Les sujets de thèses

8 sujets IRAMIS//LIDYL

Dernière mise à jour : 24-05-2018


• Chimie physique et électrochimie

• Interactions rayonnement-matière

• Physique atomique et moléculaire

• Physique des plasmas et interactions laser-matière

 

Dynamique de relaxation électronique résolue en conformation et multi-échelle de molécules flexibles

SL-DRF-18-0775

Domaine de recherche : Chimie physique et électrochimie
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

(SBM)

Saclay

Contact :

Lionel POISSON

Eric GLOAGUEN

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Lionel POISSON

CNRS-UMR9222 - DSM/IRAMIS/LIDYL/DYR

01 69 08 51 61

Directeur de thèse :

Eric GLOAGUEN

CNRS - DSM/IRAMIS/LIDyL/SBM

01 69 08 35 82

Page perso : http://iramis.cea.fr/Pisp/34/lionel.poisson.html

Labo : http://iramis.cea.fr/LIDYL/index.php

Voir aussi : http://iramis.cea.fr/Pisp/70/eric.gloaguen.html

Les molécules flexibles sont omniprésentes dans la Nature (protéines, sucres, ...) et sont sources de nombreuses applications (médicaments, machines moléculaires, ...). Par définition, ces molécules existent sous plusieurs conformations qui possèdent chacune des propriétés physiques, chimiques ou biologiques pouvant varier grandement d'une conformation à l'autre. Parmi celles-ci, la photoexcitation et la relaxation des états électroniques sont particulièrement sensibles à la conformation: la durée de vie du premier état électronique excité peut, par exemple, varier de plusieurs ordres de grandeurs suivant la conformation adoptée. Toutefois, la mise en évidence expérimentale de tels effets conformationnels sur les états excités reste rare en raison de la difficulté à étudier spécifiquement une conformation présente dans un mélange conformationnel. Cette thématique reste donc encore peu documentée malgré un besoin de résultats expérimentaux pour aider au développement des modèles théoriques, et un manque de compréhension dans un domaine où les enjeux fondamentaux (intersections coniques, phénomènes ultrarapides) et applicatifs (photostabilité, transfert d'énergie) sont importants.



Dans ce contexte, le laboratoire LIDYL réunit plusieurs dispositifs expérimentaux permettant une étude originale multi-échelle (ns-fs) et résolue en conformation de la dynamique de relaxation électronique de systèmes moléculaires flexibles. Le programme de recherche portera principalement sur des systèmes d'intérêt biologiques et des complexes moléculaires, et consistera à :



- Mettre en évidence des processus dynamiques dépendant de la conformation afin de rationaliser les observations

- Caractériser des espèces jusque-là inaccessibles aux techniques de détection classiques.

Contrôle spatio-temporel de la génération d'harmoniques dans les semiconducteurs pour l'émission d'impulsions attosecondes

SL-DRF-18-0961

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Attophysique (ATTO)

Saclay

Contact :

Willem Boutu

Hamed MERDJI

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Willem Boutu

CEA - DRF/IRAMIS/LIDYL/ATTO

0169085163

Directeur de thèse :

Hamed MERDJI

CEA - DRF/IRAMIS/LIDyL/ATTO

0169085163

Page perso : http://iramis.cea.fr/LIDYL/en/Phocea/Pisp/index.php?nom=willem.boutu

Labo : http://iramis.cea.fr/LIDYL/Phocea/Vie_des_labos/Ast/ast_groupe.php?id_groupe=1149

