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Abstract Magnetic gravity compensation in fluids is
increasingly popular as a means to achieve low-gravity
for physical and life sciences studies. We explain the
basics of the magnetic gravity compensation and an-
alyze its advantages and drawbacks. The main draw-
back is the spatial heterogeneity of the residual gravity
field. We discuss its causes. Some new results concern-
ing the heterogeneity estimation and measurement are
presented. A review of the existing experimental instal-
lations and works involving the magnetic gravity com-
pensation is given for both physical and life sciences.

Keywords Magnetic levitation - diamagnetic -
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1 Introduction

The opportunities of space experimentation are rare
and their waiting time is often very long. For this rea-
son, other ways of achieving reduced gravity (or simu-
lated reduced gravity) are often used as a replacement.
Drop tower and parabolic flight experiments provide
short time low-gravity conditions, 4-9 s (Bremen drop
tower) and 25 s (ESA Zero-g aircraft). For experiments
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that require several minutes of low gravity, sounding
rockets are available (ESA Maxus program, 13 min).
For experiments that require long low-gravity duration
as e.g. in life sciences, simulation devices like random
positioning machines or clinostats can be used. How-
ever, all those means are prohibited in some cases be-
cause of security considerations. This concerns the flight
experiments with highly flammable fluids like hydrogen
and especially oxygen whose study is extremely impor-
tant as they are the fuel components for space propul-
sion engines.

Another means is used more and more often to achieve
long-time low gravity conditions: the magnetic gravity
compensation. Comparing to the other approaches, this
means has several undeniable advantages.

— It is performed in a ground-based facility with no
moving parts so that a good security level can be
achieved.

— The low gravity duration is unlimited.

— In principle, no waiting time.

— Reasonable cost.

— Possibility of controlling gravity levels (such as cor-
responding to the Moon, Mars etc.).

— Possibility of controlling time variation of gravity,
which can reproduce the acceleration (or decelera-
tion) of space vehicles.

However, drawbacks and important limitations do exist.
They will be discussed below. Some additional expla-
nations and definitions need to be given first.

1.1 Magnetic gravity compensation versus magnetic
levitation

Magnetic gravity compensation means (total or partial)
controlled reduction of the gravity force at each point



of the object. This definition is not equivalent to that
of magnetic levitation. The latter requires that the ob-
ject be suspended, which does not necessarily means
that the gravity is compensated inside the object when
it is rigid. An example of levitation without gravity
compensation is a transparent bowl placed on a super-
conductive disk. The bowl contains water with a gold-
fish. The whole system is levitated. The photo by Ball
(1990) shows that the meniscus of the water is flat,
which means that both water and fish still experience
the strong gravity. In what follows, the magnetic grav-
ity compensation inside fluids will be considered. The
term magnetic levitation will be rather applied to solid
objects.

1.2 Magnetic field and magnetic forces

The magnetic field is characterized by two variables,
the magnetic field intensity H [A/m] and the magnetic
induction (called also magnetic flux density) B [T]. In
vacuum, they are related to each other by the expres-
sion

B= .u“OHa (1)

where jig = 47 - 1077 [T-m/A] is a constant called vac-
uum permeability.

The action of the magnetic field H on the matter
provokes its own magnetic field called magnetization:

M = yH, (2)

where the coefficient of proportionality x is the mag-
netic susceptibility of the matter. The total magnetic
field is equal to the sum of the external and induced
fields,

B = pH+M) = puoH, (3)

where p = 1+ x is the magnetic permeability. The sus-
ceptibility defines the magnetic properties of the mat-
ter. When its absolute value is comparable or larger
than unity, the matter is strongly magnetic. This is
the case of ferromagnetic (y > 1) or superconductive
(x = —1) substances. In what follows we will consider
only weakly magnetic substances (]x| < 1) that can be
either diamagnetic (x < 0) or paramagnetic (x > 0).
It is important to note that for weakly magnetic
substances, xy o p, where p is the mass density. We will
introduce the specific magnetic susceptibility,

o= X/p7 (4)

which characterizes such substances.

Since p =~ 1 with high accuracy for weakly magnetic
substances such as air, the magnetic field created by
a given installation in air is equal to that created in

vacuum. For this reason, the H value is related to B
by the universal relation (1) and B is also often called
magnetic field.

Most pure fluids (e.g. HoO, Hs, N3) and organic
substances are diamagnetic. Some fluids (e.g. Oq, NO)
are paramagnetic. The magnetic susceptibility of para-
magnetic substances varies with temperature; that of
diamagnetic substances is almost independent on tem-
perature.

