Les sujets de thèses

3 sujets IRAMIS//LIDYL

Dernière mise à jour : 10-12-2019


• Interactions rayonnement-matière

• Optique - Optique laser - Optique appliquée

 

Détection par fluorescence et dosimétrie chimique lointaine et discriminante de termes sources alpha/beta

SL-DRF-20-0390

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Saclay

Contact :

Gérard BALDACCHINO

Date souhaitée pour le début de la thèse : 01-10-2020

Contact :

Gérard BALDACCHINO
CEA - DRF/IRAMIS/LIDYL

01 69 08 57 02

Directeur de thèse :

Gérard BALDACCHINO
CEA - DRF/IRAMIS/LIDYL

01 69 08 57 02

Page perso : http://iramis.cea.fr/Pisp/gerard.baldacchino/

Labo : http://iramis.cea.fr/LIDYL/dico/

Dans le cadre de l'Assainissement et du Démantèlement d'installations nucléaires, il est important de localiser très rapidement des termes sources alpha, beta et gamma en surface et susceptibles d'être traités, isolés et évacués du site dans des filières règlementées. L'imagerie gamma est une technique qui fonctionne très bien actuellement. Par contre, les sources alpha ou beta ne sont localisables qu'au contact des matériaux, en surface, car ces émissions ne se propagent pas sur des distances de plus de quelques cm. La dosimétrie par fluorescence et la capture chimique durant les processus de radiolyse ont fait d'énorme progrès récemment. Cela a permis par exemple de mettre en évidence les effets de densité d'ionisation et de Transfert d'Energie Linéique (effet de TEL) en radiolyse de l'eau par des ions lourds et des alpha. Les beta et les alpha rencontrés dans le nucléaire ont des TEL très différents amenant à des rendements très différents de production des radicaux libres (H, OH, electron hydraté, HO2) et de molécules (H2, H2O2), issus de l'ionisation de l'eau. L'objectif de la thèse proposée est d'exploiter ces différences en utilisant des capteurs chimiques non toxiques produisant une molécule fluorescente détectable à longue distance (objectif, plusieurs mètres), sous illumination laser. En partant des mécanismes chimiques connus, le doctorant devra donner les conditions expérimentales et appliquées (sur le terrain) permettant l'acquisition d'images exploitables rapidement.
Génération d'impulsions UVX attosecondes pour l'étude en temps réel de l'ionisation ultrarapide des gaz

SL-DRF-20-0601

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Attophysique (ATTO)

Saclay

Contact :

Pascal SALIERES

Date souhaitée pour le début de la thèse : 01-10-2020

Contact :

Pascal SALIERES
CEA - DRF/IRAMIS/LIDyL/ATTO

0169086339

Directeur de thèse :

Pascal SALIERES
CEA - DRF/IRAMIS/LIDyL/ATTO

0169086339

Page perso : http://iramis.cea.fr/Pisp/pascal.salieres/

Labo : http://iramis.cea.fr/LIDYL/atto/

Voir aussi : http://attolab.fr/

Résumé :

L’étudiant-e génèrera des impulsions UVX attosecondes à l’aide d’un laser Titane:Saphir intense (Equipement d’Excellence ATTOLab), puis les utilisera pour étudier la dynamique d’ionisation de gaz atomiques et moléculaires : éjection d’électrons, réarrangements électroniques dans l’ion, migration de charge…



Sujet détaillé :

Ces dernières années, la génération d’impulsions sub-femtosecondes, dites attosecondes (1 as=10-18 s), a connu des progrès spectaculaires. Ces impulsions ultrabrèves ouvrent de nouvelles perspectives d’exploration de la matière à une échelle de temps jusqu’alors inaccessible. Leur génération repose sur la forte interaction non linéaire d’impulsions laser infrarouges (IR) brèves (~20 femtosecondes) et intenses avec des gaz atomiques ou moléculaires. On produit ainsi les harmoniques d’ordre élevé de la fréquence fondamentale, sur une large gamme spectrale (160-10 nm) couvrant l’extrême ultraviolet (UVX). Dans le domaine temporel, ce rayonnement cohérent se présente comme un train d’impulsions d’une durée de ~100 attosecondes [1]. Pour générer des impulsions isolées, il est nécessaire de confiner la génération dans une porte temporelle ultrabrève, ce qui implique la mise en œuvre de diverses techniques optiques de confinement.



