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The dynamics of the triple gas-liquid-solid contact line is analyzed for the case where the gas is the saturated
vapor corresponding to the liquid. For partial wetting conditions, a non-stationary contact line problem where
the contact line motion is caused by evaporation or condensation is treated. It is shown that the Navier slip
condition alone is not sufficient to relax the hydrodynamic contact line singularity: the Marangoni term is
equally important when the heat transfer is involved. The transient heat conduction inside the heater is
accounted for. A multiscale problem of drop evaporation with freely moving contact line is solved in the
lubrication approximation as an illustration of the proposed approach.

I. INTRODUCTION

Evaporation of thin liquid layers occurs in many natu-
ral and technological processes and for this reason is an
important issue. Three geometries, where the triple gas-
liquid-solid contact line may exist, can be identified: (i)
bubble attached to a solid substrate, (ii) liquid menis-
cus in a vessel and (iii) drop on a substrate. The most
common example of the first geometry is the growth of a
bubble attached to the heater during the nucleate boil-
ing. It is modeled by many authors, see e.g.1,2. The
gaseous environment is the pure saturated vapor of the
same fluid. It is widely recognized that a large part of
the boiling heat transfer is due to the evaporation at the
foot of the bubble, where the fluid forms a thin layer
situated between the heater and the gas-liquid interface.
The evaporation dynamics is controlled by the heat flux
spent mainly to compensate the latent heat.

An especially important example of the meniscus evap-
oration are the heat pipes3, where the evaporation occurs
in capillaries. Unlike other cases, a stationary regime can
be attained: the fluid can be supplied to the meniscus (or
recondensed elsewhere) to compensate exactly its evap-
oration losses. The stationary regime is well studied by
many authors both theoretically and experimentally, see
e.g.4–6.

The drop evaporation was studied for two different
evaporation regimes. The first is a slow drying of a drop
in an atmosphere of non-condensable gases. The evapo-
ration rate is controlled by diffusion of the vapor in the
gas7,8. The vapor distribution is usually assumed to be
stationary, which results in the vapor concentration in-
versely proportional to the distance from the drop. The
second drop evaporation regime occurs e.g. when one
aims to cool down a hot solid surface by drop deposition.
In this case the gas is the saturated vapor. Similarly to
the bubble case, the evaporation is controlled by the heat

a)http://www.pmmh.espci.fr/˜vnikol; Electronic mail:
vadim.nikolayev@espci.fr

transfer, see e.g.9–12.
The present understanding of the study of the film

evaporation is based on an approach developed originally
by Wayner4 for the evaporation of the continuous liq-
uid meniscus. In these theoretical and numerical stud-
ies it was assumed that the thinnest part of the micro-
layer (“adsorption film” or “microlayer”) does not evap-
orate due to the van der Waals attraction forces that
exist between the molecules of the solid heater and the
fluid. This situation corresponds to complete or pseudo-
partial13 wetting regime.

While almost all theoretical above cited studies deal
with the continuous microlayer, it is well known that as
the temperature grows, the van der Waals forces become
weaker, and the adsorption film may cease to exist at
equilibrium. A direct contact of the vapor with the solid
and thus the triple vapor-liquid-solid contact line (CL)
appear. The contact angle becomes finite. This corre-
sponds to the partial wetting regime. Such a situation
occurs in most practically important situations. One ex-
ample is the water14 which exhibits a transition to the
partial wetting when the substrate temperature is above
∼ 60◦C. As in the continuous microlayer case, high heat
fluxes occur in the vicinity of the CL. To distinguish from
the complete wetting case, we will call this vicinity “mi-
croregion”.

The determination of the CL position is a key to many
phenomena. One example is the boiling crisis, which is
a transition form the nucleate to film boiling. It occurs
when the heat flux becomes larger than the critical heat
flux (CHF) via the receding of the CLs of the bubbles
growing on the heater15,16. To predict the CHF, the un-
derstanding of the CL dynamics is essential17,18.

Besides the description of drying, the CL issue is im-
portant for understanding of the bubble departure from
the heater, which is an important issue in boiling. The
surface tension is the only force that provides the ad-
hesion of the bubble to the heater at the final, ther-
mally controlled stage of the bubble growth. This force
is present only when the CL exists and is proportional to
its length. The CL position is thus needed to be known
to assess the bubble departure size. The existing bubble
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FIG. 1. Geometry of the general problem. The chosen direc-
tion of the normal to the interface is shown.

growth modeling approaches use either microlayer-type
models, see e.g.1,2 or do not use any particular microre-
gion models at all, see e.g.18.

A major challenge arises during the microregion mod-
eling because multiple length scales are to be described.
The mesoscale numerical modeling realized with the CFD
software cannot describe the scales below 10 − 100 µm
because of limitations on computational resources. How-
ever the interface shape and fluid flow at these scales are
strongly influenced by phenomena that occur at nanome-
ter scale.

The objective of the present work is two-fold. First,
it is a coherent model of the microregion for the par-
tial wetting case. Second, we describe some analytical
and numerical developments that allow such a multiscale
problem to be solved.

II. HEAT TRANSFER IN THE MICROREGION

In the description of the microregion, the curvature
of the vapor-liquid interface in the direction parallel to
the CL can be neglected with respect to the curvature
K in the perpendicular direction. The interface can thus
be described by its 2D contour (Fig. 1). It is assumed
that the contact angle θ 6= 0 is small (which is generally
the case for many substrates) so that the slope of the
interface is small. The interface can then be described by
its height y = h(x) and the small slope assumption means
|∂h/∂x| � 1. All the variables can then be considered as
functions only of x.

