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Abstract

Heat transport over large distances is classically performed with gravity or capillarity driven heat
pipes. We investigate here whether the ”piston effect”, a thermalization process that is very efficient
in weightlessness in compressible fluids, could also be used to perform long distance heat transfer.
Experiments are performed in a modeling heat pipe (16.5 mm long, 3 mm inner diameter closed
cylinder), with nearly adiabatic polymethylmethacrylate walls and two copper base plates. The
cell is filled with Hs near its gas-liquid critical point (critical temperature: 33K). Weightlessness is
achieved by submitting the fluid to a magnetic force that compensates gravity. Initially the fluid is
isothermal. Then heat is sent to one of the bases with an electrical resistance. The instantaneous
amount of heat transported by the fluid is measured at the other end. The data are analyzed and
compared with a 2-D numerical simulation that allows an extrapolation to be made to other fluids
(e.g. COgq, with critical temperature 300 K). The major result is concerned with the existence of a
very fast response at early times that is only limited by the thermal properties of the cell materials.
The yield in terms of ratio: injected/transported heat power does not exceed 10-30% and is limited
by the heat capacity of the pipe. These results are valid in a large temperature domain around the

critical temperature.



I. INTRODUCTION

Heat transport over large distances is classically performed by the latent heat transport.
Conduction is effective only on short distances because of the slowness of the heat diffusion
process. In the 1990s, a new way of the heat transfer in very compressible fluids has been
evidenced. This phenomenon, which is particularly important under weightlessness, has
been called piston effect [I-3]. When heating a fluid confined in a container, a thin hot
boundary layer (HBL) of thickness ¢; forms close to the heating wall [1]. This layer expands
and at the same time compresses adiabatically the rest of the fluid. As a result, a spatially
uniform heating of the bulk fluid is achieved in a very short time.

The heat flux is limited by the temperature gradient in the heating wall and in the fluid
HBL. If the other side of the sample, located at a distance L from the heating wall, is colder,
a cold boundary layer (CBL) of length do will simultaneously form at the corresponding wall,
see Fig. 1c below. In between, the temperature is homogeneous. A heat transport can thus
be performed in both HBL and CBL, connected by the bulk fluid that acts as a kind of
thermal short circuit. While such a ”heat pipe” does not work in the stationary regime (the
piston effect concerns only transient behavior), it could serve to quickly transfer heat.

Studies of transient heat flux in presence of piston effect have already been performed in
3He under Earth’s gravity in a flat sample of large aspect ratio (thickness 1 mm, diameter
57 mm) perpendicular to gravity, for Rayleigh numbers below and above the convection
threshold [5] and in CO, under weightlessness [6]. Here, in order to evaluate whether this
process can be used to transport heat on large distances under weightlessness, experiments
are performed under the conditions of magnetic gravity compensation in a cylindrical cell
with the largest length that preserves magnetic compensation (aspect ratio 0.182). The cell

is filled with Hy near its gas-liquid critical point (critical temperature T, = 33 K).

II. EXPERIMENTAL SETUP

Weightlessness conditions are achieved by using magnetic forces to compensate the grav-
ity. The magnetic gravity compensation technique is recently reviewed in [7]. The HYLDE
(Hydrogen Levitation DEvice) situated at CEA /Grenoble has been used here. It is described

in details in [, 9].



