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Abstract. The boiling crisis (BC) is well known in the world of heat & mass
transfer. It is a transition from nucleate boiling (i.e. boiling in its usual sense)
to film boiling, where the heater is covered by a continuous vapor film. The BC
is observed when the heat flux from the heater exceeds a critical value. Heat
exchange then falls down and endangers the exchanger whose temperature rises
abruptly. The physical mechanism of the BC is still under debate. We propose the
recoil force (the thrust of vapor production) at the solid-liquid-vapor contact line
to be at the origin of the BC. At large heat flux, the recoil force tends to spread
the vapor bubble that otherwise would not wet the solid. We give both analytical
and numerical analysis in support of this idea. We also report experiments under
microgravity conditions performed with near-critical fluids (SFg and CO32). The
absence of gravity effects and the vicinity of the critical point where the liquid-
vapor surface tension vanishes, emphasizes the influence of the recoil force: during
heating, the vapor drop is indeed seen to spread.

1. Introduction

Boiling is a very efficient way to transfer heat from solid to liquid. The bubble growth
in boiling attracted much of attention from many scientists and engineers. In spite of
these efforts, some important aspects of growth of a vapor bubble attached to a solid
heater remain misunderstood even on a phenomenological level. The most important
aspect is the ”boiling crisis” (BC), a transition from nucleate boiling (where vapor
bubbles nucleate on the heater) to film boiling (where the heater is covered by a
continuous vapor film). The boiling crisis is observed when the heat flux ¢s from the
solid heater exceeds a threshold value which is called the ”Critical Heat Flux” (CHF).
The rapid formation of the vapor film on the heater surface decreases steeply the heat
transfer and leads to a local heater overheating. In the industrial heat exchangers, the
boiling crisis can lead to melting of the heater thus provoking a dangerous accident.
Therefore, the determination of the CHF is extremely important.

A clear understanding of the triggering mechanism of the boiling crisis is still
lacking. The knowledge about what happens at the foot of the bubble which grows
attached to the heater is crucial for the correct modeling of the boiling crisis. We
proposed recently [1] that the recoil force (the thrust of production of vapor), by
making the bubble spread over the heater surface, could be at the origin of the BC.
Numerical simulations of the thermal field around the bubble [2] support this claim.
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The experimental observations at large heat fluxes close to the CHF are
complicated by the violence of boiling and optical distortions caused by the strong
temperature gradients. Nevertheless, near the critical point, the CHF is very small
and the bubble evolution is very slow. We recently carried out boiling experiments
under microgravity in the proximity of the critical point [3]. Microgravity, which
cancels buoyancy forces, is a powerful tool to study the phenomena near the vapor-
liquid-solid contact line. In the present report we review the main results obtained
theoretically and compare with the microgravity experiments.

2. The recoil force at the triple contact line

BC is a really universal phenomenon which occurs inevitably for pool boiling as well as
for flow boiling and for different flow structures, flow velocities, liquid temperatures
and pressures. The phenomenon is local [4]: it depends strongly only on the local
values of the parameters in a very thin layer of liquid adjacent to the heating surface.
The most important parameter is the distribution of the local temperature. As a
consequence of the local origin of BC, the threshold depends strongly on the wetting
properties of the heating surface. Numerous experiments [5, 6] show the general
tendency: a poor wetting of the heating surface by the liquid decreases the CHF and
vice-versa.

The experiments in visualization [7, 8] of dry spots under the vapor bubbles on
the heating surface show that at the CHF a single dry spot suddenly begins to spread.
In [9, 10, 11] the vapor recoil instability [12] is proposed as a reason for BC. Although
it is not clear how an instability can induce the spreading of the dry spots, the authors
show that the vapor recoil force can be important at large evaporation rates. The force
originates in the uncompensated momentum of vapor which is generated on the liquid-
vapor interface during the evaporation. In the reference frame of the bulk liquid, the
momentum conservation implies

P, + (@ +7;) =0, (1)

where I:’; is the vapor recoil force per unit interface area, n is the evaporated mass
per unit time and unit interface area, v; is the interface velocity, and vy is the vapor
velocity with respect to the interface. It is easy to establish that ¥; = —n/py, 7, where
7l is a unit vector normal to the interface directed inside the vapor bubble (Fig. 1).
The mass conservation on the interface yields oy = —pr/py U;, where pr and py are
the mass densities of the liquid and the vapor. Therefore, (1) implies [12]

Pr=—n*(py' = pr ). (2)
The surface deformation caused by this force is important whenever the evaporation
is strong.
The rate of evaporation 1 can be related to the local heat flux across the interface
qr, by the equality

qr = Hn, (3)

where H is the latent heat of evaporation. Hereafter, we neglect heat conduction in
the vapor with respect to the latent heat effect.
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Figure 1. Vapor bubble on the heating surface surrounded by liquid. The
directions of the vectors P, and 71 are shown as well as the axes for the coordinate
system.