A. Problem statement in a general case

Let us consider first the simplest microregion model, in
which both the liquid-vapor and liquid-heater interfaces
are assumed to be isothermal. The background argument
is that the temperature of the vapor-liquid interface T i is
generally quite homogeneous and equal to the saturation
temperature Tsat corresponding to the given vapor pres-
sure. On the other hand, the surface of the metal heater

is assumed isothermal due to its high thermal conduc-
tivity. To vaporize the liquid, the heater surface tem-
perature TS is required to be higher than Tsat. Since
the CL belongs to the both interfaces, its temperature is
then ambiguous, which is well known to generate a non-
integrable divergence of the heat flux at the vapor liquid
interface qiL(x) ∼ 1/x, which means that the integral en-
ergy balance cannot be satisfied. A more complicated
model, in which the temperature is allowed to vary along
at least one of the interfaces, is necessary.

At equilibrium, the liquid-vapor interface temperature
T ieq is well known to obey the Clausius-Clapeyron equa-
tion which accounts for the surface forces, which cause
the interface pressure jump ∆p = pV − pL,

T ieq = Tsat

(
1 +

∆p

HρL

)
, (1)

where pV and pL are the pressures at the vapor and liquid
sides of the interface respectively; H is the latent heat
and ρL (ρV ) is the liquid (vapor) density. In this work we
adopt the “one-sided” description1,2,4,5,19 according to
which pV is assumed to be spatially homogeneous. This
hypothesis is justified by the smallness of both density
and viscosity of the vapor. The interface temperature is
however allowed to vary along the interface together with
pL. When the heat and mass exchange at the interface
is present, Eq. (1) should be augmented. The molecular
kinetic effects need to be accounted for by introducing
the interface resistance1

Ri =
Tsat

√
2πRgTsat/M(ρL − ρV )

2H2ρLρV
,

where M is the molar mass and Rg is the universal gas
constant. The full expression for the interface tempera-
ture T i reads

T i = Tsat

(
1 +

∆p

HρL

)
+RiqiL. (2)

Because of the last term, the boundary condition (2)
is sufficient to relax the CL singularity on an isother-
mal heater. Such a solution is used in many works1,2,4,6.
However, the heat flux qiL (and thus the evaporation rate)
is then erroneous because in reality the heater temper-
ature in the vicinity of the CL varies strongly, see sec.
IV E. In a more realistic modeling, the heat conduction
in the heater needs to be taken into account, so that
both vapor-liquid and liquid-solid interface temperatures
allowed to vary.

Some authors5,11,19 assumed a stationary temperature
distribution inside the heater. However, in many practi-
cal problems it cannot be assumed stationary. One ex-
ample is the bubble growth in boiling where the charac-
teristic heat diffusion length

√
αSt (where t is the bubble

growth time and αS is the heater material temperature
diffusivity) is usually comparable to the current size of
the bubble. Another example concerns a freely moving
CL during the drop evaporation where the CL speed is
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comparable to that of the heat diffusion. This is why
we study a transient heat conduction problem in a semi-
infinite heater. The heat fluxes and temperatures in the
liquid and solid domains are matched at the heater sur-
face y = 0 (Fig. 1).

The energy is supplied to the heater via a homogeneous
volume heating (realizable e.g. with the electric current).
In the framework of the present approach any time de-
pendence of the volume heating power can be treated.
The heating power per unit volume is chosen in the form
C/
√
t to model a heating impulsion at t = 0; C is an

arbitrary constant. Such a sharp variation is an extreme
case chosen to test the numerical stability of our algo-
rithms. Although by other reasons, the same form was
chosen elsewhere18.

A homogeneous initial temperature distribution is as-
sumed in the liquid and in the solid. The initial temper-
ature

T0 = Tsat

(
1 +

∆p0

HρL

)
(3)

is chosen to be equal to the equilibrium saturation tem-
perature corrected for the initial pressure jump ∆p0 that
appears due to constant initial interface curvature.

The described boundary value heat conduction prob-
lem can be easily solved with the Green function
method20. The resulting temperature of the heater sur-
face reads:

TS(x, t) = T0 +
2αS
kS

C
√
t− 1

2πkS

∫ t

0

dτ∫ ∞
−∞

qS(x′, τ)

t− τ
exp

[
− (x− x′)2

4αS(t− τ)

]
dx′. (4)

The following assumptions, usual for the “one-sided”
description mentioned above, are made to solve the con-
jugated problem in the liquid and solid domains.

• The temperature distribution inside the liquid film
is assumed to be stationary (i.e. linear in y). This
approximation is valid when the film thickness is
smaller than the thermal diffusion length

√
αLt.

The heat flux is then independent of y so that

qS = qiL = kL
TS − T i

h
. (5)

• The vapor is assumed to be insulating. The heat
flux to the vapor domain can then be neglected.
This leads to the expression

HJ = qiL (6)

valid at the vapor-liquid interface. Here J is the
mass evaporation flux at the interface. This as-
sumption also permits to limit the coordinate in-
tegration in (4) to the liquid-solid contact area
ΩLS = ΩLS(t) because qS vanishes at the rest of
the heating surface.

By combining (2, 5, 6), one obtains the expression

TS = Tsat

(
1 +

∆p

HρL

)
+ qS

(
Ri +

h

kL

)
. (7)

Finally, equating with (4) leads to the following integral
equation for qS(x, t):

qS(x, t)

[
Ri +

h(x, t)

kL

]
+
Tsat
HρL

[∆p(x, t)−∆p0] =

2αS
kS

C
√
t− 1

2πkS

∫ t

0

dτ

∫
ΩLS(τ)

qS(x′, τ)

t− τ

exp

[
− (x− x′)2

4αS(t− τ)

]
dx′, (8)

which needs to be solved only for x ∈ ΩLS(t).
An important consequence of this quite general heat

transfer model consists in the following: both the pres-
sure jump ∆p and the heat flux qS must be finite every-
where, including the CL. Otherwise the temperature (7)
would be infinite, which is non-physical.