A. The cell

The fluid is confined in a cylinder of L = 16.5 mm long, 3 mm inner diameter and
4 mm outer diameter made of polymethylmetacrylate (PMMA = Plexiglas, denoted below
with the subscript PA) (Fig. 1). The cylinder axis coincides with the magnetic coil axis.
PMMA has been chosen because it is transparent and has a low thermal conductivity (kps =
0.125 Wm'K~! at 33K) and the specific heat of the walls is low (Cpy = 180 Jkg 1K1
at 33K). With a mass density of 1.15 - 103 kgm ™3, the thermal diffusivity is Dpy = 6.04 -
107" m2s™!, corresponding to the characteristic diffusion time tp4 = L?/Dpy = 450 s. The
PMMA cylinder is sealed with stainless steel rings to two parallel electrolytic copper (thermal
conductivity at 33K is 1130 Wm 'K ™!) blocks. They are in thermal contact with the helium
bath provided by thermal conductors. The temperatures of the blocks are measured with
Cernox® thermistors. They are made of a composite that provides a very weak resistance
variation with the magnetic field. Their time constant is of the order of 20 ms. Stainless steel
is a thermal insulator at these low temperatures (thermal conductivity is 3.37 Wm™'K™!).
The mass of the upper copper block (hot part), called the “head”, is m = 2.37 g. The
other block, the “base” (a colder part) is kept at constant temperature T by a closed loop
temperature regulation, the proportional integral differential device (PID). The temperature

control accuracy is 1 mK at 33 K and the working temperature range is 15-40 K.

The cell can be filled in situ with pure pressurized Hs through a capillary. This capillary is
closed by an H, ice plug (Hj solidification temperature is 14 K), whose formation is provided
locally by a thermal conductor in contact with the helium bath. The cell is observed by
light transmission. Parallel light is directed with mirrors from outside the anticryostat to
the sample. The beam is parallel to the axis of the cylindrical cell and is deflected by mirrors

to the camera outside the anticryostat. The whole set-up is situated in a vacuum chamber.

At room temperature and at equilibrium, Hy is actually a mixture of three volumes of
orthohydrogen (parallel spins of H nuclei, o-Hs) with one volume of para hydrogen (an-
tiparallel spins, p-Hy). This gas is called normal hydrogen, n-H,. When Hs is cooled, the
o-Hy—p-H, equilibrium is shifted and almost all o-H, gradually transforms to p-Hy (more
precisely, 96% of p-Hy at equilibrium at 30K). The exact critical pressure, temperature and
density of p-Hy are T, = 32.976 K, p. = 1.2928 MPa, p. = 31.426 kgm =3 [3]. The cell is
filled at critical density p. by checking that the gas-liquid meniscus does not displace in the
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cell while approaching T, from below. The precision is of the order of 0.5 mm which corre-
sponds to the 3% uncertainty of the critical density. The precision of the determination of
T, is within 1 mK. This value shifts with the conversion o-Hs - p-Hs with a time constant of
order 50 hours [3]. Then the experiments close to T, are performed more than 2 days after

the beginning of the runs with the value T, checked before and after these runs.
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FIG. 1. (Color online) The experimental piston effect heat pipe. (a): photo. (b) heat exchange
model. Both the head and the base are connected to the helium bath via heat conductors (thin
wires). The heat power PJ"" Jeaks from the head to the bath, see section III A 2. The controlled
heat power is supplied to the head (PIJ;“”) and to the base (Pg,u”). (c) Schematic instantaneous
fluid temperature variation provided by the piston effect. The cold (CBL) and hot (HBL) boundary

layers are indicated.

B. Measurement procedure

Initially, the base, the head, the fluid and the cell walls are at the same temperature Tj.
The head temperature is maintained constant by sending a constant power (~ 5 mW) that
compensates the heat losses through the wiring (Fig. 1). It is important to precisely calibrate
the head and base temperature sensors. We took benefit of the strong convective flows that
form a few mK to 7. under gravity in the presence of the slightest temperature gradients.

Head (T) and base (Tg) temperatures are assumed to be equal when, under Earth gravity,
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the convection disappears. Then the magnetic field is switched on and further measurements
are performed at weightlessness.

The electric power Péu” is supplied to the cell base by the temperature regulation that
maintains T constant. PL'(t = 0) ~ 200 mW when the head and the base are at the same
temperature. The power P{"" is supplied to the head. P4, P/"" Ty and Ty are recorded
throughout the experiment.