The magnetic force that acts on the unit volume of
a substance is

X 2
Fr, 2uov(B ) ()
where V is the vector gradient operator. The gravity
force per unit volume is

F, = pg, (6)

where g is the Earth gravity acceleration. An ideal com-
pensation is achieved when

F,,+F, =0. (7)

In a cylindrical r — z reference system where the z axis
is directed upwards, this expression is equivalent to two
equations,

2
a(;; ) _ o (®)
3(83;) = V(B?), = 2’“?709 =G, ©)

where « is defined by (4). It means that for ideal com-
pensation, the magnetic field would need to satisfy the
equation B = v/c+ Gz, where ¢ is an arbitrary con-
stant. It has been shown by Quettier et al. (2005) that
such a solution of the Maxwell equations for magnetic
field does not exist so that the ideal compensation in
any finite volume is impossible. In practice, the ideal
compensation is achieved in a single or at most several
points.

The stability of levitation is an important issue and
is discussed by many authors starting from Braunbek
(1939). For the purposes of the present study, it is im-
portant to mention that the levitation of a drop (or,
generally, of a denser phase) in the surrounding gas is
stable for diamagnetic fluids and unstable for paramag-
netic fluids. On the contrary, the levitation of a bubble
(or, generally, of a less dense phase) inside the liquid is
stable for paramagnetic and unstable for diamagnetic
fluids (Pichavant et al. 2009b).

1.3 Required magnetic fields

It is important to underline that the magnetic compen-
sation does not work for all substances at the same time.
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Fig. 1 The values of |V(B?)| required for gravity compensation
for different fluids. The value for Oy is about 8 T2/m7 which is
so small that the corresponding bar is almost invisible. The signs
of the required V(B?), are opposite for paramagnetic (O and
NO) and diamagnetic (all other) fluids.

The V(B?), value required to compensate the gravity
for a particular substance is given by the material con-
stant G from Eq. 9. This value for different substances
is shown in Fig. 1. Note that the G value for oxygen is
the smallest. In most installations, the magnetic field is
created with one or several co-axial solenoids, for which
the radial component of the magnetic force is zero at
the axis so that |V(B?)| = |V(B?),|, where V(B?), can
be positive or negative. For this reason, one speaks of-
ten of |V(B?)| instead of V(B?),. Generally speaking,
if a sample is submitted to V(B?), needed to compen-
sate the gravity in a given substance, the gravity is not
compensated for the others.

Note that Eq. 9 does not involve the density nor
the mass of the sample. It means that the gravity will
be compensated independently of the sample mass. If
the gravity is compensated for the liquid phase of a
substance, it is also compensated for the gas phase of
the same substance, i.e. the buoyancy force for the gas
bubbles or solid crystals in the liquid is compensated
either.

In agreement with Eq. 9, the ability of a given mag-
netic installation to compensate the gravity is charac-
terized by |V(B?)| that the installation is able to gener-
ate. The variation of this value along the axis of a typi-
cal solenoid (Fig. 2) shows that it has two extrema sit-
uated near the ends of the solenoid. These extrema are
the most suitable places for the gravity compensation
because they provide the maximum value of |V (B?)| for
a given current in the solenoid. The upper extremum is
a minimum and is suitable for the levitation of diamag-
netic substances. The lower extremum is a maximum
and is suitable for paramagnetic substances (Fig. 2).
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Fig. 2 An example of the variation of B and V(B?). along
the axis z of a solenoid. The locations appropriate for levitation
of dia- and para-magnetic samples are indicated. The HYLDE
solenoid (Chatain and Nikolayev 2002) data are shown. z is mea-
sured in cm.

2 Past and present of magnetic gravity
compensation

The bases of magnetic levitation have been put forward
by Braunbek (1939). He has succeeded the levitation
of diamagnetic bismuth that has a very low required
|V (B?)|. He also provided the theory of levitation.

The first gravity compensation experiments have
been realized in the 1960’s independently in Berkeley
(USA) by Lyon et al. (1965) and in Kharkov (USSR,
Ukraine at present) by Kirichenko and Verkin (1968).
They dealt with the studies of the boiling heat trans-
fer in oxygen that had a very small required |V(B?)|.
The magnetic field was created with resistive solenoids.
These studies have been motivated by the importance
of oxygen as a rocket fuel.