Avec ces impulsions attosecondes, il devient possible d’étudier les dynamiques les plus rapides dans la matière, celles associées aux électrons, qui se déroulent naturellement à cette échelle de temps. La spectroscopie attoseconde permet ainsi l’étude de processus fondamentaux tels que la photo-ionisation et s’intéresse à la question : combien de temps faut-il pour arracher un électron à un atome ou une molécule ’ La mesure de ces délais d’ionisation est actuellement un sujet « chaud » dans la communauté scientifique. En particulier, l’étude de la dynamique d’ionisation près des résonances permet d’accéder à des informations très fines sur la structure atomique/moléculaire, telles que les réarrangements électroniques dans l’ion suite à l’éjection d’un électron [2].



L’objectif de la thèse est tout d’abord de générer des impulsions attosecondes de durée et fréquence centrale adaptées à l’excitation de différents systèmes atomiques et moléculaires. L’objectif est ensuite de mesurer l’instant d’apparition des particules chargées, électrons et ions. Enfin, la mesure de la distribution angulaire des électrons émis, combinée à l’information temporelle, permettra de reconstruire le film complet 3D de l’éjection des électrons.

Le travail expérimental comprendra le développement et la mise en œuvre d’un dispositif, installé sur le laser FAB1 de l’Equipement d’Excellence ATTOLab, permettant : i) la génération de rayonnement attoseconde ; ii) sa caractérisation par interférométrie quantique ; iii) son utilisation en spectroscopie de photoionisation. Les aspects théoriques seront également développés. L’étudiant(e) sera formé(e) en optique ultrarapide, physique atomique et moléculaire, chimie quantique, et acquerra une large maitrise des techniques de spectroscopie de particules chargées. Des connaissances en optique, optique non linéaire, physique atomique et moléculaire, sont une base requise.

Le travail de thèse donnera lieu à des campagnes d’expériences dans des laboratoires français et européens associés (Lund, Milan).



Références :

[1] Y. Mairesse, et al., Science 302, 1540 (2003)

[2] V. Gruson, et al., Science 354, 734 (2016)

Utilisation des milieux diffusants complexes pour la métrologie spatio-temporelle des lasers ultrabrefs

SL-DRF-20-0595

Domaine de recherche : Optique - Optique laser - Optique appliquée
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Physique à Haute Intensité (PHI)

Saclay

Contact :

Fabien QUÉRÉ

Date souhaitée pour le début de la thèse : 01-10-2020

Contact :

Fabien QUÉRÉ
CEA - DRF/IRAMIS/LIDyL/PHI

01.69.08.10.89

Directeur de thèse :

Fabien QUÉRÉ
CEA - DRF/IRAMIS/LIDyL/PHI

01.69.08.10.89

Page perso : http://iramis.cea.fr/Pisp/107/fabien.quere.html

Labo : http://iramis.cea.fr/LIDYL/PHI/

La technologie laser permet aujourd’hui de produire des impulsions de lumière cohérente d’une durée de quelques dizaines de femtosecondes seulement, avec des énergies allant jusqu’à plusieurs joules par impulsion. Ces faisceaux lasers sont susceptibles de présenter des couplages spatio-temporels, c’est-à-dire une dépendance spatiale de leurs propriétés temporelles, qui peuvent dégrader considérablement leurs performances. Notre groupe de recherche a développé ces dernières années différentes techniques pour mesurer la structure spatio-temporelle complète de telles faisceaux lasers. Ces techniques ont été démontrées sur différents lasers, parmi les plus puissants existants actuellement. Les prochains défis à relever dans ce domaine de la métrologie optique sont d'une part de mettre au point des techniques de mesure monocoup (c'est-à-dire ne nécessitant qu'un seul tir laser, contre plusieurs centaines actuellement), et de développer des méthodes pour contrôler la structure spatio-temporelle des faisceaux laser ultrabrefs. L'objectif de cette thèse sera d'apporter des solutions à ces deux problèmes, en utilisant les milieux diffusants complexes, qui sont étudiées depuis plusieurs années par de nombreux groupes de recherche et dont les propriétés sont de mieux en mieux comprises. Parce qu'ils introduisent des corrélations déterministes entre propriétés spatiales et spectrales de la lumière, ces milieux sont susceptibles d'être utilisés dans différentes configurations aussi bien pour mesurer que pour contrôler les propriétés spatio-temporelles des impulsions laser ultrabrèves.


Retour en haut