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field

D. BEYSENS!(*), Y. GARRABOS?, V. S. NIKOLAYEV!, C. LECOUTRE-CHABOT?,
J.-P. DELVILLE® and J. HEGSETH?

L ESEME, Service des Basses Températures, DSM/DRFMC, CEA-Grenoble, France(**)
2 CNRS-ESEME, Institut de Chimie de la Matiére Condensée de Bordeauz, 87, Avenue
du Dr. Schweitzer, 33608 Pessac Cedex, France

3 Centre de Physique Moléculaire, Optique et Hertzienne,

CNRS, Université de Bordeaux I, Cours de la Libération, 33405 Talence Cedex, France
4 Department of Physics, University of New Orleans, New Orleans, Louisiana 70148,
USA

PACS. 68.35.Rh — Phase transitions and critical phenomena.
PACS. 44.35.+c — Heat flow in multiphase systems.
PACS. 68.03.Cd — Surface tension and related phenomena.

Abstract. — We study the growth of gas bubbles surrounded by liquid during the phase
separation of a pure CO2 sample quenched from one-phase to two-phase region of the phase
diagram by rapid cooling in microgravity. The vicinity of the critical point ensures slowing-
down of the growth process. The bubble growth by coalescence is modified by local laser
heating. It induces a thermocapillary (Marangoni) effect that attracts the bubbles towards
the center of the beam. At the beginning of the phase separation, a bubble is trapped there
and “captures” the surrounding bubbles. The growth exponent for the central bubble radius
is close to 0.5, while that for the other bubbles is 1/3. We present a theoretical model that
explains the experimental data and justifies that the temperature can vary along the gas-liquid
interface in a pure fluid during its phase separation.

Introduction. — On earth, phase separation processes in liquids are strongly affected by
gravity. The density difference between the evolving phases leads to sedimentation and forma-
tion of layered structure. Under microgravity, Marangoni convection resulting from induced
temperature gradients at the surface of the emerging drops can become predominant. These
temperature gradients result in interfacial tension gradients that are known to cause linear
motion of droplets (thermocapillary migration) [1]. The resulting flow generally increases the
rate of collisions between the drops and thus the rate of coalescences. Such a phenomenon
has already been observed in microgravity during sounding rocket flights [2]. However, due to
the short duration of the experiments, the expected thermocapillary-driven coarsening regime
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Fig. 1 — Schematic phase diagram for simple fluids in the coordinates temperature-density. The isobar
that corresponds to the final fluid state T is shown with its metastable branches.

Fig. 2 — Growth laws of phase separating fluid close to the critical point in the reduced coordinates
(inverse length @, time 7). The experimental points illustrate the growth of the central single
bubble for 67" = 85,90, 100 mK with the exponent close to -0.5 while the Qm (7) ~ 771/3 behavior is
recovered far from the illuminated area. The fit using the theoretical —4/9 ~ —0.44 exponent is also
shown.

lasts roughly 15 s, which is not long enough. By performing experiments on board the Mir
space station, we are able to observe the droplet coarsening during 13 hours which corresponds
to almost two decades in reduced time. To avoid coupling with the temperature changes as-
sociated with the quenching procedure, Marangoni flows are here created in the sample with
a He-Ne laser passing through the small central part of the sample.

A phase separation experiment consists of quenching a pure fluid (here COsz) from the
initial single-phase state (p,T;) to another state (p,Ty) where homogeneous stability is lost
and phase separation occurs (p is the mean density of the fluid sample cell, T; is the initial
temperature, and T is the final temperature). As illustrated in Fig. , the evolution of the
system is defined by the relationship between the critical temperature T, the coexistence
temperature T, and the quench depth 6T = T, — Ty. Depending on the final (equilibrium)
volume fraction ¢ of the minority phase, the phase transition may proceed either by the growth
of isolated droplets when ¢ < 30% (insert (b) in Fig. 2) or by growth of interconnected domains
when ¢ > 30% (insert (a) in Fig. 2).

The characteristic size of the evolving pattern L,, as a function of time ¢ can be charac-
terized [3] in terms of the reduced coordinates @, = 27§~ /L,, and 7 = t/t¢, where £~ and
te = 6mn,(€ =3 /kgT '+ are, respectively, the correlation length of the density fluctuations inside
the coexistence curve and the associated relaxation time scale, 1, being the fluid viscosity.
In off-critical systems (isolated domains, Fig. 2), a behavior Q,,(r) = 0.9577'/3 has been
measured over more than seven decades in time [3] independently of the quench depth.