La nano-photonique ultrarapide est un domaine scientifique émergeant grâce aux progrès extraordinaires de la nanofabrication et des lasers ultrabrefs. La stimulation de champs électriques extrêmement intenses dans des dispositifs photoniques nanostructurés a le potentiel de créer des nano-sources de photons énergétiques ou de particules ouvrant de vastes applications dans la science et dans l'industrie. L’optoélectronique s'étend depuis peu au régime hautement non linéaire. Un impact récent de cette capacité de contrôler la réponse des électrons excités dans la bande de conduction par un champ fort est l'émergence de la génération d'harmoniques élevés (HHG) dans les cristaux [1-6]. Les semi-conducteurs 2D et 3D présentent des propriétés de haute mobilité électronique qui permettent de conduire de manière cohérente des courants d'électrons intenses dans la bande de conduction. Les HHG sont émis lorsque ces électrons se recombinent vers la bande de valence. Il s'agit d'un phénomène pur non-perturbatif qui se produit efficacement dans une couche de de 10 à 100 nanomètres d’épaisseur et jusqu'à une couche atomiquement mince [5,6]. Le fort courant d'électrons à partir duquel les harmoniques prennent origine peut être manipulé dans l'espace et dans le temps. Le projet de thèse se concentrera sur la forte localisation spatiale et temporelle, à l'échelle du cycle optique unique [7,8], du processus de génération d'harmoniques. Ce contrôle peut non seulement révolutionner la science attoseconde mais aussi préparer une nouvelle génération de dispositifs ultrarapides UV/visibles à des systèmes optoélectroniques à rayons X cohérent. Basé sur l'expertise, les ressources expérimentales et théoriques du groupe, le candidat cherchera des moyens efficaces de renforcer le régime d'interaction par amplification plasmonique et confinement de champ pour la génération de sources harmoniques à l'échelle nanométrique et attoseconde dans les semi-conducteurs. Une attention particulière sera accordée aux matériaux 2D tels que le graphène, MoS2 et h-BN. La génération d'impulsions attosecondes sera également étudiée en utilisant des mesures de phase harmonique disponibles au CEA (techniques RABBITT, FROG). Nous allons également développer un échantillon original nanostructuré qui permettra de générer une impulsion attoseconde unique en se basant sur le concept du phare attoseconde.

La thèse se déroulera dans l'installation NanoLight, un tout nouveau laboratoire équipé de deux sources laser: un OPCPA intense de 100kHz, quelques cycles optiques (accordable de 1,5 à 3,4 µm) et un laser fibrée à 2µm et sur les installations ATTOLAB équipées de lasers Ti: Sa CEP- stables et équipé de métrologie attoseconde.



1. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

2. Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

3. Ndabashimiye, G. et al. Solid-state harmonics beyond the atomic limit. Nature 534, 520–523 (2016).

4. You, Y. S., et al. Anisotropic high-harmonic generation in bulk crystals. Nat. Phys. 13, 345–349 (2017).

5. Liu H. et al. High-harmonic generation from an atomically thin semiconductor. Nature Physics 13, 262–265 (2017).

6. Yoshikawa, N., et al. High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science, 356, 736-738 (2017).

7. Hohenleuter, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572-575 (2015).

8. Langer, F. et al., Lightwave-driven quasiparticle collisions on a subcycle timescale. Nature 533, 225–229 (12 May 2016).

9. Franz et al. submitted to Science Advances arXiv:1709.09153

10. Shaaran, T et al. Nano-Plasmonic near Field Phase Matching of Attosecond Pulses. Scientific Reports 2017, 7, 6356.

11. Shi, L. et al. Self-Optimization of Plasmonic Nanoantennas in Strong Femtosecond Fields. Optica 2017, 4, 1038–1043.

12. Nicolas R. et al. Plasmon-Amplified Third Harmonic Generation in metal/dielectric resonators, submitted to ACS Nano (2017).

Impulsions XUV attosecondes portant un moment angulaire : synthèse et nouvelles spectroscopies

SL-DRF-18-0221

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Attophysique (ATTO)

Saclay

Contact :

Thierry RUCHON

Date souhaitée pour le début de la thèse : 01-09-2018

Contact :

Thierry RUCHON

CEA - DRF/IRAMIS/LIDyL/ATTO

0169087010

Directeur de thèse :

Thierry RUCHON

CEA - DRF/IRAMIS/LIDyL/ATTO

0169087010

Page perso : http://iramis.cea.fr/LIDYL/Pisp/thierry.ruchon/

Labo : http://iramis.cea.fr/LIDYL/ATTO/

La lumière dans l’extrême ultraviolet (XUV) constitue une sonde universelle de la matière, qu’elle se présente en phase diluée ou condensée : les photons associés à cette gamme spectrale portent une énergie de 10 à 100 eV, suffisante pour ioniser directement atomes, molécules ou objets solides. De grands instruments tels les synchrotrons ou les lasers à électrons libres (LEL) fonctionnent dans cette gamme spectrale et permettent d’étudier, tant du point de vue fondamental qu’appliqué, les interactions lumière-matière dans ce régime. Cependant, ces grands instruments n’offrent pas la résolution temporelle permettant d’atteindre les échelles de temps ultimes des interactions lumière-matière, situées dans la gamme attoseconde (1as=10^-18s). Une alternative est offerte par le développement, ces dernières années, de sources XUV basées sur la génération d’harmoniques d’ordre élevé (HHG) d’un laser femtoseconde intense. Notre laboratoire a été pionnier pour le développement, le contrôle et la mise en forme de ces sources fournissant des impulsions XUV attosecondes.