3. Vapor recoil and bubble spreading

Below, we consider a case of system at high pressure, where the growth of the bubble
is slow and the problem may be considered in the quasi-static approximation.

The spreading of the dry spot looks similar to the spreading of a liquid that wets
a solid. But in the case of BC, it is vapor spreads over the solid. This never happens
for a non-metal liquid under equilibrium conditions (zero heat flux) on a perfectly
clean and smooth metal surface [14], the finite contact angle being possible due to the
surface defects only. A kind of drying transition occurs due to the vapor recoil force
at some heat flux that we associate with the CHF.

Using the quasi-static approximation, the variational approach [15] can be applied
to analyze the shape of a vapor bubble just before the boiling crisis. The free energy
of the system consists of two parts. The first part is conventional [15]

Uy =0A+oysAvs +orsArs — AV, (4)

where o, oy g, and o g are the surface tensions for vapor-liquid, vapor-solid and liquid-
solid interfaces respectively; Ay g and Ay g are the corresponding interface areas; and
A is the area of the vapor-liquid interface (Fig. 1). The last term in (4) reflects the
fact that the shape of the bubble should be found for its given volume V', A (i.e. the
Lagrange multiplier) being the difference of pressures inside and outside of the bubble.

The second part U; of the free energy accounts for the virtual work of the external
forces:

oUy = — / P, . 67 dA. (5)
(4)

The minimization §U; + §Us = 0 of the total energy leads [15] to two equations. The
first is the condition for local equilibrium of the interface

Ko=\+P,, (6)
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where K is the local curvature of the bubble and P, = |15;| The second equation is
cos® = b, where b = (oys — org)/o and € is the contact angle (Fig. 1). For the case
b > 1 the second equation should be substituted by the condition 6 = 0.

Let us denote by y the distance along the bubble contour measured from the triple
line to a given point M as shown in Fig. 1. To find the bubble shape by solving Eq. (6)
we need to know the vapor recoil as a function of y. In the following, we introduce
a rough approximation to solve the very complicated problem of the heat exchange
around the growing bubble. The case of saturated boiling is assumed. Thus the
vapor-liquid interface is maintained at temperature T, the saturation temperature
at the system pressure. We also assume for simplicity that the thermal effect of
convection can be taken into account by renormalizing the liquid thermal conductivity.
To estimate how P, varies near the contact line (i.e. when y — 0) we suppose the
bubble to be two-dimensional with the contact angle = 7/2. Since we describe the
heat exchange in a thin layer adjacent to the heating surface, we can imagine the
bubble contour A to be a line Oy perpendicular to the Ox heater line. Then ¢z, can
be obtained from the solution of a simple two-dimensional problem of unsteady heat
conduction in a quarter plane x,y > 0, the point O(x = 0,y = 0) corresponding to the
contact line. The boundary and the initial conditions for this problem can be written
in the form Ty |p,=0 = Ts, —kr0TL/0y|y=0 = ¢s, Tr|t=0 = Ts, where Ty (z,y,t) is the
liquid temperature, ky, is the liquid thermal conductivity, and ¢g is the heat flux from
the heating surface which is assumed to be uniform for the case of the thin heating
wall. The solution for this problem of heat conduction reads

¢
qs jar [ dt z y?
T, =T, + 35 92 [ L p( 2 - : 7
L +kL T /\/Eer (2\/04Lt) eXp( 4aLt) (7)
0

where «aj is the liquid thermal diffusivity. This solution implies the following
qr = —kp SF

expression for gz, (y):
2
qs Y
=-2F . 8
or |,_, T <4aLt> ®)

The exponential integral E;(y) [16] decreases as exp(—y)/y as y — oo and diverges
logarithmically at the point y = 0. In the following we will use for illustration the
dependence P, (y) in the form that retains these physical features