At t =0, the power Fy = 7.5 mW is sent during At = 300 s in the head by increasing in a
single step the power P};“”. This value corresponds to 1 kW/m?. It has been chosen because
(1) it is the smallest value that provides enough precision in the data; (2) this power is close
to the maximum power that can be extracted by the cell base temperature regulation. The
initial temperature Ty remains the reference for the base temperature regulation PID (i.e.
T = T within the precision of the PID). During the experiment, the temperature of the
base varies only slightly, of the order of 6 mK (Fig. 2). The integration time of the PID is
typically 10 s. This value thus corresponds to the temporal resolution of the transient heat
flux measurements.

The heat power Pg transferred by the cell is determined as
Py(t) = PE"(t = 0) = PE" (). (1)

The power Pg(t) is thus limited by the value PL""(t = 0).
The measurements were initially carried out in the empty cell to evaluate the heat con-
duction by the PMMA walls. The cell is then filled and measurements are performed at

different temperatures Tj.

C. Measurement results

In Fig. 2 are shown typical evolutions of the transmitted power Pg and head temperature
when the pipe contains Hy initially at 7y = 7. + 5 mK. The corresponding curves for the
empty (under vacuum) cell are shown for comparison. In this latter case, heat is transmitted
by the PMMA pipe walls only. One notes that (i) Ty is lower when the pipe is filled, which
agrees with the higher value of Pp, (ii) the dynamics of Pg at small time is quite different
with empty and filled cells. This is even clearer from Fig. 3 where the typical small time

behavior is reported for different temperatures. After the 10 s reaction time of the thermal
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FIG. 2. (Color online) Typical measurements of the transmitted heat flux (Pp), head temperature
(Tx) and base temperature (T, in the insert) when a 7.5 mW power is injected into the head
during about 300 s (shown with a bar). Solid lines: filled cell, Ty = T, + 100 mK; dotted lines:

empty cell (under vacuum).

regulation, Pg increases linearly. In contrast, the heat flux in the empty pipe remains close
to zero for long time. The difference in behavior highlights two different mechanisms of
heat transfer (i) thermal diffusion in the walls of the empty pipe where the heat flux is zero
before the front of heat diffusion reaches the base, and (ii) piston effect in the filled pipe.
In the latter case, the dynamics (and the yield, see below) increases when nearing 7. The
behavior of Pg(t) at Ty < T, (i.e. when both liquid and gas phases are present in the pipe)

is similar to that at Ty > T..

The measured time evolution of the transmitted power Pg is plotted at different temper-
atures above and below T, in Fig. 4. One notes that the behavior at Ty < T, is similar to
the one at Ty > T, even very close to T,.. The yield defined as Y = Pg/F, attains at its
maximum about 10%. The yield for the filled pipe is always larger than for the empty pipe.
At large times, the pipe walls contribute to the heat transfer, as seen in Fig. 4, where the
rise of Pg for the filled cell is roughly parallel to the empty cell curve. The maximum heat

flux (PJ!) is then always reached at the end of the heating period.
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FIG. 3. Small time evolution of the transmitted power (Pp) for several temperature distances
To — T¢, both above and below the critical point. The head temperature evolution (dotted line) is
also shown to precisely detect the onset of heating. V: empty cell; Ty — T, = 5 mK (solid line),
30 mK (broken line, long dashes), 0.1 K (double broken line), 3 K (broken line, short dashes),
-0.1 K (dotted line), -1 K (dotted-dashed line).

In order to determine what are the relative contributions of the cell walls and the fluid,
it is necessary to analyze the process in great detail. This is performed in the section III. It
is found that the wall contribution is much smaller than in the empty cell due to the rapid

thermalization of the bulk fluid that reduces the temperature gradient in the pipe walls.