III. INTERFACE SHAPE DETERMINATION IN THE
MICROREGION

A. Relaxing the hydrodynamic CL singularity

In “one-sided” approach mentioned above, the inter-
face shape is determined from the solution of the liquid
dynamics; the vapor pressure pV is assumed to be homo-
geneous. Analogously to the thin films treatment1,4,9,21,
the lubrication approximation can be applied in the vicin-
ity of the CL where the interface slope is small.

The boundary condition for the tangential velocity vx
at the solid surface is necessary to be defined among oth-
ers. This condition turns out to be extremely important
when the CL is allowed to move. It is well known that
the conventional no-slip condition

vx = 0 (9)

leads to a non-integrable divergence of the stress at the
CL so that the force balance (see (16) below) cannot be
satisfied. The simplest (and for this reason used by many
researchers) method of relaxing this singularity consists
in using instead of (9) the Navier slip condition

vx = ls
∂vx
∂y

(10)

that involves the slip length ls reviewed in detail in the
work22. A conventional approach23 that makes use of the
lubrication approximation (see Appendix A) and of the
identity ∂∆p/∂x = −∂pL/∂x, shows that

∂

∂x

[
h

(
h

2
+ ls

)
∂σ

∂x
+ h2

(
h

3
+ ls

)
∂∆p

∂x

]
=

µ

(
vi − J

ρL

)
, (11)



4

where σ is the surface tension and

vi = −∂h
∂t

(1 + u2)−1/2 ≈ −∂h
∂t
, (12)

where u = ∂h/∂x, is the interface slope. The latter is
assumed to be positive when directed along the normal
vector ~n shown in Fig. 1. The linear dependence of the
surface tension on the temperature is taken into account.
Thus the Marangoni stress

∂σ

∂x
= −γ ∂T

i

∂x
, (13)

where T i is defined in (2) and γ = −dσ/dT is constant.
Note that γ is generally positive for pure fluids.

The case J = 0 of (11) has been studied24 to describe
the contact line motion with no phase change. The case
J = 0, ls = 0 is conventional for the description of the dy-
namics of continuous thin films23. Another limit vi = 0,
ls = 0 was used to describe stationary evaporation1,4,6,21

of a continuous liquid film. A similar to (11) approach
(derived from more general Stokes equation) was also
discussed25. However, the slip length was not properly
introduced.

It should be noted that J and vi are coupled: the
interface moves due to evaporation. Similarly to the
approach19, both J and vi are allowed to vary along the
interface.

Some features can be understood by analyzing (11). In
isothermal contact line receding (J = 0), the fluid flow
is driven by the interface motion (term vi). It causes
a liquid flow to be directed from the CL towards the
liquid bulk; pL decreases with |x − xCL| (see Fig. 1)
and ∆p increases. The evaporation flow is caused by the
term J > 0. It drives the flow toward the CL which,
on the contrary, leads to a decreasing function ∆p(x −
xCL). Depending on the magnitude of these terms one
or another tendency wins.

Before starting the numerical calculation, an asymp-
totic analysis needs to be performed at x → xCL to de-
termine whether divergencies are encountered. The small
parameter is

h ∼ θ(x− xCL). (14)

First one mentions that (i) vi is bounded (the interface
cannot displace with the infinite velocity) and (ii) the
heat flux ought to be finite to provide the finiteness of
T i, cf. (2). The first integration of (11) can be performed
by using the boundary condition h = 0 at x = xCL. It
results in the equality

∂T i

∂x
=

µ

γθls

(
J

ρL
− vi

)
(15)

that holds when x → xCL. Since its r.h.s. is finite, Eq.
(15) means that T i derivative and thus T i itself are in-
deed finite. It means (cf. Eq. 2) that both ∆p and qS are
finite too. This shows the importance of both the hydro-
dynamic slip and the Marangoni stress. Without either

of them the model would result in an infinite temperature
value at the CL.

For the sake of comparison, let us consider also the CL
motion with no heat exchange, like in classical problems
of wetting dynamics26). The pressure is not required
then to be finite. Only the finiteness of the total force
acting on the gas-liquid interface =

∫
∆pdx is mandatory.

It can be shown that the requirement of the finite total
viscous dissipation leads to the same constraint. The
asymptotic analysis of Eq. (11) for this case results in
∂∆p/∂x ∼ (x − xCL)−1 due to the non-zero slip length
(for ls = 0 the power would be -2). Therefore ∆p diverges
logarithmically and the pressure is integrable, so that the
problem is solvable.

B. Interface shape equation

The pressure jump ∆p across the interface can be writ-
ten as2,17

∆p = Kσ − pr, (16)

where K is the interface curvature and pr = J2(ρ−1
V −

ρ−1
L ) is the differential vapor recoil pressure which needs

to be taken into account at high heat fluxes17,18. For the
case of relatively low heat fluxes considered here, this
term is not expected to be important. We include it for
generality.

The van der Waals forces are usually taken into ac-
count (see e.g.4,19) by introducing into (16) the disjoin-
ing pressure pd. The latter scales as h−3 at large h but
is finite at small h13. It is neglected because, unlike the
complete wetting case, pd influence should not be im-
portant under partial wetting. Indeed, since the contact
angle is finite, the region where pd is important is rela-
tively small. The influence of the disjoining pressure on
the CL dynamics at partial wetting will be studied in
more details elsewhere.