Au cours de cette thèse, nous développerons des dispositifs spécifiques faisant porter à ces impulsions un moment angulaire, qu’il soit de spin ou orbital. Ceci ouvrira de nouvelles applications mettant en jeu des spectroscopies résolues en temps ignorées à ce jour. L’accent sera mis, d’une part sur les aspects fondamentaux des couplages de moment angulaires de spin et orbitaux de la lumière dans le régime hautement non linéaire, d’autre part sur des applications de physique attoseconde, en phase diluée ou condensée. En particulier, nous chercherons à mettre en évidence des dichroïsmes hélicoïdaux, qui se manifestent par des absorptions différentes de faisceaux portant des moments angulaires orbitaux opposés. Ces effets restent très largement ignorés à ce jour.



L’étudiant(e) acquerra une pratique de l’optique des lasers, en particulier femtoseconde, et des techniques de spectrométrie de particules chargées. Il (elle) étudiera également les processus de physique des champs forts sur lesquels se basent la génération d'harmoniques élevées. Il/elle deviendra un(e) experte de la physique attoseconde. L’acquisition de techniques d’analyse approfondie, d’interfaçage d’expérience seront encouragées même si non indispensables.



Sujet complet disponible à http://iramis.cea.fr/LIDYL/Pisp/thierry.ruchon/.

Impulsions attosecondes accordables pour l’étude des dynamiques de photo-ionisation

SL-DRF-18-0844

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Attophysique (ATTO)

Saclay

Contact :

Pascal SALIERES

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Pascal SALIERES

CEA - DRF/IRAMIS/LIDyL/ATTO

0169086339

Directeur de thèse :

Pascal SALIERES

CEA - DRF/IRAMIS/LIDyL/ATTO

0169086339

Page perso : http://iramis.cea.fr/Pisp/pascal.salieres/

Labo : http://iramis.cea.fr/LIDYL/ATTO/

Voir aussi : http://attolab.fr/

Résumé :



A l’aide d’impulsions attosecondes accordables produites avec un amplificateur paramétrique optique (OPA) pompé par un laser Titane:Saphir intense (Equipement d’Excellence ATTOLab), l’étudiant(e) étudiera la dynamique d’ionisation de gaz atomiques et moléculaires près des résonances. L’objectif est de suivre en temps réel l'éjection des électrons et de mesurer comment se construit le profil des résonances.



Sujet détaillé :



Ces dernières années, la génération d’impulsions sub-femtosecondes, dites attosecondes (1 as=10-18 s), a connu des progrès spectaculaires. Ces impulsions ultrabrèves ouvrent de nouvelles perspectives d’exploration de la matière à une échelle de temps jusqu’alors inaccessible. Leur génération repose sur la forte interaction non linéaire d’impulsions laser infrarouges (IR) brèves (~20 femtosecondes) et intenses avec des gaz atomiques ou moléculaires. On produit ainsi les harmoniques d’ordre élevé de la fréquence fondamentale, sur une large gamme spectrale (160-10 nm) couvrant l’extrême ultraviolet (UVX). Dans le domaine temporel, ce rayonnement cohérent se présente comme un train d’impulsions d’une durée de ~100 attosecondes [1].



Avec ces impulsions attosecondes, il devient possible d’étudier les dynamiques les plus rapides dans la matière, celles associées aux électrons, qui se déroulent naturellement à cette échelle de temps. La spectroscopie attoseconde permet ainsi l’étude de processus fondamentaux tels que la photo-ionisation et s’intéresse à la question : combien de temps faut-il pour arracher un électron à un atome ou une molécule ’ Plus précisément : combien de temps faut-il à un paquet d’onde électronique produit par absorption d’une impulsion attoseconde pour sortir du potentiel atomique/moléculaire ’ La mesure de ces délais d’ionisation est actuellement un sujet « chaud » dans la communauté scientifique. En particulier, l’étude de la dynamique d’ionisation près des résonances permettrait d’accéder à des informations très fines sur la structure atomique/moléculaire, telles que les réarrangements électroniques dans l’ion suite à l’éjection d’un électron. Nous nous sommes récemment intéressés à l’ionisation près d’une résonance d’auto-ionisation dite « de Fano ». Nous avons montré par ionisation à 2 photons UVX+IR qu’il était possible de « voir » en temps réel la construction du profil de la résonance [2].



