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We describe a spatial pattern arising from the nonuniform evaporation of a colloidal film. Im-
mediately after the film deposition, an obstacle is positioned above its free surface, minimizing
evaporation at this location. In a first stage, the film dries everywhere but under the obstacle,
where a liquid region remains. Subsequently, this liquid region evaporates near its boundaries with
the dry film. This loss of water causes a flow of liquid and particles from the center of the obstructed
region to its periphery. The final film has a dip surrounded by a rim whose diameter is set by the
obstacle. This turns out to be a simple technique for structuring films of nanometric thickness.

Evaporation from a liquid is rarely uniform. The flux
of evaporating molecules may vary owing to convection
currents in the gaseous environment above the surface or
to a nonuniform temperature in the liquid. Geometri-
cal effects can also play a role, especially in films with
pinned contact lines [1, 2]. Enhanced evaporation near
the edges of the film and surface tension forces combine
to produce a fluid flow from the center of the film to
its periphery, which leads to the formation of rings of
deposited colloidal particles after evaporation [3–6]. In
films of concentrated colloidal dispersions, a drying front
sweeps across the film, at a speed determined by the joint
effects of evaporation and fluid flow [7, 8].

Another remarkable situation applies to the flow in a
film covered by a “mask” that limits evaporation [7, 9,
10]. Indeed, when the mask with holes is positioned at
a short distance above the liquid surface, evaporation
primarily occurs under the holes so that surface tension
drives a flow of liquid to replace this loss. If the liquid
contains dispersed colloidal particles, the solid film after
evaporation is a set of hills that match the hole locations.
This technique for modulating the thickness of a dried
colloidal film has been called “evaporative lithography.”

Here we report observations also arising from nonuni-
form evaporation, caused by a different set of transport
phenomena. This phenomenon takes place in very thin
(micrometric) films of colloidal dispersions. Evaporation
from the film surface is free everywhere but in one loca-
tion, where a solid disk placed above the surface limits
evaporation [Fig. 1a]. This device produces dried films
that have a marked dip surrounded by a thick rim at
the place below the obstacle [Fig. 1b]. The dip is signif-
icantly thinner than the rest of the dried film [Fig. 2a],
and it can nearly reach the substrate surface, depending
on the distance between the disk and the film. In ad-
dition, the dip size is found to match the obstacle size
[Fig. 2b], which yields a precise control for the final pat-
tern of the dried film. For a film thickness in the range
of the light wavelengths, dips are visible with a naked
eye, so that the appearance of the substrate can be con-
veniently modulated using this technique of differential
evaporation.
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FIG. 1. (a) Setup for controlling the film evaporation. The
film is shown in its initial state. (b) A dip surrounded by a
rim forms at the place above which the obstacle was located.
Profile of the dried film obtained for e0 = 3.5 µm, 2R = 5 mm,
and H = 1 mm observed with an optical profilometer (zero
of the vertical axis corresponds to the film level far from the
obstacle).

Figure 1a presents the geometry of our experiment.
The substrate is a glass slide with a surface made hy-
drophilic by abrasion with a fine ceria powder. The liquid
film is an aqueous dispersion of colloidal silica particles
(trade name Ludox TMA, particle radius a = 11 nm,
shear viscosity η = 2 mPa·s). The initial silica volume
fraction is 0.1. The film is deposited on the substrate
by dip coating, which yields a good control of the ini-
tial thickness e0 (typically 5 µm in our experiments). A
plain metal cylinder or a glass fiber (diameter 2R = 1−15
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FIG. 2. (a) An example of a transverse cut in the dip and rim
region corresponding to Fig. 1a as obtained by optical reflec-
tometry. r is the distance from the center, and the location of
the obstacle during evaporation is indicated with a bar. (b)
Diameter D of the perturbed film area as a function of the
obstacle diameter 2R.

mm) is located at a short distance (H ∼ 1 mm) above
the volatile film, which impacts the profile of the dried
film observed after evaporation [Fig. 2a].
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FIG. 3. u/u∞ as a function of the radial distance below the
obstacle. u is obtained numerically from the problem de-
scribed in the text for H = 1 mm, w = 4.5 mm, and different
values of the ratio R/H ∈ (0.5, 4).

