new material architectures that are both lightweight and resistant to thermomechanical and chemical stresses. In particular, the development of new composite structures can play a very important role in terms of weight savings. Among the various approaches already investigated, the lightening of the cryogenic tank can significantly improve the performance of a propulsion stage.

In this field, studies are reporting the development of composite materials with a variety of organic matrices (thermosetting or thermoplastic) incorporating reinforcements of different kinds: glass fibers, Kevlar or carbon fibers, carbon blacks, graphene, silica nanoparticles, and even more recently carbon nanotubes (CNT). The latter, with their exceptional physical and mechanical properties, as well as their light weight, could bring significant advantages to composite materials that could potentially be used to make cryogenic tanks. However, the state of the art reveals a lack of study of these nanomaterials in cryogenic environments. Indeed, to our knowledge, composite materials incorporating CNTs have been studied in liquid nitrogen environments, enabling us to qualify their low-temperature behavior in terms of damage, but there are no studies dealing with the compatibility of these materials in environments of interest such as liquid oxygen.

In this context, a preliminary study carried out by CEA and CNES has led to the development of the first innovative composite building blocks incorporating CNTs. This led to the selection of a cyanate ester matrix (known as CE) and initial tests under a pure oxygen gas atmosphere (Gox), to determine the material's auto-ignition temperature. The results of these tests demonstrated the beneficial effect of CNT [1].

The subject of this internship is part of a thesis project aimed at finding the best way of integrating carbon nanotubes into laminated composite materials, capable of bridging microcracks in the matrix of these composites, in order to limit fuel leaks from launcher cryogenic tanks. Knowing the mechanical and thermal stresses involved, the aim is to demonstrate the effectiveness of CNTs in terms of material damage tolerance. Damage tolerance is directly linked to strength and sealing performance.

To achieve this, three ways of integrating carbon nanotubes are proposed:
1-Growth of carbon nanotubes (CNTs) directly on carbon fibers by CCVD [2],
2-Transfer of a mat of aligned carbon nanotubes on carbon fiber fabric pre-impregnated with CE,
and 3-Random dispersion of carbon nanotubes in the matrix.

The approach will involve adjusting the synthesis parameters (time, injection, reactive atmosphere...[3]) with the aim of controlling the characteristics of the CNTs formed (alignment, length...). Particular attention will be paid to the control of length, diameter and density, notably by electron microscopy (SEM and TEM), and to the structural quality of the CNTs by Raman spectrometry.
Mots clés/Keywords
Chimie, instrumentation, nanosciences, nanotechnologies
Compétences/Skills
CCVD, MEB, MET, Spectroscopie Raman
CCVD, SEM, TEM, Raman spectroscopy

 

Retour en haut