In the 2D case Eq. (16) reads

σ
∂2h

∂x2
(1 + u2)−3/2 = ∆p+ pr. (17)

The boundary conditions at the CL are given by two
expressions

h = 0, (18)

u = tan θ. (19)

The contact angle θ depends only on the materials of the
three phases at contact as given by the classical Young
formula. Since θ and the interface slope in the microre-
gion are usually small, (17-19) reduce to

σ
∂2h

∂x2
= ∆p+ pr, (20)

h = 0 and u = θ at x = xCL. (21)

Note that the interface shape changes with time because
of the time variation of the pressure terms. The set of
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FIG. 2. Geometry of the model heat transfer problem of evap-
orating droplet.

equations (11) (where qS is used for qiL) and (8, 12, 20)
allows the heat transfer in the microregion to be deter-
mined. One more remark concerns the CL time evolution
xCL = xCL(t) that obeys the equation

vCL ≡ −
dxCL

dt
=
vi(xCL)

θ
. (22)

It follows from (12, 21, B2) since the condition dh/dt = 0
holds at the CL.

One more equation is necessary for the problem clo-
sure. For example, in the bubble growth problem27, the
matching of the solutions in the microregion (where the
thin film approximation is applicable) and the rest of the
bubble interface (macroregion) is required. In what fol-
lows, we will consider the evaporating drop, where the
boundary conditions (18-19) satisfied at the whole CL
serve for this purpose.

IV. HYDRODYNAMICS AND HEAT TRANSFER
DURING THE EVAPORATION OF A SHALLOW
DROPLET

Evaporation of a 2D sessile (posed on a heater, see Fig.
2) liquid drop in an atmosphere of its saturated vapor will
be solved here in order to illustrate the application of the
ideas developed above. We use this example simply be-
cause, unlike two other evaporation geometries explained
in the Introduction, the whole gas-liquid interface can be
treated in the lubrication approximation. Accordingly,
the drop is assumed to be shallow.

It is well known that there are two regimes of drop
evaporation: with and without CL retraction. The
regime of immobile CL28 occurs due to its pinning on
the solid surface defects and will not be considered in
this paper where the ideally smooth and homogeneous
substrate is assumed.

Such a case was considered previously by several
groups. In the work9 the drop evaporation has been con-
sidered theoretically for partial wetting in the approx-
imation of isothermal heater. In more recent works on
the drop evaporation10–12 the complete or pseudo-partial
wetting cases were discussed. Instead of the true CL, a
junction with a continuous adhesion film was studied.

In addition to two conditions (18,19) defined at x =
xCL for the micro-region case considered above, one

Variable Notation Dimensional quantity

length x, h, ls d

time t d2/αS

velocity vi αS/d

pressure jump ∆p σ/d

heat flux qS q̂ = C
√
παS

interface resistance Ri d/kL

temperature T Tsat

TABLE I. Dimensional quantities used to make the variables
dimensionless. d is a length scale characterizing the drop size.

needs to satisfy two more conditions (18,19) at x = −xCL
for the 2D drop. These four boundary conditions are
necessary to solve two second order differential equations
(11, 20). One more condition is required to define xCL.
The explicit xCL evolution equation (22) can be used9.
This choice is however, inconvenient for us because would
lead to a loss of accuracy (in higher derivatives’ computa-
tion) while calculating vi from (11). We prefer employing
another solution described below.

Note such a problem statement need to be coherent
with the global heat balance that reads

HρL
dV

dt
= −

∫
ΩLS

qSdx. (23)

The assumption (5) has been applied here; V is the drop
volume. By taking into account a well known expression

dV

dt
= −

∫
ΩLS

vidx, (24)

Eq. (23) can be rewritten as

∫
ΩLS

[
vi − J

ρL

]
dx = 0, (25)

where (5,6) are used. The integration of (11) over
ΩLS has to lead to the same result. This can be in-
deed obtained by using the boundary conditions (18) at
x = ±xCL and the finiteness of both ∂σ/∂x and ∂∆p/∂x
shown in sec. III A.

A. Reduction to dimensionless form

The dimensional parameters used as characteristic
scales are shown in Table I.

Once made dimensionless, the equations (8, 11, 20)
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yield

r

2
q̃S(x̃, t̃)[R̃i + h̃(x̃, t̃)] +

NT
2

[∆p̃(x̃, t̃)−∆p̃0] =√
t̃

π
−
∫ t̃

0

dτ

∫ x̃CL

−x̃CL

q̃S(x′, τ)g(x̃− x′, t̃− τ)dx′,

(26)

∂

∂x̃

[
−NM

(
h̃2

2
+ h̃l̃s

)
∂T̃ i

∂x̃
+(

h̃3

3
+ h̃2 l̃s

)
∂∆p̃

∂x̃

]
= Nµ

[
ṽi −Nq q̃S

]
,

(27)

∂2h̃

∂x̃2
= ∆p̃+Nr q̃

2
S , (28)

where

T̃ i = 1 +Nσ∆p̃+ R̃iNerq̃S , (29)

ṽi = −∂h̃
∂t̃
, (30)

and the Green function for the 2D transient heat conduc-
tion problem20 is

g(x, t) =
1

4πt
exp

(
−x

2

4t

)
. (31)

The tilde means the corresponding dimensionless quan-
tity. Eqs. (5, 6) are accounted for in (27).