The development of superconductive solenoids opened
the way to their wide use for gravity compensation. It
has been pioneered by Beaugnon and Tournier (1991),
who levitated multiple organic samples, both solid and
fluid. The levitation of the frog embryos by Valles Jr
et al. (1997) is the first known to us application of the
magnetic gravity compensation in the life sciences. A
large number of works on magnetic gravity compen-
sation has been published since then. The known to
us experimental installations available at present for
magnetic gravity compensation are presented in Table
1 with their main parameters such as the maximum
attainable |V(B?)| value and the bore diameter. The
latter defines the maximum sample size that can be
used. Installations that can attain ~ 3000 T?/m may
be used for gravity compensation in water or biological
tissues that consist mainly of water (cf. Fig. 1); their



Table 1 Available magnetic gravity compensation installations worldwide

Location B, T |V(B?)], T2/m Bore @, mm Latest citation
Nottingham, UK 16.5 2940 50 Hill and Eaves (2008)
Nijmegen, NL ~ 17  ~ 3000 40 Simon and Geim (2000)
Gainesville FL, USA 15 3000 66 Liu et al. (2010)
760 195 Brooks and Cothern (2001)

Providence RI, USA 9.5 3200 11 Guevorkian and Valles (2004)
Xi’an, China 16.12 3026 51 Lu et al. (2008)
Hiroshima, Japan 15 ~ 3000 50 Sueda et al. (2007)
Tohoku, Japan ~ 4000 52 Watanabe et al. (2003)
Tsukuba, Japan 8.5 448 50 Kiyoshi and Wada (2003)

17 1600
Grenoble, France 10 1000 50 Nikolayev et al. (2006)

2 10 180 Pichavant et al. (2009b)

bore diameters correspond to the thermally insulated  possible to approach the ideal compensation conditions
part of the bore at room temperature. Two last lines  within a given accuracy in any volume. The effective
in the table refer to the installations developed in our  gravity spatial heterogeneity is thus the most important
group, the HYdrogen Levitation DEvice (HYLDE) and  issue that limits the applicability of magnetic gravity
Oxygen Low Gravity Apparatus (OLGA), respectively.  compensation.

The physical sciences studies performed with the The compensation quality can be characterized by

magnetic gravity compensation in fluids concerned most-  the spatial distribution of the effective gravity acceler-
ly the shape and motion of bubbles and drops. The  ation

studies performed at isothermal conditions dealt with
the drop shape (Tagami et al. 1999; Wunenburger et al. a . — (F _ o 2

J eff = F,, +F =g+ —V(B 10
2000; Sueda et al. 2007; Hill and Eaves 2008), drop vi- 11 =1 lr=g 2o B (10)
brations (Beaugnon and Tournier 1991; Whitaker et al.

1998), drop coalescence (Beaugnon and Tournier 1991;  defined with (5,6). In practice, the non-dimensional ac-
Weilert et al. 1996), applications in microfluidics (Lyuk- celeration heterogeneity & = a.ss/g is more convenient.
syutov et al. 2004), surface instability in the magnetic There are several possible causes for a.ss spatial

field (Catherall et al. 2003), and, more recently, a study  variation. Those related to the spatial variation of V(B?)
of the liquid meniscus under fast acceleration change  manifest itself even in a single-component system, i.e.
(Pichavant et al. 2009a, 2010). The non-isothermal stud-  in a pure fluid sample where its gas and liquid phases
ies concerned boiling (Lyon et al. 1965; Kirichenko and ~ might coexist. Additional spatial variation of the effec-
Verkin 1968; Nikolayev et al. 2006; Pichavant et al.  tive gravity appears in multi-phase samples where o
2009b), drop behavior under temperature gradients (Wa-  varies. This variation might lead to internal mechan-

tanabe et al. 2003; Beysens et al. 2009), phase tran-  ical stresses or even component displacement in such
sitions under vibrations (Beysens et al. 2005a,b, 2007, systems and needs to be analyzed separately for each
2008) and gravity influence on flame (Khaldi et al. 2010).  specific case, for which the magnetic susceptibility x for

The life sciences studies are concerned with the mi-  each of the components needs to be known with preci-
crogravity influence on protein crystals’ growth (Mat-  sion. Note that the magnetic susceptibility is well stud-

sumoto et al. 2004; Lu et al. 2008), expression of genes  ied for life sciences systems for high frequency magnetic
(Babbick et al. 2007; Coleman et al. 2007; Manzano  field. However, x value for the constant field might be
et al. 2009b), growth of living cells (Guevorkian and  very different and is yet to be determined experimen-
Valles 2004; Manzano et al. 2009¢c; Moes et al. 2009;  tally. In the rest of this section we consider only the