Ezperimental. — The CO4 fluid (supplied by Air Liquide, with purity better than 99.998%)
is enclosed between two transparent sapphire windows and a copper alloy cylindrical cell (11.6
mm internal diameter, thickness L = 1.49 mm). The cell is set in a high precision thermostat (
+50 pK accuracy) which is located inside the ALICE instrument [4] onboard the Mir station.
The experimental cell is filled at the density p = 1.094 p., where p, is the critical density. Ini-
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tially, the fluid temperature is above the critical temperature, and the fluid is homogeneous.
The sample is then thermally quenched below the coexistence curve, the total quench duration
being about 10 s. The cell is illuminated by white light parallel to the cylindrical cell walls.
A CCD video camera captures images of the entire volume, the depth of field being larger
than the sample thickness. A He-Ne laser beam (power P = 1 mW, wavelength 632.8 nm in
vacuum, beam diameter 2w = 300 pum) propagates along the axis of the cell. Sapphire and
COg are transparent at this wavelength. However, a weak part v ~ 2 - 1076 [5] of the beam
power is absorbed per window. As a consequence, the light beam induces a weak temperature
gradient in the fluid.

Our phase separation experiments were carried out for the quench depths 67 = 85, 90,
and 100 mK. As illustrated in Fig. 3a, a single drop emerges and grows rapidly in the beam

o 8T =100mK + =

0 8T=90mK o g;igomrﬁ( :

+ 3T =85mK B 0 8T=90 mK
IS Theory 100 mK o +
3 [ Theory 90 mK qu
%" 10° - = = Theory 85 mK 99‘ B
2 5000 E
R 8 .
= )#“*Jr S
= L . =

gt Q
] : .
8 - - A0
a 3
N
1 1= ‘ iy
10" | :

10° 10¢ 108 10° 10* 10°

Timet, s Timet, s

(b) (c)

Fig. 3 — Growth of a single CO2 gas bubble trapped by the beam for the quench depth 67" = 90 mK.
(a) Time evolution of the pattern: (i) t = 7207 s, (ii) t = 11580 s, and (iii) t = 17640 s. Note also the
growth of the depletion zone centered around the growing bubble. (b) Experimental growth laws of
the gas bubble trapped by the laser beam and (c) of the depletion zone for §7" = 85, 90, and 100 mK.
The growth curves calculated using (17) are also plotted in (b). The theoretically predicted slope 2/3
is shown in (c¢) for comparison.

center, while small bubbles grow everywhere in the sample. Growth continues when the central
bubble becomes larger than the beam illuminated area. The growth of the central bubble
clearly generates in its vicinity a strong density depletion of small bubbles. In addition, this
central bubble grows faster than the small bubbles. From the three experiments shown in
Fig. 3b, we deduce that the evolution of the radius R of the single beam-trapped bubble is
given by the power law R(7) ~ t*, where x = 0.47 £0.01 for 67 = 85 mK, = 0.56 £ 0.11 for
0T =90 mK, and x = 0.67+0.04 for 67" = 100 mK. When calculating these exponents, we do
not consider the very late times data when the bubble diameter reaches the cell thickness and
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the bubble begins a lateral motion out of the beam center. This motion is due to a driving
force that appears when the bubble is squeezed between the cell windows that are not strictly
parallel. In microgravity, even a very small angle is sufficient to move a squeezed bubble, see
the discussion in [6]. There is a crossover to a much faster growth when the opposite windows
of the cell become joined by this gas “bridge”, see Fig. 3b. We will discuss this point later on.

The @, (7) curve which corresponds to the central bubble growth (with 2R used for L,,)
lies in between the two master curves in Fig.2. The average value for the exponent x ~ —0.5
does not coincide with the exponent observed [2] in a phase separating binary mixture located
in a thermal gradient induced by a Peltier element (Q,,(7) ~ 772 during 15 s). The comparison
between both experiments is difficult as the heat flow configuration is different. We however
stress that our experiment lasts almost two decades in the scaled time, which makes the
determination of a power law exponent quite reliable.

For the same three experiments, we have also analyzed the growth of the diameter Lp of
the depletion zone (Fig. 3c). Results are, respectively, Lp(t) ~ tO72%0-18 [ 5 (¢) ~ ¢0-7640.06
and LD (t) ~ t0468i0.10.

Theoretical model. — The observed beam trapping as well as the enhancement of the
coarsening process can be explained by a Marangoni effect caused by a temperature variation
at the bubble interface. A question arises whether such a variation can exist in a true single-
component system. There is strong evidence [6] that when the liquid-gas interface is initially
at saturation conditions, the interface is isothermal unless a contamination is present in the
fluid [7]. However, in the present work, the system is already out of equilibrium at the initial
moment of time (i.e. during the quench). A strong density variation forms at the beginning
of the evolution. We consider the “late” stages during which the bubble interfaces are already
well formed and the density variation in the bulk of the phases is smaller, but still exists. Since
the pressure of the system is equilibrated quickly after the quench due to the piston effect [§],
the system evolves along the metastable branches of the isobar shown in Fig. during most
of the evolution time. The liquid phase is overheated and the gas is overcooled. Therefore,
the interface temperature is not necessarily equal to the saturation temperature (i.e. TY)
that corresponds to the system pressure. It can thus vary along the bubble interface. One
can estimate the upper limit for this variation as a difference AT between the maximum
overheating and minimum undercooling temperatures, see Fig. . Despite the presence of this
(small) spatial density variation, the associated Lifshitz-Slyozov mechanism of bubble growth
is not relevant. The kinetics turns out to be dominated by the droplet diffusion and coalescence
(Binder-Stauffer mechanism), see [3].