It is possible to infer the ”initial” slope dPg/dt from Fig. 3. Heat is sent into the cell
head at t = 0 and, after 10 to 15 s, Pg grows linearly in time during at least 20-30 s. One
thus define as initial slope the value of dPg/dt as measured between 27 s and 47 s. During
this period, the contribution of the transient conduction by the pipe walls is negligible. The
temperature dependence of this slope is reported in Fig. 5a for two experimental runs. The
data are similar above and below T,. The slope increases when going to 7. and saturates for
Ty — T.] < 0.3 K. The maximum heat flux (at 300 s) P4 (Fig.4) is plotted with respect to
temperature in Fig. 5b for two different runs. Data between both runs show a systematic

difference of order 15% that we attribute to the uncertainty of filling of the cell at critical
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FIG. 4. Measured transient of the transmitted power Pp for several temperatures above and below
the critical point. The time interval during which the power is injected is shown with a bar. V:
empty pipe; Other curves: filled cell; Tp — T, = 5 mK (solid line), 30 mK (broken line, long
dashes), 0.1 K (double broken line), 3 K (broken line, short dashes), -0.1 K (dotted line), -1 K
(dotted-dashed line).

density (£3%). They, however, exhibit the same behavior, similar to dPg/d¢, with an

increase when going to 7T, and saturation for |7, — 7T..| < 0.3 K.

III. 2D NUMERICAL SIMULATION AND ANALYSIS

Several important points influence the choice of a numerical method for the simulation.

(i) 1D numerical simulations are relatively easy to perform. However, in the present
study, a 1D simulation would not take into account an important effect, the heat exchange
with the lateral walls. Lateral walls are heated by the bulk fluid that is quickly thermalized
by the piston effect. This wall influence limits the fluid temperature rise and thus the value
of the output heat flux. At least a 2D numerical simulation is necessary to take this influence
into account.

(ii) The near-critical fluid introduces a nonlinearity in our system. Its simulation thus

requires an iterative algorithm. On each iteration a complete set of temperature values at
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FIG. 5. (a) Measured transient of the transmitted heat flux initial rise dPg/dt (see text) with
respect to |Tp — Te|. Run 1: circles, run 2: squares. Ty > T.: black circles; Ty < T¢: open circles.
The dotted (broken) line is the run 1 (2) smoothing of Ty > T¢. data. (b): Fluid maximum heat
transmission PA (see text) with respect to [Ty — T.|. Run 1: circles, run 2: circles. Ty > T,: filled

circles; Ty < Te: open circles. The dotted (broken) line is the run 1 (2) smoothing of Ty > T, data.

each node point should be determined. It means that (i) in practice, the equation of state
(EOS), i.e. the relation between fluid temperature 7', pressure p and density p, must be
solved at each iteration, node point and time step. It involves an enormous total number of
EOS treatments. At the same time, the system is driven quite far from the critical point,
the relative temperature distance can be as large as (7' — T.)/T. ~ 0.15. This means that
(ii) any simple model EOS (parametric [10], van der Waals, linearized [ 1], etc.) would not
work well. A real EOS for Hy needs to be used in the simulation. The available hydrogen
EOS [12, 13], is the modified Benedict-Webb-Rubin (MBWR) EOS that includes dozens of
terms. The requirements (i) and (ii) make the computation time prohibitively long when
the full hydrodynamic description of the supercritical fluid (as in [11]) is used.

Recently, some of us [10] suggested a fast calculation method that results in accurate
heat transfer calculations wherever the impact of the fluid advection on the heat transfer
can be neglected. It makes use of the Boundary Element Method (BEM) [14] that permits

a reduction by one of the dimensionality of the problem: only the boundary surfaces needs



to be meshed. Here we use this method to simulate this problem in microgravity where the

fluid convection can be neglected.

A. Problem statement

We aim to model the amount of heat transferred to the base from the head of the cell
while the temperature of the base Ts remains constant. Initially, the temperature of the
whole cell is equal to Tj.

The cell consist of several parts: (i) Cell base (denoted by B index), (ii) Cell head
(denoted by H index), (iii) PMMA tube (denoted by PA index), (iv) Fluid (denoted by F
index). These parts need to be modelled separately.