Hammer et al. 2009) or example levitation of small crea-  single-component fluids.
tures (Valles Jr et al. 1997, Liu et al. 2010), and plant A Spatial variation OfV(Bz) may appear in such flu-
morphology (Manzano et al. 2009a). ids because of several reasons. First, there is a variation

of the background force field of the magnetic installa-
tion (sec. 3.1). Second, distortions can be induced by

3 Magnetic force heterogeneity issue the sample. These include the variation because of the
experimental cell structure (see below) and the fluid it-
It has already been mentioned that the ideal compen- self. Let us consider each of the heterogeneity causes

sation is achieved only in isolated points. However, it is  separately.
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Fig. 3 Magnetic force heterogeneity axial (a) and radial (b) com-
ponents for the solenoid (height: 555 mm) of the OLGA instal-
lation (Pichavant et al. 2009b). r = 0, z = 29 = —248 mm
is one of two compensation points. Fig. 3a corresponds to the
zoomed lower portion of the complete V(B?), curve for the
OLGA solenoid (similar to that of Fig. 2).

3.1 Background field heterogeneity

The spatial variation of the field heterogeneity e can
be calculated numerically when the magnetic field is
known with certainty. This is the case of the magnetic
field of a solenoid (Fig. 2). In Fig. 3, one can locate two
compensation points at the axis (r = 0) at which € = 0.
One of them corresponds to the stable levitation of a
bubble; another is unstable (Pichavant et al. 2009b).
Because of the cylindrical symmetry, the vector e
has only two components: axial €, and radial €,. It is
important to know for the estimation purposes which
field value B is necessary to obtain a given € inside a
sphere of the radius R for a substance requiring the
|V(B?)| value G (see Eq. 9 and Fig. 1). The answer
(Quettier et al. 2005) is given by the expression

1
p=Ll [ 8GR (11)
2V 2, +¢,

In spite of its simplicity, it gives quite accurate results.
Two examples can be given for compensation in water,
a case particularly important for life sciences applica-
tions. To obtain the gravity heterogeneity €, = ¢, = 1%
inside a sphere of 2R = 50 mm diameter, the mag-
netic installation should create, according to (11), the
field B = 41 T. This is close to the world field record
obtained with the hybrid (superconductive+resistive)
installations. Such an installation would be extremely
expensive. For B =16.5 T, Eq. (11) results in ¢ = 1.2%
for 2R = 10 mm, which corresponds to the existing in-
stallations (Table 1).

Eq. (11) helps finding ways to improve the grav-
ity homogeneity of an existing installation. The local
B increase can be achieved by using ferromagnetic in-
serts inside the solenoid (Quettier et al. 2005). It is well
known that the field increases in the vicinity of a ferro-
magnetic component. The force homogeneity calculated
in presence of the insert from Fig. 4a is shown in Figs.
4b,c. The improvement of the radial heterogeneity is
especially large. The calculation of the field has been
performed with the Radia freeware package (Chubar
et al. 1998) available from the ESRF web site together
with its complete description. Comparing to the case
with no insert (Figs. 3), one obtains an increase of the
compensation volume by a factor 5 to 8.

3.2 Fluid-induced distortion of effective gravity

Let us first consider a two-phase fluid in the constant
magnetic field and under Earth gravity. Since |x| < 1
both for liquid and gas phases, a distortion of the back-
ground field induced by the liquid and gas domains and
by the interface separating them is usually small. How-
ever, it is well known that, in the electric field, the field
distortion can be strongly amplified near the regions
of high interface curvature. Since the equations for the
static magnetic field are similar to their electrostatic
counterparts (they can also be expressed in terms of
the scalar potential), an analogous effect exists in the
magnetic field. The field distortion is localized in the
vicinity of the high curvature interface points. We ex-
plain below that such points can appear in paramag-
netic fluids like oxygen.