P.= _CIOg(y/L) exp[—(y/yr)Q], (9)

where L is the length of the half-contour of the 3D axially symmetrical bubble and C
is a constant. The characteristic length of the vapor recoil decay ¥, changes in time
and is proportional to \/art (cf. (8)). Meanwhile, the bubble grows and its radius is
proportional to the same factor [13] during the late stages of its growth. Therefore,
yr is proportional to the bubble size, this fact is taken care of by the expression

yr = al, (10)
where a is the non-dimensional fraction of the bubble surface on which the vapor
recoil is important. From the physical point of view, y, characterizes the width of
the superheated layer of liquid, which is always less than the bubble size [13], thus
a < 1. This allows the upper limit of integration to be put to infinity in the following

expression for the non-dimensional strength of the vapor recoil
o0

N, = 1 /PT dy. (11)
g

0

T
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The integration can be performed analytically yielding the relation between C' and
N,: N, = CaL/(40)\/7[y + log(4/a?)], where v = 0.577... is Euler’s number [16].
Although the expression (9) for the vapor recoil pressure is not rigorous, it contains
the main physical features of the solution of the heat conduction problem: a weak
divergence at the contact line and a rapid decay away from it. It is shown in [2]
that the rigorous numerical solution obtained far from the critical point follows this
behavior.

At low pressures, when the bubble growth is fast, additional (”inertial resistance”)
forces of hydrodynamic origin should be included into (6). In addition, influence of
the associated convection on the temperature variation should be taken into account.
However, the vapor recoil should still control the bubble spreading.

4. Experiments under microgravity near a critical point

We consider here results that were obtained using a sample of SFg at near critical
density (off by + 0.25%). The critical coordinates of SFg are: T, = 318.717 K,
pe = 742 kg/m3, p. = 3.754 MPa. The sample was heated at various rates in a
cylindrical cell on the Mir space station using the Alice-II instrument [18]. This
instrument is specially designed to obtain high precision temperature control (stability
of ~ 15uK over 50 hours, repeatability of ~ 50uK over 7 days). To place the
sample near the critical point, a constant mass cell is prepared with a high precision
density, to 0.02%, by observing the volume fraction change of the cells as a function
of temperature on the ground. The fluid layer is sandwiched between two parallel
sapphire windows and surrounded by a copper alloy housing in the cylindrical optical
cell with inner diameter of 12 mm and the thickness H = 1.664 mm.

The liquid-gas interface is visualized through light transmission normal to the
windows. Since the windows were glued to the copper alloy wall, some of the glue
is squeezed inside the cell. This glue forms a ring that blocks the light transmission
in a thin layer of the fluid adjacent to the copper wall making it inaccessible for
observations. Because of this glue layer, the windows may also be slightly tilted with
respect to each other. As the drop is pressed against the windows, even a tiny angle
between them results in a steady force that pushes the bubble toward the wall, see
Fig. 2. A 10 mm diameter ring was engraved on one of the windows of each cell in
order to calibrate the size of the images. The sample cell is placed inside a thermostat.
The temperature is sampled every second and is resolved to 1uK.

The cell is heated from room temperature nearly linearly in time t at a rate
~ 7.2 mK/s. Figure 2 shows the time sequence of the images of the cell. The interface
appears dark because the liquid-gas meniscus refracts the normally incident light away
from the cell axis. After the temperature ramp was started but still far from the critical
temperature, the bubble shape changed. The contact area Ay g of the gas with the
copper wall appears to increase. This increase is accompanied by an evident increase
in the apparent contact angle, see Fig. 2.

Temperature quenches - i.e. fast temperature jumps from one temperature to
another - were also performed, at different distances from T, . The typical value for
a quench is 0.1 K. The quench images [3] also show bubble spreading, slight far from
the critical point and stronger near the critical point. After each quench, as soon as
the heating stops, the bubble interface begins to return to its initial form.
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Figure 2. (a-d). Time sequence of cell images during a temperature ramp. The
calculated bubble shape for different values of the non-dimensional strength of
vapor recoil N, that goes to infinity at the critical point is shown on the lower
band. Note that the actual contact angle is zero for all the curves.

5. Interface evolution during heating

The above experimental data showed that the spreading gas and the associated
interface deformation are caused by an out-of-equilibrium phenomenon. Marangoni
convection due to a temperature change §7; along the gas-liquid interface cannot be
the source of such an evolution, since (i) convection is not observed in the video films
and (ii) the interface must remain at constant (saturation) temperature during all the
process [3].