1.  Cell base model

The cell base is made of electrolytic copper and is assumed isothermal thanks to its very
high thermal conductivity. Its temperature Tz is controlled by the temperature regulation
and assumed to be constant(= 7,) during each experiment. In reality, the temperature
regulation device (see above section IIB) exhibits an integration time ¢; ~ 10 s that char-
acterizes the time over which it averages the actual base temperature data T in order to
maintain the base temperature at its reference value Ty. We take into account this regulation
"inertia” indirectly by integrating over ¢; the function Pg(t) obtained in the simulation.

The power Pp transferred to the base is the main output of the simulation, to be compared
with the experiment. It is a sum of the heat power that arrives from the cell head by the

tube walls and by the fluid column:

T T
Py = —k;PA/ aaﬁA ds — kp/ %—f
(Spa) n B (Sp) 9N

where k denotes the thermal conductivity and the integration is performed over the cross

s 2)

section areas of the PMMA tube Sp4 and of the fluid Sr (see Fig. 6); the unit normal vector
1 is directed inside the base. Since T is assumed to be constant in time, the heat power
that leaks to the He bath remains constant and Pp given by (2) corresponds to the measured

quantity (1).
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FIG. 6. Scheme of the cell representation in 2D (fluid layer sandwiched between the PMMA walls).

2. Cell head model

The main part of the head is made of electrolytic copper that can be assumed isothermal
thanks to its very high thermal conductivity at this temperature. The other part is made of
stainless steel, which conducts heat much worse than copper (ratio of thermal conductivities
steel/copper is 0.003, see section II A). However, because of its very small thickness, slow
temperature evolution and a good thermal contact with copper, it can also be assumed
isothermal.

The power balance of the head can then be written in the form

PIU— ks / 0Tpa Mr
(Spa)

ds + kp/ —_—
H (SF) oni

where PI{,“” is the controlled heat power supplied to the head. The first two terms at the

AT
dS + Cy—2 4+ P (Ty), (3)

ot . dt

r. h. s. correspond to the heat power transferred to the tube walls and the fluid respectively.
The unit normal vector 7 is chosen to be directed towards the head. The third term reflects
the heat inertia of the head, the head total heat capacity (measured in J/K) being denoted
by Cx. The power P = PJull(Ty) is the heat leak due to the copper wire that connects
the head to the He bath at temperature Ty, = 2.17 K. Due to the high thermal diffusivity of

the copper, the temperature distribution in the wire can be assumed to follow immediately
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the temperature of the head. This implies that

pery =3 " (D), (1)

lo Jry,
where S, = 0.05 mm? and [,, = 20 cm are the section area and the length of the wire. Since
the copper thermal conductivity k¢, does not exhibit a strong temperature dependence
between 33K and 43K (where the experiments are carried out), P,,(7) can be approximated
by the linearized expression

Su
P (Ti) = PL™(Ty) + 22k To) (T — Tb). (5)

Note that the constant power P/“!(Ty) needs to be supplied to the head both before (to
maintain Ty = Tp) and during the experiment (as a part of P"") to compensate the heat
leaks. In the following, we will denote Py (t) = P (t) — P/*!(Ty). Tt represents the excess
of the supplied power with respect to its value at ¢ = 0. In the above experiment, Py was

switched on at t = 0, kept at a constant level Py during the time At, and then switched off.

3. PMMA walls model

To estimate correctly the heat exchange between the fluid and the tube, it is important
that the heat exchange area 2w R;h be reproduced correctly in the simulated 2D configu-
ration. The fluid layer is supposed to be sandwiched between two plain walls (see Fig. 6)
so that the PMMA-fluid contact area is 2dh. This condition defines the depth d = 7R;
of the sandwich. The effective fluid layer half-thickness is then lp = Sp/2d = R;/2. The
effective wall thickness is [py = Spa/2d. The heat flux and temperature are continuous at

the PMMA-fluid contact area, where the normal is directed inside the PMMA:

L OTpa _ . OTr
PA or — "om> (6)
Tpa = T

Since the cell is in vacuum and the radiative heat transfer is negligible because of the low
temperature, the zero flux boundary condition can be defined at the external surface of the
cell PMMA walls. The isothermal conditions Tp4 = Ty and Tpaq = T are defined at the
areas of contact PMMA-head and PMMA-base respectively. Notice that while T; remains

constant, T is a function of time. Its evolution is calculated by using the Eqs. (4-5).
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The heat conduction problem has trivial initial conditions

i 2
— = DpsV
8t PA P, (7)

S0|t:0 =0,
where Dpy is the thermal diffusivity of the PMMA. It has to be solved for the reduced
temperature ¢ = Tpa(Z,t) — Ty (where Z is the position vector) to find the variation of
the temperature T4 inside the PMMA. The parameters kpy and Dpy are assumed to be

constant.

4.  Fluid model

Due to the symmetry, only half of the cell through a cut along the axis needs to be
simulated, the zero radial flux being imposed at the cell axis. The approach [10] was used
in the simulations. We summarize it below.

The fluid temperature satisfies the equation

T
8_tF = DpV*TF + g(t), (8)
with )
¢, \ dT
o= (1-2) 5 )

where T = T(t) is the average fluid temperature (not to be confused with space- and time-
dependent local fluid temperature Tr), ¢,(c,) is the specific heat of the fluid at constant

volume (pressure), and Dp is the fluid thermal diffusivity. The initial condition for T is
TF’t:O = To. (10)

One can note that the term g(¢) is only relevant near the critical point where ¢, > ¢,.
Since the cell is closed, the mean fluid density p in the cell remains constant. The average

temperature 7T is defined using the fluid EOS

A(p,p,T) = 0. (11)

where p is the fluid pressure. To obtain realistic results in a wide temperature interval (in the
experiments, the temperature varied within 20% from T.), we have to use a realistic EOS.

Only the quite complicated NIST MBWR EOS [12, 13] is available for parahydrogen. It is
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unfortunately precise only relatively far from the critical point, typically for Ty — T, > 0.5
K. Discrepancies between simulation and experiments can be then expected very close to
the critical point because the critical divergence of some parameters will not be properly
accounted for in the simulation.

Several methods are available to simulate the thermal behavior of the cell, see [5, 15, 10].
However, with such a complicated EOS, only the approach [10] developed by some of us
can be used, the others being prohibitively time consuming. The temporal evolution of the
average temperature is given directly by the equation first derived in [3], which replaces the
more complicated pressure evolution determination:

ar 1 OTr
— = k dA 12
dt  poc, /A Pom (12)

where v = Sph is the total fluid volume. The integration is performed over the whole
fluid boundary A. @ is the outward normal to A. Instead of the local values for the
fluid parameters (c,, ¢,, kr,...) we use everywhere their time-dependent spatially averaged
counterparts defined. The EOS (11) is used to determine the average density p and the
average temperature 7. The fluid thermal conductivity kp is determined with a correlation
implemented in the NIST REFPROP data base [13]. Eq. (12) have to be complemented
with the initial condition

T‘t:() — To. (13)

5. Reduction of the fluid problem

Two more steps must be performed before the numerical procedure can be applied. First,
it is convenient to introduce a new 1 variable instead of T:

W(Ft) = Tp(F, 1) — Tp — /T (1 _ c—) a7, (14)

To Cp

Eq. (8) reduces then to the equation

o,
= = DeVp. (15)

One notes that since all the fluid parameters depend on the time-dependent average tem-

perature T, the fluid thermal diffusivity can be written as
Dp = Dyf(T) (16)
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and is time dependent. In this equation, the function f is non-dimensional and on the order
of unity and D, is a constant. To eliminate this time dependence from Dy in Eq. (15), one
makes a second step by introducing a new variable 7 defined by the equations

dr _

— = (D),

= /(D)

T‘t:[) = 0.