For a small temperature inhomogeneity, the velocity v of thermocapillary migration of a
bubble suspended in a fluid phase is proportional [9] to the externally imposed temperature
gradient VT

2 do a -
— — VT, 1
21704‘3771' dT 2+)\i/)\o ( )

17:

where 7, and A, (respectively 7; and );) are the viscosity and the thermal conductivity
outside (respectively inside) the bubble of radius a. Here the surface tension o decreases
with temperature so that do/dT < 0. According to (1), the bubble should migrate along
the temperature gradient. Since in our case heating is localized inside the laser beam, the
bubbles should migrate towards its center, coalescing between each other. The formation of
the centered single bubble provides a qualitative demonstration of the above theory.

In order to develop a quantitative approach, we need to determine the gradient VT induced
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by the beam with the Gaussian radial intensity distribution

2P
I(r) = 2/’

(2)
at the entrance of the cell. Here P is the beam power and r is the coordinate measured
radially from the beam center.

The beam path in the cell consists of (i) a thin absorbing layer on the sapphire-fluid
boundary that absorbs the power vP, (ii) a non-absorbing layer of CO2, and (iii) an absorbing
layer equivalent to (ii). There is only one trapped bubble on the entrance window because,
during the quench, the bubbles that are forming in the bulk fluid scatter so much light that
the laser beam is strongly attenuated before reaching the second window.

Due to the small ratio thickness/radius of the experimental cell, we will assume that the
temperature distribution is of cylindrical symmetry with the axis along the beam as in [10]. In
other words, we make the simplifying assumption that the power is dissipated homogeneously
along the part of the beam that crosses the fluid, so that the heat power j generated per unit
volume of the fluid is j(r) = 2vI(r)/L.

For a long observation time we can also reasonably assume that the Piston effect is negli-
gible and the temperature distribution is given by the stationary heat conduction equation

Tw?

ANoV2T + 5 =0. (3)

Note that this bubble trapping can be influenced by a dipolar (“optical trapping”) effect
[11] that appears because the refractive index of a gas bubble is smaller than that of the liquid
phase. Then the dipolar forces act against the thermocapillary trapping by expulsing bubbles
from the illuminated region. This effect is, however, negligibly small for the beam parameters
used here. In addition, it is proportional to |dI/dr| and thus follows the exponential decline
of the beam intensity (2) at large 7.

The solution of (3) results in the radial temperature gradient

=3 o 8T - ’7P —2r2/w2
VT =5, = L, (1 —¢ ) ' (4)

The velocity ¥ as given by (1) behaves as
v=ap/r ()

outside the illuminated area and is directed towards the center of the beam (i.e. opposite to
the r axis). The constant (3 is defined by

R
206+ 3n;

do
dT

1 2vP

ﬁ 2A0+)\1 7TL.

(6)

For the temperature 7y = T, — 139.6 mK that corresponds to the 67" = 90 mK quench,
B =0.173 um/s.

One can now obtain the growth law for the central bubble based on the expression (5).
Let us denote by ¢ = ¢(r) the number of (small) gas bubbles in the unit volume. The total
flux f = f(r) of the bubbles (i.e. the average number of the bubbles that cross the unit area
per unit time)

f(r) = —DVec+ cv, (7)

has two contributions. The first term corresponds to the diffusion of the bubbles with the
diffusion constant D, while the second is responsible for the drift with the average velocity ¢ in
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the external force field. In our case, the latter corresponds to the thermocapillary migration of
the bubbles. Under the assumption of a nearly stationary distribution for ¢(r) , f(r) satisfies
the equation

divf = 0. (8)

Since the thickness L of the cell is much smaller than its diameter, the motion of the
bubbles towards the beam center is almost 2D. Indeed, Fig. 3c shows that the scale Lp of the
¢(r) variation can be 3 times larger than L. Therefore, Egs. (7-8) should be solved in 2D,
i.e. for a function ¢(r) with a cylindrical symmetry. However, the central bubble is spherical
because of the surface tension and cannot be assumed cylindrical. To solve this contradiction,
we introduce a cylindrical bubble of radius Rsp which has the same volume Vi as the actual
central bubble with the radius R,

_471'

Vr 3

R®=7R3, L. (9)