The following dimensionless constants are identified

r = kS/kL,

Nr =
q̂2d

ρVH2σ
,

Nq =
q̂d

ρLHαS
,

Nσ =
σ

dρLH
,

Ne =
q̂d

kSTsat
,

NM =
γTsat
σ

,

Nµ =
µαS
σd

.

(32)

R̃i can be seen as an dimensionless additional thickness
of the liquid layer, so that the total thermal resistance of
the liquid is defined by the sum h̃ + R̃i. Nµ represents
the dimensionless viscous relaxation time (µd/σ). Nr
measures the strength of the vapor recoil relative to the
surface tension. The number Nq shows the contribution
of the heat diffusion in terms of the latent heat trans-
port. Ne shows how far the heating drives the system
out of thermal equilibrium. Nσ characterizes the contri-
bution of the surface tension to the variation of the local
interface temperature and NM is the Marangoni number.
NT = Nσ/Ne is introduced in (26) for the sake of brevity.

It is assumed hereafter that ρL � ρV so that the vapor
recoil term reduces to pr = J2/ρV .

Eqs. (27-28) are of second order and thus have to be
supplied with four boundary conditions corresponding to
(21) defined at the CL:

h̃ = 0 and
∂h̃

∂x̃
= ∓θ at x̃ = ±x̃CL. (33)

One of them allows x̃CL to be found. The integral equa-
tion (26) does not require any boundary conditions.

The dimensionless deviation of TS from Tsat defined as

∆T̃S = (TS − Tsat)/Tsat (34)

takes the following form according to (3, 4):

∆T̃S(x̃) = Nσ∆p̃0 + 2Ne

√
t̃

π
−

2Ne

∫ t̃

0

dτ

∫ x̃CL

−x̃CL

q̃S(x′, τ)g(x̃− x′, t̃− τ)dx′. (35)

Once the whole problem is solved and q̃S is known, (35)

allows ∆T̃S to be determined for any x̃. The alternative
expression that follows from (7) is valid only for x̃ ∈
(−x̃CL, x̃CL):

∆T̃S = Nσ∆p̃+Ner q̃S(R̃i + h̃). (36)

B. Symmetry considerations

In the following, the advantage of the drop symmetry
will be taken and only a half of the drop 0 < x̃ < x̃CL
will be calculated. The integration in (26, 35) can then
be performed over a half (0, x̃CL) of the drop base with
the replacement of the integrals by∫ t̃

0

dτ

∫ x̃CL(τ)

0

q̃S(x′, τ)[g(x̃−x′, t̃−τ)+g(x̃+x′, t̃−τ)]dx′.

The boundary conditions for the symmetrical case de-
serve some attention. The conditions

∂∆p̃

∂x̃
= 0, (37)

∂h̃

∂x̃
= 0, (38)

in the drop center x̃ = 0 are obviously need to be satisfied
to replace two boundary conditions (33) at x̃ = −x̃CL.
Another symmetry condition

∂q̃S
∂x̃

= 0, (39)

is not independent and is satisfied automatically. This
can be shown by taking the derivative of the symmetrized
form of (26) with respect to x̃ and putting x̃ = 0. The
result is that a linear combination of ∂∆p̃/∂x̃ and ∂q̃S/∂x̃
is equal to zero so that (39) follows from (37).
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C. Singularity treatment

It turns out that the direct implementation of (26-28)
leads to a wrong asymptotic behavior of the numerically
calculated ∆p and qS : they diverge quite strongly when
x → xCL. This divergency appears because the coef-
ficients of (27) vanish at x → xCL. This means that
some diagonal elements of the matrix of the set of lin-
ear equations are very small. This is known to lead to
the poor determination of the matrix (i.e. to the small-
ness of its eigenvalues) and thus to a loss of numerical
accuracy. This is unacceptable because the pressure di-
vergence can lead to mesh-dependent results. Indeed, a
variation of the pressure in the CL vicinity can have a
strong impact on the h(x) slope (cf. Eq. 28)) and thus
on the xCL determination when a denser mesh is used29.
To solve this issue, the following change of variables is
applied:

x̃ = x̃CL[1− exp(ζ)], (40)

h̃ = χ exp(ζ). (41)

The drop center corresponds now to ζ = 0; ζ → −∞ at
the CL. Such a change of variables leads to the finiteness
of both χ(ζ) and the coefficients of the pressure equation
at the CL. Eqs. (27, 28) reduce to equations

∂

∂ζ

[
−NM

(χ
2
eζ + l̃s

)
χ
∂T̃ i

∂ζ
+
(χ

3
eζ

+l̃s

)
χ2eζ

∂∆p̃

∂ζ

]
= eζ x̃2

CLNµ
(
ṽi −Nq q̃S

)
,

(42)

∂

∂ζ

(
eζ
∂χ

∂ζ

)
= e2ζ x̃2

CL

(
∆p̃+Nr q̃

2
S

)
(43)

with the boundary conditions

∂∆p̃

∂ζ
= 0 (44)

∂q̃S
∂ζ

= 0, (45)

χ+
∂χ

∂ζ
= 0, (46)

at ζ = 0. They follow from (37-38). The boundary con-
dition at ζ → −∞

χ = x̃CLθ, (47)

follows from (33). The conditions

∂q̃S
∂ζ

= 0, (48)

∂χ

∂ζ
= 0, (49)

∂∆p̃

∂ζ
= 0, (50)

follow from the finiteness of all the quantities at ζ → −∞.
Two last conditions are normally unnecessary due to the
eζ factors near these derivatives in Eqs. (42, 43). They
are however useful in the numerical calculations where a
finite value ζmin has to be used instead of −∞.