We first quantify how an obstacle perturbs evapora-
tion. Evaporation from the surface occurs through dif-
fusive transport of water molecules across the stagnant
air layer (of thickness w) adjacent to the film. It can
be described by a stationary diffusion equation ∆c = 0,

where we denote the vapor concentration by c. The cor-
responding boundary conditions are a constant concen-
tration c∞ beyond the boundary layer, a saturation con-
centration csat at the liquid surface and a zero mass flux
at the obstacle surface. There is a 50%-humidity in the
experiment, so that c∞ = csat/2. The w value can be
estimated from the known mass flux J at r → ∞ (far
from the obstacle). Instead of the mass flux we operate
in what follows with the evaporation speed u = J/ρL (ρL
is the liquid density), i.e. the rate of the decrease of the
liquid layer thickness. Far from the obstacle it is

u∞ = Dvap
csat − c∞

w
, (1)

where Dvap is the vapor diffusivity in the air.
For ambient conditions, u∞ is about 50 nm/s, and Eq.

1 leads to w of the order of 5 mm. Fig. 3 shows the
calculated u/u∞ as a function of distance r from the
center of the obstacle, for aspect ratios R/H between
0.5 and 4. Evaporation is reduced under the obstacle
(r ≤ R), and nearly vanishes for ratios R/H larger than
4. This argument predicts that a liquid “bump” should
form under the obstacle [Fig. 4a]. We confirmed it by
measuring the film thickness at two locations, one where
evaporation had been obstructed and another one where
it had not. An optical fiber connected to a reflectometer
was used to measure the film thickness at one location.
At the same time, it was used as an obstacle of diameter
2R = 3 mm. By by quickly displacing the optical probe
between positions A and B, as sketched in Fig. 4a, we
compared the film thickness below the obstacle and at
the rest of the film.

The series with solid squares in Fig. 4b shows how
the film thickness e decreases under the obstacle, here
placed at a height H = 1 mm above the liquid surface.
In the first regime (t < 100 s), the thickness decreases
by u = 25 ± 5 nm/s, i.e. with a rate smaller than that
observed far from the obstacle where it is u∞ = 45 ± 5
nm/s, in good agreement [11] with Fig. 3. In the second
regime (t > 100 s), the film thins much faster. The data
shown with open circles are obtained for another film of
the same composition and similar initial thickness e0, but
for which the position of the optical fiber was shifted lat-
erally by 4 mm (larger than 3 mm of the fiber diameter)
when t = 75 s as sketched in Fig. 4a. This experiment
reveals a sharp difference in film thickness between the
positions A and B, which points out to the existence be-
low the obstacle of a liquid bump, whose height h here is
1500± 100 nm.

We performed similar experiments by varying the time
t at which the optical fiber is moved, i.e. during the
aging of the film. We always observed a bump below the
obstacle placed at H = 1 mm above the film surface. The
bump height h is measured as a function of the lowering of
the film e0−e, where e is the current film thickness. Since
the evaporation rate does not vary with time [Fig. 4b],
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FIG. 4. (a) By using an optical fiber (diameter 2R = 3 mm;
connected to a reflectometer) as an obstacle, we followed the
time evolution of the film thickness below the obstacle (lo-
cation A). The fiber was also quickly shifted laterally (from
A to B) to compare film heights at these locations. (b) Mea-
surements of film thickness during evaporation: (i) the optical
fiber is kept at the same location (A), solid squares; the liq-
uid evaporates and the film becomes solid at t ≈ 112 s. (ii)
The optical fiber is displaced from A to B at t ≈ 75 s (open
circles). A sharp decrease in thickness reveals the presence
under the obstacle of a liquid “bump” of height h ≈ 1500 nm.

e = e0−u∞t and e+h = e0−ut so that we have h = (e0−
e)(1 − u/u∞). The corresponding results are displayed
in Fig. 5: the bump gets more and more pronounced
as the surrounding film evaporates. If evaporation were
negligible below the obstacle, and without any surface
tension driven flow, we would see the maximum possible
height h = e0 − e (dotted line in the figure). Instead we
find h = (e0 − e)/2, in agreement with the theoretical
u/u∞ value [11], as if surface tension did not act to level
the film, which we now discuss.

Surface tension γ tends to level any bump or hole at
a horizontal liquid surface. We can evaluate the time
scale of the leveling, and compare it with the evaporation
time. The bump is quite flat (height h = 1−2 µm, radius
R = 1 − 2 mm), and its curvature scales as h/R2. This
yields a Laplace pressure gradient of the order of γh/R3,
a quantity larger than the gravitational force ρgh/R at
the millimeter scale R of the bump. If the flow driven by
this pressure gradient has a mean velocity v, the resisting
viscous force scales as ηv/e2. Consequently, the leveling
time of the bump is τ ∼ (η/γ)(R4/e2h) ∼ 105 s, much
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FIG. 5. Bump height h under the obstacle as a function
of the lowering e0 − e of the surrounding film [see Fig. 4a],
which is a quantity proportional to the evaporation duration.
As the film evaporates, the bump gets higher. Without any
evaporation below the obstacle, we would have h = e0 − e
(dotted line); we rather observe h = (e0 − e)/2.

longer than the time scale of evaporation (about 100 s).
In this estimation we neglect the increase of the viscosity
due to the increase of the particle concentration, which
would yield even larger leveling times.