It is well known (Cowley and Rosensweig 1967) that
the surface of a ferromagnetic fluid becomes corrugated
when B exceeds a threshold value B, ~ [og(pr,—pv)]'/*.
Here o is the interface tension; the indices L and V refer
to liquid and vapor, respectively. The period of corru-
gation is A\ = 27l., where I, = [0/g(pr — pv)]Y/? is
the capillary length. The x sign for paramagnetic sub-
stances is the same as for ferromagnetic substances, but
the absolute value is much smaller. For this reason, the
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Fig. 4 Insert scheme (a). Axial (b) and radial (c) magnetic force
heterogeneities for the same solenoid as that of Figs. 3 but with
the insert. r = 0, 2 = 20 = —155 mm is the compensation point.
The exact position of the insert with respect to the solenoid center
is shown in Fig. 6a below.

same instability occurs for the paramagnetic fluids but
at much larger fields, see Fig. 5a.

When \/2 is larger than the cell size, this effect leads
to a distortion of the bubble shape. At some conditions
it may develop a conical end (or cusp) (Takeda and
Nishigaki 1994), see Fig. 5b. This means that the field
is distorted in the vicinity of this end. It is the mutual
amplification of the field distortion and interface defor-

(b)

Fig. 5 Surface corrugation (a) and conical bubble shape (b) for
oxygen at T = 154.5K, close to its critical point (T. = 154.8K,
pe = 50 bar) in OLGA. Two vertical threaded rods that keep the
cell together are visible. Both B and |V(B?)| values for the case
(b) are slightly larger than for (a).

mation that leads to the cusp geometrical singularity
(Stone et al. 1999). This effect is absent in diamagnetic
fluids where an interface deformation induces the field
change that causes the interface smoothing.

When the field with a strong gradient is applied,
the situation becomes even more complicated. It is now
the effective gravity acceleration a.¢s that needs to be
used instead of g for the calculation of B, and A. Thus
B. — 0 at compensation conditions (Catherall et al.
2003) so that the instability always occurs at compen-
sation. Since A — oo, the interface corrugation is not
observed. According to our observations, the instabil-
ity manifests itself by the bubble shape deformation.
Far from the critical point, bubble is of elongated oval
shape. Since the instability strength is controlled by the
difference (B — B..), the elongation should grow with B.
This leads to an apparent paradox that appears when
one uses a ferromagnetic insert to improve the homo-
geneity of the background force field (sec. 3.1). One
might expect an improvement of the bubble sphericity.
On the contrary, the bubble deformation grows because
the insert increases B and thus strengthens the insta-
bility. Close to the critical point, a cusp appears (Fig.
5b) because the instability becomes especially strong
with the decrease of B, ~ [o(pr, — pv)]*/%.

As mentioned above, this instability is absent in dia-
magnetic fluids.



3.3 Container-induced distortion of effective gravity

One needs to be particularly cautious about the materi-
als used for the fabrication of the experimental cell and
its fixation. In practice, the stainless steel is often used
because of its strength and high chemical resistance to
corrosion. It is considered to be a non-ferromagnetic
material. This is true for a raw piece of stainless steel.
Any mechanical or thermal stress converts at least some
superficial layer, adjacent to the treated surface, to the
ferromagnetic state. As an example, one can mention
the welding joints. However, the magnetic strength (i.e.
the saturation field) of such components is rather weak.
Such a conversion can be easily demonstrated e.g. with
a small but strong rare earth magnet.

To estimate the influence of the weakly ferromag-
netic structural elements on the effective gravity field,
another field heterogeneity calculation was necessary.
Several cell components (Fig. 6a) with a saturation field
of 0.1 T (exaggerated for estimation purposes) has been
simulated. One can see that there is practically no long
range force field distortion. It is limited to several mm
range around the element. This means that one can use
such elements provided that they are far enough from
the working region. It is better however to avoid the po-
tentially ferromagnetic materials; we replaced stainless
steel by brass or titanium wherever possible.

The influence of one of the simulated elements, a
flat stainless steel ring (the smallest of the three rings
shown in Fig. 6a) situated at the bottom of the exper-
imental cell was found experimentally. The vapor bub-
ble was attracted to the ring if the distance between
them was small enough. This attraction corresponds to
the negative ¢, (Fig. 6b) in the vicinity of the ring, at
z — 2o € [0,5] mm.