D. Numerical implementation

The ζmin value needs to be chosen in such a way that
the corresponding h value (easy to calculate with (14,
40)) is smaller than ls; ζmin ≈ −14 is small enough. The
interval (ζmin, 0) is divided intom (∼ 100) equal elements
(ζi−1, ζi). The corresponding x meshing is increasingly
dense when x → xCL, see Fig. 3b below. The interval
(0, t̃) is divided into F equal subintervals ∆t so that t̃ =
F∆t. In principle, m can be allowed to change with
time but in the present example we will keep it constant.
The variables are supposed to be constant during each
of subintervals and on each element. The nodes ζni are
chosen in the centers of the elements. The values of the
variables q̃S , χ, ∆p̃ at i-th node and during f -th time

step are denoted qfi , χfi and pfi respectively. One notices
that the introduced numerical grid for the x variable is
adaptive and moves in time. This is a new feature that
was not applied in the previous works. It improves the
stability of the algorithm.

The boundary conditions at ζ = ζmin can be obtained
from (48-50). It is easy to check that the boundary condi-
tion for ∆p and q̃S hold also at ζ = ζmin. The boundary
conditions for χ can be obtained by assuming that both
∆p̃ and q̃S are constant for ζ < ζmin. Two subsequent
integrations of (43) then result in the following boundary
conditions at ζ = ζmin

χ = x̃CLθ +
1

2
eζmin x̃2

CL

(
∆p̃+Nr q̃

2
S

)
. (51)

∂χ

∂ζ
=

1

2
eζmin x̃2

CL

(
∆p̃+Nr q̃

2
S

)
, (52)

By comparing these conditions to (47,49), one notices
that their corrections might be important when the pres-
sure jump and the flux are large enough near the CL.

The set consisting of Eq. (26), where the change of
variables (40, 41) is performed, and Eqs. (42, 43), is
nonlinear. However the nonlinearity is not strong and the
iteration method can be applied. There are two sources
of nonlinearity: h̃ in Eq. (26) and q̃2

S in Eq. (43). These
equations can be linearized by replacing the two quanti-
ties by their respective values from the previous iteration.

Another (external) loop of iterations is necessary to
find x̃CL. Either of the boundary conditions (44,46,50-
51) can be used as a criterium; (46) is found to be the
best choice.

Eq. (26) discretized by using the trapezoidal integra-
tion rule18. The finite volume method (FVM)30 is used
to discretize (42, 43). The numerical implementation of
the interfacial velocity (30) is delicate when using the nu-
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Description Notation Value Units

Saturation temperature Tsat 311 ◦C

Mass density of liquid ρL 688.63 kg/m3

Mass density of vapor ρV 55.48 kg/m3

Latent heat of vaporisation H 1.3 MJ/kg

Surface tension σ 12.04 mN/m

Thermal diffusivity of liquid αL 0.1305 mm2/s

Thermal diffusivity of solid αS 3.750 mm2/s

Thermal conductivity of liquid kL 0.55 W/(m·K)

Thermal conductivity of solid kS 15 W/(m·K)

Marangoni coefficient γ 0.226 mN/(m·K)

TABLE II. Material parameters used in the simulation.

merical grid that displaces with time and is described in
Appendix B.

Such an approach provides an excellent numerical sta-
bility that allows at least six decades of x variation to be
computed on a PC.

The material parameters for water at 10 MPa and the
stainless steel (Table II) are used for the calculations.
Unless mentioned specifically, the equilibrium contact an-
gle is θ = 15◦, and the initial drop height is chosen to be
equal to d = 60µm. The slip length value need to be cho-
sen now. According to the review22, its value varies from
1 nm to 1 µm depending on wettability and the state
of the solid surface. For the partial wetting case, the ls
value is related to the surface roughness. It is assumed
that the surface is very smooth and the value ls = 10 nm
is adopted.

E. Numerical results

The computed drop surface evolution is shown in Fig.
3a. The drop is is assumed to have initially the equilib-
rium shape with the contact angle θ and constant curva-
ture. The initial pressure jump ∆p0 is chosen accordingly
to it by using (16). The bulk heating of the solid begins
at t = 0 and the drop volume decreases until its complete
vaporization.

The apparent contact angle θap is different from θ as
seen in Fig. 3b. θap increases with time, in agreement
with other theoretical4,9,21 and experimental31,32 results.

Two stages of drop evaporation can be identified in
Fig. 4. We discuss them on an example of the curve for
q̂ = 10W/cm2 (Fig. 4a). On the first stage (t . 20 ms
for q̂ = 10W/cm2), the CL moves fast. On the second
stage (t & 20 ms), the increase of the apparent contact
angle becomes less pronounced and the CL decelerates.
One more stage can be identified from Fig. 3b. At some
point, the size of the drop becomes to be comparable to
that of microregion and the θap growth accelerates again.

As discussed above, the flow direction near the CL is
not known a priori. The calculations show that the flow
is directed towards the CL which corresponds to ∆p that
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FIG. 3. Drop shape at evaporation computed for q̂ =
10W/cm2, θ = 15◦ for different times. (a) Overall shape.
(b) Close CL vicinity. The data points for t = 58.75 ms curve
are shown with solid circles to illustrate the increasingly dense
meshing near the CL. The actual and apparent contact angles
for t = 98.3 ms are shown.

increases when x → xCL. (Fig. 5a). Note that ∆p
defines the local interface curvature K, see Eq. 16 where
the pr term is unimportant for relatively low heat loads
considered here. One mentions that the curvature near
the CL is orders of value larger than in the center of the
drop. In addition, the curvatures in the drop center and
at the CL are of opposite signs so that an inflection point
of h(x) exists. This inflection cannot be seen in Fig. 3a
because it is situated at less than ∆x = 1µm from the CL
according to Fig. 5a. Since the curvature varies strongly
and is important only in a small vicinity ∆x of the CL,
the geometrical definition of the curvature results in the
following expression for the apparent contact angle.