(17)

Since T is a function of ¢ only, the initial value of the problem is fully defined. The substitu-
tion of Eq. (17) into Eq. (15) results in a linear diffusion problem with a constant diffusion
coeflicient Dy

o

— = DyV*y,
gr = DaV'Y (18)

¢|T:o = 0.
B. Numerical implementation

A linear 2D heat diffusion problem can be solved by BEM. Below we outline this method

for the problem (18) that is equivalent to the following integral equation

Dd/ dT//
0 A

. L OG@E -2 T — 1)

w(zl77—,) aﬁ

G(Z — x_7,7' — T’)q(f’,T') —

doA = %@b(f, T), (19)

where ¢(Z,7) = 0yY(Z,7)/0n and G is the Green function for the infinite space:

GET) = — o i (20)
= X — .
7 AnTDy P 41Dy

Eq. (19) is solved by breaking the integration contour A into straight Boundary Elements

(BE’s). On each of them ¢ and ¢ are assumed to be constant and equal to their values at
the node point Z; in the middle of the i-th BE. The time interval (0, 7) is broken into the
intervals (7y_1,7) on which ¢ and ¢ are assumed to be constant and equal to ¢ and gy
at the i-th BE. Eq. (19) then reduces to the set of linear algebraic equations
F N
YD (4Gl — v HGT) = ¢ri/2, (21)

f=1 j=1
where i = 1...N. H;; and G;; are the BEM coefficients:

GEf =D N dt | G@# -7
i — d (xz — X, Tp — t) d:cAa
Tf-1 Aj

Tf T — T —
" = D, / dt / 0GE —Tmr = 1) 4
Tf_l AJ

Oy,

(22)
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Their calculation is discussed in detail in [14]. The 2N variables {qg;, ¥r;} (i =1...N) are
related via N more equations that correspond to the boundary conditions given at each of
the N BE’s. The total number of equations is then 2N and corresponds to the total number
of the unknowns. This set of equations should be solved sequentially for each time moment
Tr, where F' varies from 1 to the maximum required value.

The calculation algorithm needs to be iterative to find T
1. T(tp_1) is taken as the initial guess for T'(tr) (Tp is used for F = 1).

2. The fluid parameters are calculated for T(tr) using the EOS; 75 is calculated with
Egs. (17).

3. The coupled problems (7) and (18) are solved by BEM, the heat flux distribution over
the fluid boundary is found.

4. Tt is used to determine the corrected value of T'(tr) with Eq. (12).
5. The steps 24 are repeated until the convergence is achieved.
6. The steps 1-5 are repeated for the next time moment.

Since the summation in Eqgs. (21) has to be performed over all f = 1... F, the described
BEM formulation has a disadvantage of an increase of the calculation volume with /. On
the other hand, the algorithm is very stable, which permits to choose a relatively large time

step with practically no loss in accuracy.

C. Adjustment of the cell parameters

First, one needs to check if the model parameters correspond to the actual experimental
values. The test consists in comparing the simulation and the experiments in an empty
cell of both the evolution of the heat flux and head temperature. This simulation appears
to be very sensitive to the precise value of the heat capacity of the head Cy = mpycy,
where my and cy are the mass and the specific heat of the head. The pieces of the head
are made of stainless steel and copper, the specific heats of which at 35K being close. For
simplification, we will take that of copper (cy = 42.6 J/kg/K [17]). A good agreement

between the calculation and the experiment (Fig. 7) is found for my = 6 g. Taking into
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account that the copper part weight is 2.4 g and the stainless steel pieces are about of the

same size, this my value is quite reasonable.
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FIG. 7. Empty pipe: comparison between the simulation (lines) and the experiments (charac-
ters)for 7.5mW injected power. Ty = 33K. Black line and dots: transmitted power Pp. Gray line

and squares: head temperature Tp.