In the cylindrical coordinates, (8) reduces to the 2nd order ordinary differential equation

2 [ (-p - )] <o o

Assuming that a is independent of r (i.e. that the rate of collisions is not influenced by
the weak gradient of bubble concentration ¢) , Eq. (10) can be solved with two boundary
conditions ¢(Rap) = 0 (that corresponds to the disappearance of the small bubbles when they
touch the central bubble) and ¢(c0) = ¢s, the constant bubble concentration at infinity. The
solution of (10) reads

() = caoll = (1) Rap) /7] (1)

and shows a depletion zone, that can be defined as the zone of 0 < r < Lp/2 where ¢(r) <
0.9 ¢oo. According to (11), this condition results in

Lp ~ Rap ~ t¥/3, (12)

which fits the experimental data, see Fig. 3c.
The central hemispherical bubble grows at the expense of the small bubbles that are
absorbed by coalescence, so that

dVg/dt = 2xRyp Lf (Rop)Va, (13)

where f(Rap) = ¢xofla/Rep and V, is the volume of a small bubble. The product c¢o,V, is
the constant vapor volume fraction ¢ = (pr — p)/(pr — pv), pr and py being defined in Fig. .
Eq. (13) then reduces to

Rop dRyp/dt = Beoa. (14)

The growth law for the small bubbles is
a=agt/? (15)

with ag that follows from eq. Q,,(7) = 0.957~/3 and the relationship [12] ¢ = 0.69 (L., /2a)~3,

kpT, 1/3
B > . (16)

a01.91¢)< ;
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For the 67 = 90 mK quench, ag = 1.38-10~% ms—1/3. Egs. (9,14,15) result in the growth laws

Rap = /3Bdao/2t*%, R = (9LBoao/8)"/* t*/°. (17)

The R(t) curve can now be plotted in Fig. 3b. The theoretical curve fits the experimental
data within a constant factor ~ 2. In addition, its experimentally observed week dependence
on 0T is reproduced well by the model. Such a good agreement obtained in spite of several
assumptions confirms the Marangoni origin of the fast growth of the cental bubble.

The crossover to the faster kinetics visible in Fig. 3b can now be understood. It is observed
when the central bubble joins the opposite cell windows. One can assume that this crossover
has a geometrical origin. Indeed, if the bubble became exactly cylindrical, its growth exponent
would be that of Ryp, i.e. the growth would accelerate. However, the actual growth law after
crossover is difficult to obtain since the actual shape of this bubble squeezed between the
windows is complicated, see [6].

Concluding remark. — 'This work shows that even a weak temperature gradient can
strongly modify the kinetics of phase transitions and affect material processing. In addition,
this work presents a clear evidence of the temperature gradient along the gas-liquid interface
in a truly one-component fluid systems. While the Marangoni convection caused by such
gradients is commonly observed in presence of a second fluid, clear evidence of such an effect
in a pure fluid is unknown to us.

REFERENCES

[1] N. O. Young, J. S. Goldstein, and M. J. Block, J. Fluid Mech. 6, 350 (1959).

[2] B. Braun, C. Ikier, H. Klein, and D. Woermann, J. Colloid Interface Sci. 159, 515 (1993); B.
Braun, C. Ikier, H. Klein, and D. Woermann, Chem. Phys. Lett. 233, 565 (1995); C. Ikier, H.
Klein, and D. Woermann, J. Colloid Interface Sci. 184, 693 (1996).

[3] F. Perrot, P. Guenoun, T. Baumberger, D. Beysens, Y. Garrabos, and B. Le Neindre, Phys.
Rev. Lett. 73, 688 (1994).

[4] J.-M Laherrere and P. Koutsikides, Acta Astronautica 29, 861 (1993).

[6] Highlights of the Zeno Results from the USMP-2 Mission, Zeno Home Page at
http://roissy.umd.edu/report/report.html.

[6] Y. Garrabos, C. Lecoutre-Chabot, J. Hegseth, V.S. Nikolayev, D. Beysens, Phys. Rev. E 64,
051602 (2001).

[7] R. Marek, J. Straub, Int. J. Heat Mass Transfer 44, 619 (2001).

[8] Y. Garrabos, M. Bonetti, D. Beysens, F. Perrot, T. Frohlich, Phys. Rev. E 57, 5665 (1998).

[9] K.D. Barton and R. S. Subramanian, J. Colloid Interface Sci. 133, 211 (1989).

[10] A. Marcano O. and L. Aranguren, Appl. Phys. B 56, 343 (1993).
[11] J.-P. Delville, C. Lalaude, S. Buil, and A. Ducasse, Phys. Rev. E 59, 5804 (1999).
[12] V. S. Nikolayev, D. Beysens and P. Guenoun, Phys. Rev. Lett. 76, 3144 (1996).