θap = θ +

∫ xCL+∆x

xCL

Kdx = θ +

∫ xCL+∆x

xCL

(∆p+ pr)dx.

(53)
The second equality is due to (16). The integral in the
r.h.s. is positive and results in a growing with time devi-
ation of θap from θ. This deviation is illustrated in Fig.
3b for t = 98.3 ms. Note that the pressure is finite at
the CL in agreement with the asymptotic analysis of sec.
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FIG. 4. Contact line dynamics during drop evaporation. The
initial drop volume is kept constant for all curves. (a) for
θ = 15◦ and different reference heat fluxes q̂ shown in W/cm2.
(b) Curves for q̂ = 0.8W/cm2 and different contact angles.

III A.

Another feature already underlined in many
studies1,9,18 is the localization of the heat and mass
transfer in a close vicinity of the CL. The saturation
of evaporation flux and pressure occurs at the scale
comparable with ls. This is normal since the ls value is
the largest microscopic scale of the problem. The other
microscopic scale RikL (see the discussion associated
with Table I) is 4-5 times smaller. Fig. 5b shows
that almost all heat flux (and thus evaporation) is
concentrated on about 1% of the vapor-liquid interface.

Note that unlike the adsorption film1,4 case, the heat
flux does not vanish at the CL; it attains there its maxi-
mum. The discontinuity of qS(x) thus occurs at the CL.
This discontinuity causes a sharp minimum in the vari-
ation of the temperature (35) along the heater surface
(Fig. 6). This minimum is well known to be produced
by the latent heat consumption and was obtained both
in simulations (see e. g.18) and experiments (see e. g.15)
both for drop evaporation and bubble growth in boil-
ing. At small heat fluxes considered here, the absolute
variation of the heater surface superheating defined as
TS − Tsat is of the order of several K. The scale of the
temperature variation in the heater is defined by the in-
terplay of two scales, both related to the thermal diffu-
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FIG. 5. (a) Absolute value of the pressure jump and (b)
heat flux across the vapor-liquid interface versus distance to
the contact line for q̂ = 10W/cm2 and different evaporation
times shown in ms. The cusps in Fig. (a) are artificial and
appear because |∆p| is plotted (instead of ∆p) to use the log-
log scale. The cusp location correspond to ∆p = 0; ∆p is
positive to the left and negative to the right of each cusp. At
t = 0, ∆p < 0.
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FIG. 6. Snapshots of the temperature variation along the
heater surface for q̂ = 10W/cm2. The cusp of each curve
corresponds to the current CL position.
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sion. They are
√
αSt at small times and αS/vCL at larger

times. Note their independence of the drop size.
Note that small overheats of several degrees are capa-

ble of generating huge heat fluxes at the CL (Fig. 5b).
The TS minimum is very sharp and corresponds to the
locally high heat exchange along the heating surface so
the temperature gradients are huge in this area and cor-
respond to the high heat flux qiL (Fig. 5b).

V. CONCLUSIONS

The partial wetting case is the most common in sit-
uations were evaporation induced by heating is encoun-
tered. A line of triple liquid-gas-solid contact exists in
such a case. Two major difficulties occur while describ-
ing the heat and fluid flow in the vicinity of the contact
line, namely the thermal and hydrodynamic singularities
that both need to be relaxed.

The account of the heat conduction in the heater re-
laxes the singularity in the heat transfer problem. The
slip length is used conventionally to relax the hydrody-
namic singularity in classical problems of wetting dynam-
ics like capillary rise. It is shown that the slip length
can also be used to treat the contact line motion dur-
ing evaporation. The asymptotic analysis shows that to
avoid the divergence of temperature at the contact line,
the Marangoni flow needs to be taken into account in the
framework of the “one-sided” evaporation model.

An approach describing the contact line motion caused
by evaporation (or possibly condensation) and integrat-
ing all the ingredients mentioned above has been devel-
oped by using the lubrication approximation. It allows
solving the conjugate problems of hydrodynamics and
heat transfer (liquid and solid domains) in the “microre-
gion”, a vicinity of the contact line where the main part
of the heat and mass transfer takes place. This approach
can be used to describe many practical situations like
bubble dynamics during the boiling, drop evaporation or
condensation in the atmosphere of the saturated vapor,
meniscus motion in the heat pipes, etc. Numerical algo-
rithms which permit to solve such multiscale problems
are developed.

During evaporation coupled with the contact line mo-
tion, the contact line dynamics is controlled by the in-
terplay of two liquid flows. First, the receding liquid-gas
interface pushes the liquid toward its bulk. Second, the
interfacial evaporation creates the opposite flow bringing
the liquid to the interface.

A problem of evaporation of a 2D drop posed on a
heated substrate has been considered and solved numeri-
cally. The contact line dynamics consists of three stages.
At the first transient stage, the shape and thermal dis-
tribution in the vicinity of the contact line is established.
The apparent contact angle rapidly increases. At the sec-
ond longest stage, the interface shape change is small, so
that the system dynamics is close to a self-similar evolu-
tion. The apparent contact angle increase is weak. The

third final stage occurs when the drop size attains the
size of its microregion so that the evaporation is strong
along the whole drop surface. The self-similarity is bro-
ken again and the apparent angle growth is accelerated.

