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Abstract. We study numerically the motion of contact lines in the context of
the ”Wilhelmy plate” experiment: a vertical solid plate is withdrawn at constant
velocity from a bath of liquid. We apply the contact line dissipation quasi-static
model to the relaxation of the initially periodically deformed contact line. The
obtained numerical data are compared to the experimental results [1] showing a
good agreement.

The spreading of a liquid on a solid and the motion of contact lines are important in many
industrial processes. That is why they are subject of numerous experimental and theoretical
studies. It is important to achieve a certain degree of control over the spreading process and that
involves also the motion of the contact line. This problem is especially challenging in the case of
partial wetting regime where the singularity of the viscous dissipation appearing at the moving
contact line need to be relieved with some model. A number of different approaches have been
suggested in the literature. The testing of these approaches against the experimental data and
determination of the range of validity of the approximations made is necessary. Our purpose is
to test a contact line and wedge dissipation model [2,3] with respect to the recently obtained
experimental data [1] on the receding motion of deformed contact lines in the ”Wilhelmy plate”
geometry. The contact line dissipation approach reduces the volume viscous dissipation that
occurs in a vicinity of the moving contact line to the dissipation per unit length of the contact
line localized at the contact line. Both viscous dissipation in the moving wedge described by
de Gennes [4] and the dissipation due to the friction of the liquid molecules diffusing over
the solid in the Blake-Haynes model [5], are proportional to the square of the local contact
line velocity. We denote by ξ/2 the coefficient of proportionality. We would like to point out
that this representation of the total dissipation is quite general (see [6,7], etc.). Starting from
the variational principle of Hamilton and taking ξ into account, one arrives to the following
(independent of the particular surface shape) equation, relating the local contact line velocity
v to the local dynamic contact angle θ [8,9]:

v =
γ

ξ
(cos θeq − cos θ) (1)

In the quasi-static approximation, the surface of the liquid is considered as if it were in
equilibrium attained for the changing in time contact line position. The latter is determined
with equation (1). Therefore, for an initially perturbed contact line, one needs to solve a genuine
3D problem to find the fluid surface (its shape and position) at each time moment.

a Corresponding author. e-mail: vadim.nikolayev@espci.fr



2 Will be inserted by the editor

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

0.6

0.8

1.0

1.2

1.4

 

 

h
st
/l

c

Ca

 experiment
 =154.3

(a)

400 500 600 700
75

80

85

90

95

100

105

P1

P2

P3 t=0
t=0.4
t=0.8
t=1.2
t=1.6
t=2
t=2.4

 

 

h ( m)

y ( m)
(b)

Fig. 1. (a) The stationary height of the contact line hst (in the units of the capillary length lc) as a
function of the dimensionless plate velocity Ca. Squares: experiment [1]; line: eq. (2) with ξ = 154.3
Pa·s. (b) The contact line height h(y, t) evolution at dimensionless velocity Ca = 0.00476 with time
step ∆t = 0.4 s. Only one period, of the initially periodically perturbed contact line with period 400 µm
is shown. Dashed lines: numerical results; solid lines: experiment [1].

In this paper we consider the classical “Wilhelmy plate” experiment: a thin solid plate is
withdrawn vertically at constant velocity u from a bath of liquid. One of the plate faces (we
do not consider the other here) is described with the Cartesian coordinates (y, z) where the
axis y is horizontal and the axis z is directed upwards. The liquid free surface forms with the
moving plate a contact line L and dynamic contact angles θ(y) along the contact line. At the
vertical bath wall opposite to the moving plate and parallel to it, the contact angle is assumed
to be 90◦. The distance between the plate and the wall is denoted dx. We study the variable
h which is the height of the contact line at the plate above the fluid surface at the opposite
bath wall. Our study focuses on a specific system studied experimentally in [1] where h varies
periodically along the contact line (i.e. h = h(y, t)) after its depinning from a horizontal row
of periodical artificial heterogeneities on the plate. The period of the perturbation in [1] was
λ = 400 µm. The goal of [1] and of the present work is the analysis of the contact line relaxation
on a macroscopically homogeneous part of the plate with which the liquid surface forms a static
receding contact angle θeq = 51.5◦.