L’objectif de la thèse est de généraliser cette technique pour étudier d’autres types de résonances atomiques et moléculaires, telles que les résonances de forme. A cette fin, des impulsions attosecondes accordables seront générées à l’aide du rayonnement moyen-IR [1.2-2 µm] produit avec un amplificateur paramétrique optique (OPA) pompé par un laser Titane:Saphir intense. Enfin, la mesure de la distribution angulaire des électrons émis, combinée à l’information temporelle détaillée ci-dessus, permettra de reconstruire le film complet 3D de l’éjection des électrons.

Le travail expérimental comprendra la mise en œuvre d’un dispositif, installé sur le laser FAB1 d’ATTOLAB, permettant : i) la génération de rayonnement attoseconde ; ii) sa caractérisation par interférométrie quantique ; iii) son utilisation en spectroscopie de photoionisation (détection d’électrons). Les aspects théoriques seront également développés. L’étudiant(e) sera formé(e) en optique ultrarapide, physique atomique et moléculaire, chimie quantique, et acquerra une large maitrise des techniques de spectroscopie de particules chargées. Des connaissances en optique, optique non linéaire, physique atomique et moléculaire, sont une base requise.

Le travail de thèse donnera lieu à des campagnes d’expériences dans des laboratoires français (ANR CIMBAAD) et européens associés (réseau européen MEDEA : Milan, Lund).



Références :

[1] Y. Mairesse, et al., Science 302, 1540 (2003)

[2] V. Gruson, et al., Science 354, 734 (2016)

Miroirs plasmas 'in silico': "vers l'obtention de sources lumineuses d'intensités extrêmes et d'accélérateurs de particules ultra-compacts"

SL-DRF-18-0432

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Physique à Haute Intensité (PHI)

Saclay

Contact :

Henri VINCENTI

Guy BONNAUD

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Henri VINCENTI

CEA - DRF/IRAMIS/LIDyL/PHI

0169080376

Directeur de thèse :

Guy BONNAUD

CEA - DRF/IRAMIS/LIDyL/PHI

0169088140

Page perso : http://iramis.cea.fr/Pisp/henri.vincenti/

Labo : http://iramis.cea.fr/LIDYL/PHI/

Voir aussi : https://www.picsar.net

Avec l’avènement des lasers de puissance de classe PW, capables de délivrer des intensités lumineuses de 10^22 W.cm^-2 pour lesquelles la matière devient plasma, la physique des Ultra-Hautes Intensités (UHI) vise maintenant à résoudre deux challenges majeurs : peut-on produire des accélérateurs de particules compacts délivrant des faisceaux d’électrons de haute charge à haute énergie, qui seront cruciaux pour repousser les limites de la Science des hautes énergies ’ Peut-on atteindre des intensités lumineuses extrêmes, approchant la limite de Schwinger (10^29W.cm^-2), au-delà de laquelle la lumière s’autofocalise dans le vide et des paires électron/positron sont produites’ Résoudre ces deux grandes questions à l’aide des lasers de puissance PW en construction (e.g. CILEX/APOLLON, ELI) requiert une rupture conceptuelle que je propose de développer au cours de cette thèse.



En particulier, cette thèse vise à démontrer que les ‘miroirs plasma relativistes’, produits lorsqu’un laser femtoseconde (1fs=10^-15s) de puissance frappe une cible solide, pourraient fournir une approche simple et élégante permettant de résoudre ces deux grands challenges de la physique UHI. Lors de sa réflexion sur le miroir plasma, le laser peut générer des paquets d’électrons relativistes de haute charge ainsi que des faisceaux harmoniques de courtes longueurs d’onde très intenses. Pourrait-on utiliser ces miroirs plasmas pour focaliser fortement les faisceaux harmoniques et approcher la limite de Schwinger ’ Pourrait-on utiliser les miroirs plasmas comme des injecteurs de très haute charge dans un laser PW capable de fournir des gradients accélérateurs de 100TV.m^-1 ’



La mission du candidat sera de répondre à ces deux interrogations ‘in silico’, à l’aide de simulations numériques massivement parallèles nécessitant les plus gros calculateurs disponibles à l’heure actuelle. Dans cette optique, le candidat utilisera nos derniers développements numériques et d’optimisation de la méthode Particle-In-Cell (PIC) qui rendent possible, pour la première fois, une simulation 3D réaliste de l’interaction laser-miroir plasma à haute intensité. Ces développements ont été implémentés, validés et testés dans notre code 3D PICSAR (https://www.picsar.net). Armé de PICSAR, le candidat modélisera numériquement de nouveaux schémas d’interaction utilisant les miroirs plasmas pour résoudre les deux grands challenges physiques introduits ci-dessus.