High heat fluxes occurring at the contact line create
a (moving) heat sink at the heater surface and lead to
a strong temperature gradient along the heater surface
even for the metal heaters with high heat conductivity.
The scale of the temperature perturbation around evapo-
rating drop (or growing bubble) is not directly related to
its size. The scale is inversely proportional to the contact
line velocity and might be much larger than the size of the
drop itself. In case of multiple drops (or bubbles), this
effect may cause a thermal interference between them.
These factors require considering the transient heat dif-
fusion (and not simply the stationary heat conduction)
in the heater.

The model has been developed under assumption of
the ideally smooth surface. Note that in the framework
of the present approach both the contact line pinning and
the wetting hysteresis can be accounted for in a natural
way by introducing surface heterogeneities modeled with
a variation of θ along the solid surface33.

The author is grateful to D. Beysens, P. Colinet, D.
Jamet, O. Lebague, B. Mathieu, G. Gavrilyuk and P.
Stephan for helpful discussions. The financial support of
CNES and of ANR (ANR-08-BLAN-0212-03) is acknowl-
edged.

Appendix A: Lubrication theory for the moving contact line
with heat and mass transfer

The lubrication theory, developed independently by
Petroff34 and Reynolds35, has been applied to studies of
heat and mass transfer by many authors (see e.g.9,21,23).
However, the lubrication equations were written there in
somewhat different form inconvenient for the purposes
of the present study where the emphasis is made on the
pressure variable. For the convenience of the reader, the
employed equations are re-derived here.

For thin fluid layers, the fluid is supposed to move
mainly along x axis (Fig. 1), i.e. vx � vy. In addition,
the vx variation across the layer is assumed to be much
larger than along it: ∂vx/∂y � ∂vx/∂x. The Stokes
equations then reduce to:

∂pL
∂x

= µ
∂2vx
∂y2

, (A1)

∂pL
∂y

= 0. (A2)

By taking the y derivative of (A1) and using (A2) one
arrives at the equation ∂3vx/∂y

3 = 0, the solution of
which is

vx = a+ by + cy2, (A3)

where a, b, c are independent of y. They are to be deter-
mined from the boundary conditions. The first of them
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defines the tangential stress at the free vapor-liquid inter-
face y = h(x) to be equal to the surface tension gradient
induced (Marangoni) stress

µ
∂vx
∂y

=
∂σ

∂x
. (A4)

The volume flux Q flowing through the film at a given
position x

Q =

∫ h

0

vx(y)dy (A5)

serves as the second equation for three unknowns a, b, c.
The third condition is given by (10). The back substitu-
tion of the solution into (A1) written at the vapor-liquid
interface results in the following expression:

Q =
1

µ

[
∂σ

∂x

(
h2

2
+ hls

)
−
(
h3

3
+ h2ls

)
∂pL
∂x

]
. (A6)

By using the fluid mass conservation, Q can also be
expressed via the component vn of the liquid velocity
normal to the vapor-liquid interface (assumed positive
when directed along ~n, see Fig. 1):

Q =

∫ l

0

vn(l)dl ≈
∫ x

xCL

vn(x)dx. (A7)

(A7) can be rewritten as

vn =
∂Q

∂x
, (A8)

where vn is related to the mass evaporation flux at the
interface J (assumed positive when the mass comes from
the liquid side, i.e. at evaporation) known from the heat
transfer problem via the mass conservation law

J = (vi − vn)ρL. (A9)

The normal interface velocity vi is considered to be posi-
tive if directed inside the liquid (as the vector ~n in Fig. 1).

By injecting (A9) and (A6) into (A8), one arrives fi-
nally at the expression (11).

Appendix B: Numerical computation of the velocity of the
moving interface

Calculation of the normal velocity of the interface from
the time evolution of the interface shape is somewhat del-
icate. The expression (12) commonly used in the stan-
dard lubrication theory (see e.g.21) requires that x is
maintained constant while calculating the time deriva-
tive. Therefore, the velocity at j-th node at time moment
F would need to be computed with the finite difference

viFj ≡ vi(x = xnFj ) = − ∂h

∂t

∣∣∣∣F
j

'

−
hF (x = xnFj )− hF−1(x = xnFj )

∆t
, (B1)

where xnFj (the node values of x) are related to ζni via
(40). Note that (B1) involves the height of the interface
hF−1(xnFj ), where h is taken at time F − 1 and the node
point corresponds to the time F . Since the grid moves
and hF−1 values are defined only at the node points

x
n(F−1)
j , one would need to determine hF−1(xnFj ) by in-

terpolation. This is inconvenient and leads to a loss of ac-
curacy. In addition, the contact line motion can prohibit
finding of hF−1(x = xnFj ) at all if xF−1

CL < xnFj < xFCL,

i.e. if the interface at time F−1 did not exist at x = xnFj .
Both these difficulties can be avoided if ∂h/∂t is calcu-
lated with the following expression for the full derivative
of h(xi(t), t)

dh

dt
=

dxi

dt

∂h

∂x
+
∂h

∂t
(B2)

Its finite difference counterpart is

dh

dt

∣∣∣∣F
j

'
hF (x = xnFj )− hF−1(x = x

n(F−1)
j )

∆t
≡

hFj − h
F−1
j

∆t
, (B3)

where aFj denotes the node value of the quantity a =

(vi, h, . . . ), i.e. its value for the time F and at the point
x = xnFj . By substitution of (B3) into (B1), one finally
obtains

viFj '
xnFj − x

n(F−1)
j

∆t
uF−1
j −

hFj − h
F−1
j

∆t
, (B4)

where u = ∂h/∂x.
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