In order to determine how well this model reproduces the experimentally obtained results
we need first to determine the value of the phenomenological dissipation coefficient ξ which is
the only adjustable parameter of the model. ξ is determined from the experimental data on
h(y, t) measured as a function of the plate velocity u once the stationary value hst = h(t →∞)
has been attained (see [10] for details). Obviously, hst is independent of y and v = u for this
case since the contact line is immobile in the reference of the bath. hst can be calculated from
the static surface shape for which [7] hst =

√
2(1− sin θ) where hst is expressed in the units of

the capillary length lc =
√

γ/ρg = 1.46 mm where the values of the surface tension γ = 20.3
mN/m, and density ρ = 970 kg/m3 correspond to that of the PDMS used in [1]; g is the gravity
acceleration. The last equation implies cos θ = hst

√
1− h2

st/4. Its substitution into (1) results
in

Ca = η

(
cos θeq − hst

√
1− h2

st/4
)

/ξ. (2)

where Ca = uη/γ is the capillary number and the shear viscosity [1] is η = 4.95 Pa·s. A fit of
the experimental hst(Ca) data from Fig. 2a of ref. [1] with eq. (2) results in a value ξ = 154.3
Pa·s, see Fig. 1a.

We study next the relaxation dynamics of an initially perturbed contact line sliding down on
a homogeneous plate pulled at constant velocity. We compare our results with the experimental
results for the relaxation of an initially periodically perturbed contact line.
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Fig. 2. (a) Time relaxation of the heights of the points P1, P2 and P3 from Fig. 1b. Solid lines: numerical
results; characters: experimental results from [1] (P1: squares, P2: triangles, P3: circles); dotted lines:
fits of the numerical results. (b) Time relaxation of the harmonic amplitudes a1, a2, and a3 from eq.
(3). The numerical results are shown by solid lines and by open characters. The experimental results
are shown by the corresponding solid characters. a2(t) is multiplied by 5 and a3(t) by 10 in order to
be of the same order of value as a1(t). The dashed lines are the fits of the experimental data.

The numerical algorithm we use is similar to that of [8]. The liquid surface is approximated
by a set of triangles with vertex points R[xi, yj , z(xi, yj)]; i = 1, . . . , Ni; j = 1, . . . , Nj , where
Nj = 51. This choice is imposed by the necessity to resolve the contact line curvature. We
obtained solutions for Ni = 400 (dx = 7.3lc), Ni = 500 (dx = 12.3lc), Ni = 600 (dx = 17.3 lc)
to check the independence of the relaxation time of the contact line of dx. The corresponding
values differ less than 5%.

The contact line evolution is shown in Fig. 1b for one specific velocity of the plate Ca =
0.00476. For the sake of easier comparison we have also reproduced the experimental profiles
from Fig. 5b of [1] for y ∈ [330, 730] µm.

To start the numerical simulation we need to define an initial contact line position. The
experimental contact line at time t = 0 (see Fig. 1b) is not exactly periodical: the point at
y = 730 µm is misplaced to about 1.23 µm with respect to the point at y = 330µm. However
we need an initially periodic contact line for the simulation. We generate an initial contact line
which in the interval y ∈ [330, 600] µm coincides with the experimental contact line and then
is smoothly continued in the interval y ∈ [600, 730] µm so that its height at the end point is
equal to height at the initial point.