A bump can thus persist below the obstacle and coexist
with the evaporating film. Once the film evaporation is
completed beyond the bump, the bump (protected by
the obstacle) becomes a drop surrounded by a ring of a
wet solidified film (beyond the obstacle), which is itself
surrounded by a dry film [Fig. 6]. This geometry induces
a strong liquid flow, as revealed by the second regime
in Fig. 4b (for t > 100 s), where the liquid is observed
to vanish much quicker than before. This flow can result
from a capillary suction by the pores of the solidified film
soaked with liquid that evaporates from its surface.
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FIG. 6. When the film surrounding the bump dries, liquid
is driven from the bump into a narrow ring of wet solid film,
where it evaporates. The flow rate through the pores of the
wet solid film balances the evaporative losses at the surface
of this wet solid. The flow becomes vanishingly small at the
position rd where the liquid is completely evacuated.

The Laplace pressure difference ∆p ∼ 107 − 108 Pa
is created between the bulk of the drop and the liquid
menisci in the nanopores at the surface of the wet solid
(of the size 1− 10nm) . The liquid evaporation creates a
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quasistationary outward radial flow [velocity: v(r)] which
is well described by the following model derived from that
of [8]. The film thickness is d = e(t → ∞) ≈ 500 nm
[Fig. 4b] and the volume fraction φ of the solid particles
should correspond to the random close packing limit, φ =
0.64. By assuming that the evaporation rate u is constant
along the film (u = u∞), the liquid volume conservation
implies the following expression valid for r ≥ R:

d
∂v

∂r
= −u∞. (2)

Equation (2) results in v(r) = v(R) − (r − R)u∞/d and
means that the flow stagnates at r = rd > R. One
obtains

dv(R) = (rd −R)u∞. (3)

The rd value is defined by the pressure drop along the
textured film that obeys the Darcy law

∂p

∂r
= −µ

κ
v(r), (4)

where κ = a2(1 − φ)3/45φ2 is the Carman-Kozeny per-
meability of the wet solid and µ = 1 mPa·s is the water
viscosity. By using Eq. (2) and the boundary condition
p(rd) = p(R)−∆p, one obtains ∆p = µu∞(rd−R)2/2dκ,
from which rd can be deduced and then used in Eq. 3
to obtain v(R). The latter quantity serves directly in
the calculation of the time τi = V/2πdRv(R) needed to
empty the drop of the volume V = πhR2/2. The substi-
tution of the numerical values results in τi = 10 s, which
is the time scale visible in Fig. 4b.

Thus we interpret this fast second regime as resulting
from the capillary suction-driven flow. All the conditions
required for such a situation are fulfilled: a drop sits on a
solid whose texture provides a strong pinning. As a con-
sequence, liquid radially flows inside the drop, to supply
the contact line region. This flow drives the colloidal par-
ticles, which accumulate and form a rim, while the rest
of the drop depletes, giving birth to a dip after evapo-
ration similar to coffee stain patterns [1–6]. It is visible
in Fig. 2a that the rim sets at the periphery of the ob-
stacle. In addition, by integrating the profile, we checked
that the material contained in the rim corresponds to the
matter transported out of the dip. If the contact line re-
mains immobile during the whole droplet evaporation, a
single rim is observed. For weaker pinning, the line may

jump onto a new position closer to the droplet center [12],
which generates two concentric rims. Such a geometry is
sometimes observed in our experiments [Fig. 1b].

In summary, we show how obstacles to evaporation
can be used to pattern thin colloidal films. This method
is versatile since the obstacles can be manipulated easily,
and even possibly removed, thus allowing creation of dips
of the same diameter but different depths. It constitutes
a simple way to structure the surface of a film of nano-
metric thickness, to provide desired optical, electrical,
or wetting properties. In addition, the formation of the
patterns (dips and rims) was shown to involve original
effects: (i) A drop forms below the obstacle and coex-
ists transiently with a wet film. (ii) Later, it coexists
with the dry film, which leads to a strong suction and
evaporation of the liquid. This is an original scenario,
alternative to the conventional description of the ”coffee
stain” effect [1]. (iii) Finally, it is interesting to point
out that, even at the nanoscopic scale of our films, col-
loidal particles can be transported efficiently by using a
nonuniform evaporation.
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supported by ANR (BLAN-3 144452 ”CRUNCH”).
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