3.4 Experimental measurement of €

The experimental measurement of € is desirable un-
der the compensation conditions. The background force
field testing is possible using a container filled with the
liquid and vapor phases of the same substance. Let con-
tainer be placed into the magnetic field in such a way
that the bubble does not touch the container walls.
Under the ideal (space) weightlessness conditions, the
shape of the bubble would be spherical. Under mag-
netic compensation, the bubble center is situated at
the compensation point or close to it. Because of the
spatial variation of the magnetic force, the bubble be-
comes elongated (Fig. 7). From the bubble image, one
can measure the bubble surface curvatures Ky and K¢
at the points H and C respectively. The heterogeneity of

z

0.12
0.1
0.08
0.04
0.02
0.015

Fig. 6 (a) Several stainless steel cell components inside the
OLGA ferromagnetic insert. The position of the insert with re-
spect to the solenoid center (Fig. 4a) is shown with the coordi-
nates in mm. The RADIA grid used for numerical calculations is
visible on the insert. (b) The axial gravity heterogeneity corre-
sponding to the geometry shown in Fig. 6a, to be compared with
Fig. 4b.

H

N

Fig. 7 Sketch of a vapor bubble magnet-
ically levitated inside the liquid. The bub-
ble is deformed by the residual effective
gravity field.




the effective gravity acceleration can be estimated (see
Appendix A) with the expression that follows from (17),
Ky — K¢

oz
Since ¢, is neglected in such an estimation, its accuracy
is the best for small bubbles. Note that the sensitivity
of this method increases with the decrease of the sur-
face tension. For large o, the bubble remains spherical
even at large gravity heterogeneity and it is difficult to
measure the difference of Ky and K¢.

More detailed information on the field configuration
is obtained if the temperature and pressure of the fluid
can be kept very close to the fluid’s liquid-gas criti-
cal point (which requires, in general, a precise ther-
mal regulation). In this case the surface tension can
be made extremely small and the corresponding term
can be neglected in (15). The liquid-vapor interface
then follows an equipotential surface for the ”magneto-
gravitational” potential (Lorin et al. 2009),

e~ 2 (12)

= p?
2109
An equipotential surface (or rather its intersection with
the image plane) can thus be visualized directly (Lorin
et al. 2009). Different equipotential surfaces are ob-
tained by varying the field or the cell position. The
spatial distribution of the gravity heterogeneity can be
found from the shape of the equipotential lines as € =
VU. The latter equation can be established by compar-
ison of (13) with (10).

Note that the above described methods are not ap-
plicable to the case of paramagnetic fluids (sec. 3.2),
where the interface deformation and magnetic field dis-
tortion are coupled and lead to a strong self-induced
interface deformation even in highly homogeneous ef-
fective gravity field.

—z. (13)

4 Concluding remarks

Magnetic gravity compensation method presents a pow-
erful alternative to the classical low-gravity experimen-
tation methods involving fluids. It becomes increasingly
popular last years, especially for life sciences applica-
tions. About ten installations are available worldwide.
The residual gravity heterogeneity imposes limitations
on the applicability of magnetic gravity compensation.
The homogeneity of the effective gravity is related to
the magnetic field intensity and can be improved with
ferromagnetic inserts. We propose an original method
of measurement of the residual gravity from the bubble
shape.

The gravity heterogeneity depends not only on the
installation, but also on the sample composition and

structural elements. To reduce the gravity heterogene-
ity, compounds containing the ferromagnetic substances
(Fe, Co, Ni, etc.) need to be avoided. The heterogeneity
is the smallest for single component samples and needs
to be carefully evaluated for multicomponent systems
(e.g. for life sciences applications) using the magnetic
susceptibility data for each of the components.

For paramagnetic substances like oxygen, an addi-
tional cause of gravity heterogeneity appears because
of the coupling of the magnetic field and deformation
of the gas-liquid interfaces. In this case, the effective
residual gravity is more difficult to evaluate because it
depends on the interface shape.
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and Air Liquide is gratefully acknowledged.

Appendix A: Estimation of the effective gravity
acceleration from the shape of a bubble

The shape of a vapor bubble is determined from an equation
that defines a difference of pressures of vapor and liquid across
the interface (Weilert et al. 1996; Chatain and Nikolayev 2002)

(xr —xv)
210
where K is the interface curvature that varies along the interface.
Note that the curvature at a given point of the interface can be
measured from its image. At equilibrium, Ap is constant along

the interface. By using (4), Eq. 14 becomes

Ap =Ko+ B? — (pr, — pv)gz, (14)

«a

ap= Ko+ (o= pv) (5B~ g2) (15)
210

Let us write this equation for two arbitrary points of the bub-

ble interface and subtract them. By denoting the difference of a

quantity between these points by §, one obtains, by using (10),

(6%
00K = (pL —pv) (95z - %5(32)) ~ (pL —pv) 0z Geyy,.-(16)

Finally, one gets the estimation
oK o

6z (pr —pv) (7)

Geff,z ™
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