In Fig. 2a the time relaxation of the heights of the three points P1, P2 and P3 (see Fig.
1b) of the contact line is shown. P1 (with y = y1 = 530 µm) is the maximum, P2 (y2 =
474 µm) is an intermediate point, and P3 (y3 = 330 µm) is the minimum of h(y). We compare
their relaxation by using the fitting functions to the numerical and the experimental data.
The functions h(y1,2, t) are very well fitted by the exponential relaxation in the time interval
t ∈ [0, 2.4] s for both the numerical and experimental sets of data. The relaxation times for P1

are 2.83 s from the experimental and 2.88 s from the numerical results. For the point P2 one
gets 3.44 s and 3.46 s respectively. The time relaxation of the point P3 is different. Its inverse
height, i.e., [B−h(y3, t)]−1 is well fitted by the exponential decay function with B = 90 µm and
the relaxation times 0.46 s for the experimental and 0.48 s for the numerical data. One sees,
that the numerical and experimental relaxation times of the points P1, P2 and P3 differ by less
than 2-4%. This clearly shows that the contact line dissipation model describes quite well the
time evolution of the relaxing deformed contact line.

As suggested in [1], we fit now the profiles of the contact lines with a three mode Fourier
decomposition

h(y, t) = a0(t) + a1(t) cos (q0y + y0) + a2(t) cos (2q0y + y0) + a3(t) cos (3q0y + y0) . (3)
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Note that the experimental results are obtained only for the time interval t ∈ [0, 2.4] s while in
the numerical simulations we continue the simulation to much later times.

The results for the time evolution of a1(t), a2(t), a3(t) are displayed in Fig. 2b. The upper
index is n for the numerical and e for the experimental values.

The numerical data are fitted well enough with the exponential decay functions (with zero
free term) with the relaxation times 1.28, 0.73, 0.52 s for an

1 (t), an
2 (t), an

3 (t) respectively. The
times do not follow the proportionality pattern 1 : 1/2 : 1/3 that would be expected [11]
within the linear approach which holds asymptotically for small liquid surface slope that can
be estimated by ∂h/∂y. This deviation can be explained by the significant value of ∂h/∂y
which defines the contribution of nonlinearity to the surface curvature that governs the surface
relaxation. At t = 0 ∂h/∂y attains 0.12. On the late stages of relaxation, it becomes much
smaller (see Fig. 2b) and, according to this reasoning, the relaxation should obey better the
linear theory. Indeed, for t ∈ [3.6, 5.6] s, the exponential fitting results in the relaxation times
1.21, 0.64, 0.403 s which satisfy the proportionality pattern 1 : 1/2 : 1/3 much better than the
early stage results.

The quality of the exponential fit of the experimental data decreases with the number of the
harmonics because the higher harmonics are influenced stronger by the non-smoothness of the
contact line profiles due to the small scale surface heterogeneity. We obtain 1.07, 0.49, 0.4 s for
the relaxation times of the functions ae

1(t), ae
2(t), ae

3(t) respectively. These relaxation times are
close to the numerical relaxation times obtained on the late stages. When one uses a Fourier
decomposition of the contact line only on the interval [330, 530] µm (half period) to eliminate
the impact of the asymmetry of the experimental contact line, the corresponding times approach
the numerical early stage results. They do not follow the proportionality pattern 1 : 1/2 : 1/3
either.

In conclusion, the numerical data obtained with the contact line dissipation model compare
very well with the experimental results. A single adjustable parameter, the dissipation coefficient
ξ can be obtained from the data on relaxation of the straight contact line with good accuracy
and is sufficient to explain the motion of the deformed contact line. A good (within 2-4%)
agreement of the contact line profiles and relaxation times obtained from the experimental and
numerical data sets shows that the quasi-static approach can be used for the description of the
contact line dynamics in the partial wetting regime.

Note, that the contact line dissipation approach is tested here in the most unfavorable for
the model situation. Because of the high viscosity of the silicon oil used in [1], the geometrical
region where the dissipation is important extends to a relatively large volume of the fluid. Our
approach should work even better for more common low viscosity fluids like water or alcohol
where the dissipation is stronger localized at the contact line.
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are grateful to the authors of [1] for giving us their experimental data prior to their publication.
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