Dynamique électronique dans les biomolécules : une approche duale expérience-théorie

SL-DRF-18-0678

Domaine de recherche : Physique atomique et moléculaire
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

(SBM)

Saclay

Contact :

Michel MONS

Valérie BRENNER

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Michel MONS

CEA - DRF/IRAMIS/LIDyL/SBM

01 69 08 20 01

Directeur de thèse :

Valérie BRENNER

CEA - DRF/IRAMIS/LIDyL/SBM

01.69.08.37.88

Page perso : http://iramis.cea.fr/Pisp/valerie.brenner/

Labo : http://iramis.cea.fr/LIDyL/SBM/

Voir aussi : http://iramis.cea.fr/Pisp/michel.mons/

De nombreux systèmes moléculaires complexes absorbent la lumière dans l’UV, certains d’extrême importance pour la biologie, comme les bases de l’ADN ou les protéines. Les états excités peuplés par l’absorption UV bénéficient de mécanismes de désactivation d’importance majeure pour la photostabilité de ces espèces. Ces processus, souvent ultrarapides, offrent un moyen rapide et efficace de dissiper l’excitation électronique sous forme de vibration, évitant ainsi les réactions photochimiques qui conduisent généralement à des dommages structurels affectant la fonction biologique du système. Notre connaissance de ces processus qui contrôlent la durée de vie de l’état excité peut être approfondie à travers l’étude en phase gazeuse de systèmes d’intérêt biologique modèles mimant des fragments des constituants du vivant comme par exemple, les peptides pour les protéines. L’objectif principal de cette thèse est donc d’étudier la dynamique électronique de systèmes d’intérêt biologique, i.e., des modèles des constituants du vivant, et ainsi d’appréhender les phénomènes élémentaires qui contrôlent la durée de vie des états excités de ces systèmes. L’approche mixte expérience-théorie, qui utilisera des développements méthodologiques récents, reposera sur :



i) La caractérisation expérimentale des durées de vie en fonction des espèces étudiées (expérience pompe-sonde en régime nano-, pico- et femtoseconde) ainsi que de la cascade d’états formés. Les expériences bénéficieront notamment du diagnostic d’imagerie de photoélectrons, qui permettra de suivre le chemin de relaxation suivi par le système, et notamment d’apprécier le rôle de ses différents états excités et de sa conformation,

ii) la modélisation des surfaces d’énergie potentielle (SEP) des états excités de ces systèmes et en particulier, la détermination des zones critiques sur la surface, comme les intersections coniques, et des mouvements induisant les mécanismes de désactivation. La taille des systèmes, leur flexibilité, la présence de liaisons non-covalentes qui gouvernent les structures et la nature très diverse des états excités requièrent la mise en œuvre d’une stratégie calculatoire multi-étapes et multi-niveaux, faisant appel à des méthodes de chimie quantique sophistiquées (dynamique non-adiabatique, méthode « Coupled Cluster » et méthode d’interaction de configuration multiréférence).



Enfin, ce travail de thèse s’effectuera dans le prolongement du projet ANR ESBODYR («Excited States of BiO-relevant systems: towards ultrafast DYnamics with conformational Resolution» (Défis de tous les savoirs, Coord. V. Brenner, 2014-2018). Il bénéficiera par ailleurs pour le volet théorique de l’accès aux moyens de calculs intensif nationaux (GENCI : TGCC/IDRIS/CINES) et pour le volet expérimental, de l’accès au serveur femtoseconde SLIC de l’IRAMIS (Saclay) et du serveur picoseconde du Centre Laser de l’Université Paris-Sud (CLUPS).

Dynamique électronique de biomolécules : vers une modélisation des mécanismes de désactivation des états excités.