The bubble is thus deformed by the normal stress exerted on the interface by the
recoil from departing vapor. The interface shape can be determined from (6), where
the 3D curvature K is equal to the sum of the 2D curvature c¢ in the image plane
and the 2D curvature in the perpendicular plane. For the small cell thickness H, this
latter curvature can be accurately approximated by the constant value 2/H. This is
possible because the relatively small heat flow through the less conductive sapphire
windows implies a small P, near the contact line on the windows, as compared to the
large value of A at this small H. The interface shape can thus be obtained from the
2D equation

oc=\N+ P.(y), (12)

where ) is a constant to be determined from the known vapor area at the image and

y is a coordinate that varies along the bubble contour in the image plane as in Fig. 1.
In order to find the distribution of the evaporation rate n(Z) at the interface it

is necessary to solve the entire heat transfer problem. Because the bulk temperature

varies sharply in the boundary layer adjacent to the walls of the cell and the interface

temperature is constant, the largest portion of mass transfer across the interface takes

place near the triple contact line. Thus n(Z) is large in the vicinity of the contact line.
We assume that 7(Z) has the following form:

(%) = g(&)(T. = T)* (13)
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as T — T, i.e., it has the same local behavior with respect to temperature as the
critical temperature is approached. The integral rate of change of mass M of the gas
bubble is defined as

dM/dt = / n(#)dF ~ (T, — T)*, (14)

where the integration is performed over the total gas-liquid interface area. On the
other hand,

AM/dt = d(Vépg)/dt, (15)

where ¢ = 0.5 is the gas volume fraction. Near the critical point, the co-existence curve
has the form pg = p. — Ap/2, where Ap ~ (T. — T)” with the universal exponent
B = 0.325, so that dM/dt ~ (T. — T)?~1(dT/dt) as T — T, according to Eq. (15).
Thus Eq. (14) results in w = 8 — 1 and the curvature change due to the vapor recoil
scales as

P.Jo ~ (T, —T)3=272 (16)

where Eq. (2) and the scaling relationship o ~ (T, — T)? (v = 0.63) were employed.
Because this critical exponent (36 — 2 — 2v & —2.3) is very large, it manifests itself
even far from the critical point in agreement with the experiments. In summary, as
T — T, the vapor mass growth follows the growth of its density (the vapor volume
remains constant), so that the diverging vapor production near the critical point drives
a diverging recoil force.

This curvature change has a striking effect on the bubble shape because it is
not homogeneously distributed along the bubble interface. Since the evaporation is
strongest near the copper heating wall where the strongest temperature gradients
form, both P, and c increase strongly near this wall, i.e. near the triple contact line.
Because the interface slope changes so abruptly near the contact line, the apparent
contact angle is much larger than its actual value.

In order to illustrate a possible solution of Eq. (12), we solved it for P.(y) as
above in Eq. 9 with y,. = 0.1L following the method described in [1]. The result of
this calculation is shown in Fig. 2. Since Eq. (16) implies

Ny~ (T, —T)"?% - (17)

as T — T, the N, increase mimics the approach to the critical point and qualitatively
explains the observed shape of the vapor bubble (see Fig. 2). The increase of the
apparent contact angle and of the gas-solid contact area Ay g can be seen in this
Fig. 2.

6. Conclusions

Very similar bubble spreading are observed also far from T, (i.e. at low pressures)
during boiling at large heat flux [7, 8]. The main difference is that the large value of
N, is made by a large vapor production that can be achieved during strong overheating
rather than by the critical effects. Although we did not model this case characterized
by the influence of ”inertial resistance” hydrodynamic forces that distort the bubble,
the vapor spreading due to vapor recoil still exists. The vapor recoil mechanism is
thus a quite general explanation for the boiling crisis.

It is well-documented from experiments [13] that the CHF decreases rapidly when
the fluid pressure p approaches the critical pressure p., i.e., when T" — T, in our
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constant volume system. Previously, this tendency has not been well understood.
The divergence of the factor NN,., discussed above, helps to understand it. We first
note that the evaporation rate 7 scales as the applied heat flux g5 and N,. ~ qgv, where
Egs. (2) and (11) are used. By assuming that the boiling crisis (¢gs = gonr) begins
when N, attains its critical value Nogp ~ 1 (i.e. when the vapor bubbles begin to
spread), one finds that

qenr ~ (T — T)T =302 (T, — T)M (18)
from Eq. (17). The same exponent is also valid for the pressure scaling,

acur ~ (pe —p)'. (19)

Eq. (19) explains the observed tendency gogr — 0 as p — pe.

Although the strict requirements on temperature stability and the necessity of
weightlessness lead to experimental difficulties to study the boiling crisis in the near-
critical region, they also present some important advantages. Only a very small heating
rate (heat flux) is needed to reach the boiling crisis because gopp is very small. At
such low heat fluxes, the bubble growth is extremely slow due to the critical slowing-
down. In our experiments, we were able to observe the spreading gas (i.e. the dry-out
that leads to the boiling crisis, see Fig. 2) during 45 min. Such experiments not only
permit an excellent time resolution, but also allow the complicating effects of rapid
fluid motion to be avoided.

We thank our colleagues J. Hegseth and C. Lecoutre for help and fruitful
discussions.
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