SL-DRF-18-0674

Domaine de recherche : Physique atomique et moléculaire
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

(SBM)

Saclay

Contact :

Valérie BRENNER

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Valérie BRENNER

CEA - DRF/IRAMIS/LIDyL/SBM

01.69.08.37.88

Directeur de thèse :

Valérie BRENNER

CEA - DRF/IRAMIS/LIDyL/SBM

01.69.08.37.88

Page perso : http://iramis.cea.fr/Pisp/valerie.brenner/

Labo : http://iramis.cea.fr/LIDyL/SBM/

De nombreux systèmes moléculaires complexes absorbent la lumière dans l’UV, certains d’extrême importance pour la biologie, comme les bases de l’ADN ou les protéines. Les états excités peuplés par l’absorption UV bénéficient de mécanismes de désactivation d’importance majeure pour la photostabilité de ces espèces. Ces processus, souvent ultrarapides, offrent un moyen rapide et efficace de dissiper l’excitation électronique sous forme de vibration, évitant ainsi les réactions photochimiques conduisant généralement à des dommages structurels susceptibles d’affecter la fonction biologique du système. Notre connaissance de ces processus qui contrôlent la durée de vie de l’état excité peut être approfondie à travers l’étude en phase gazeuse de systèmes d’intérêt biologique modèles mimant des fragments des constituants du vivant comme par exemple, les peptides pour les protéines. La taille des systèmes, leur flexibilité, la présence de liaisons non-covalentes qui gouvernent les structures et la nature très diversifiée des états excités nécessitent d’avoir recours à des modèles théoriques sophistiqués pour une complète caractérisation des structures et la détermination des mécanismes de relaxation des premiers états excités.



L’objectif principal de cette thèse est donc de mettre au point une stratégie calculatoire faisant appel à des méthodes de chimie quantique sophistiquées permettant non seulement la caractérisation des premiers états excités de ces systèmes mais aussi une modélisation partielle des surfaces d’énergie potentielle de ces états afin d’en appréhender la dynamique électronique. Enfin, ce sujet est en relation directe avec des expériences de spectroscopies menées dans notre équipe sur ces systèmes, expériences utilisant les récents développements des techniques expérimentales de spectroscopie en phase gazeuse et donnant accès à des données très précises sur les propriétés spectroscopiques et la dynamique électronique de relaxation.



Par ailleurs, il s’effectuera dans prolongement d’un projet ANR, ESBODYR ou «Excited States of BiO-relevant systems: towards ultrafast Dynamics with conformational Resolution» (Coord. V. Brenner, 2014-2018) et bénéficiera de l’accès aux moyens de calcul intensif nationaux (GENCI : TGCC/IDRIS/CINES).

Etude des spectres complexes dans les plasmas chauds : applications en sciences de la fusion et en astrophysique

SL-DRF-18-0627

Domaine de recherche : Physique des plasmas et interactions laser-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Matière à Haute Densité (MHDE)

Saclay

Contact :

Michel POIRIER

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Michel POIRIER

CEA - DRF/IRAMIS/LIDyL/MHDE

+33 (0)1 69 08 46 29

Directeur de thèse :

Michel POIRIER

CEA - DRF/IRAMIS/LIDyL/MHDE

+33 (0)1 69 08 46 29

Page perso : http://iramis.cea.fr/lidyl/Phocea/Membres/Annuaire/index.php?uid=poirier

Labo : http://iramis.cea.fr/LIDYL/MHDE/

Un vaste ensemble d'objets d'étude en physique comme la structure interne des étoiles, l'émission X des disques d'accrétion, la dynamique de la fusion par confinement inertiel, ou les nouvelles sources de rayonnement nécessite une connaissance fine des propriétés radiatives des plasmas chauds. De tels plasmas présentent des spectres contenant un très grand nombre de raies souvent regroupées en faisceaux non résolus. L'interprétation de ces spectres requiert l'utilisation des méthodes statistiques. À l'aide de la seconde quantification et de méthodes d'algèbre tensorielle, il est possible de calculer des quantités telles que la moyenne et la variance des énergies de transitions dans un faisceau. Il existe une littérature importante sur ce sujet, toutefois certains types de transitions, notamment les transitions dipolaires magnétiques internes à une configuration ou les processus mettant en jeu plusieurs électrons n'ont pas été abordés jusqu'ici. En plus de cette étude analytique, un travail numérique utilisant le Flexible Atomic Code sera proposé au cours de cette thèse. Les plasmas seront étudiés soit à l'équilibre thermodynamique, soit hors équilibre auquel cas les populations de niveaux sont déterminées par la résolution de système d'équations cinétiques. Parmi les applications possibles figurent l'interprétation de mesures récentes d'opacité réalisées sur le laser LULI2000 de l'École Polytechnique, la détermination des pertes radiatives du tungstène dans le divertor du tokamak ITER, ou encore le problème ouvert de la caractérisation des plasmas de silicium photoionisés étudiés sur Z-pinch en relation avec des observations astrophysiques.
Retour en haut