D. Some analytical results
1. Small time asymptotics

No heat exchange of the fluid with the tube walls is assumed in this section in order to
obtain analytical results. At small times, all fluid parameters can be approximated by their
values at the initial temperature, i.e. that of the base T;. The temperature profile in the
fluid is sketched in Fig. lc. It shows three regions: hot and cold diffusion boundary layers
(HBL and CBL) that form near the extremities of the cell and a nearly isothermal bulk. The
thickness of both HBL and CBL can be estimated with the expression § ~ \/Dpt where Dp
is the fluid thermal diffusivity. This allows the main parameter, i.e. the transferred power
to be found in the form

P = Spkp(Ty. — T5) /0, (23)
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where Ty, means the temperature in the bulk of the fluid and kg is the fluid thermal con-
ductivity. Sr (= 7R?) is the fluid cross-section area. Unless stated otherwise, Ty = Ty and

is constant. Similarly to Eq. (23), the transferred to the fluid power is

The bulk of the fluid remains isothermal, which means that ATy, = 0. By making use of

the Eqgs. (8, 12) one obtains
dT; v\ P
0k <1 _ C_) 7 (25)
dt cp) puc,

where v = Sph is the total fluid volume, ¢,(c,) is the specific heat of the fluid at constant

volume (pressure) and P is the total heat supplied to the fluid per unit time.

Two kinds of model problems are considered below for the sake of comparison: a constant
heat flux boundary condition at the fluid-head interface, the numerical solution for which is
analyzed in [10], and a more realistic problem where the heat capacity of the head controls
the head temperature evolution. As previously, it is assumed that Tg is equal to the initial

fluid temperature Ty.

2. Constant heat flux boundary condition

In this case the P value is constant and one obtains from Eqgs. (23, 25) the following small

time asymptotics :

1 1\ P
Tbk; — TO ~ (— — —) —t, (26)
v C) pv
c P
P~ |2 —1)>-+\/tDp. 27
b (Cv ) h g (27)
One notices a steep rise of the output power Pg with time [10] with dPg/dt — oo when

t— 0.

3. Heat capacity-limited regime

Let us assume that the contributions of the heat fluxes going both into the fluid and into
the PMMA walls are negligible in the head heat balance Eq. (3). One can then obtain from
Egs. (3, 5)

dT; Sw
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Since all the parameters in this equation are constant, one can infer from it the time evolution

of TH,

Ty =Ty + LHT [1 —exp (—iﬂ : (29)

Cy Tr
where 7. = 1,Cy /(Swkcow) & 600 s is the relaxation time. It appears that this regime applies
in our case. Indeed, Fig. 8 below shows a behavior similar to (29) with a relaxation time
of the order of several hundreds of seconds. This implies that if Py were switched on for a
long time in our experiment, 7y would relax to the value Ty + Py7,./Cy =~ 50 K at the time
scale of several 7,.. Note that this behavior is completely independent of the fluid.

The small time asymptotics (t < 7,.) is linear
Ty — Ty ~ Lt (30)

The total heat supplied to the fluid can be approximated by the following expression (see
Eqgs. 23,24) :
P:PH—PB%SFkF(TH—To)/é (31)

Using it and Eq. (25) one obtains the small time asymptotics
P
T —Tom (2 1) 2\ /Dpt??, (32)
Cy hOH

Eq. (23) then results in the linear small time behavior for Pg:

(& _ 4\ PuSrkr
PBN(CU 1) o t. (33)

A comparison of Eq. (27) with Eq. (33) shows that the small time behavior of both Ty and
Pg depends strongly on the boundary condition imposed at the solid-fluid boundary. While
the slope dPg/dt is infinite for the constant heat flux injection, it remains finite for the heat
injector of finite heat capacity. This conforms to the experimental data. For the sample at
critical density, dPp/dt ought to increase as (%) kp ~ <T°T;CTC)_O'57 when approaching T..
In the experiments (Fig. 5a), a slope increase is indeed observed when approaching 7,. The
increase is followed however by a saturation of the slope for Ty — T, < 0.3 K. This saturation
cannot be attributed to a substantial change of the fluid properties with temperature in
the bulk fluid as only the early times are concerned. As a matter of fact, this saturation is
not observed in the simulation (see Fig. 9a below) where the temperature inhomogeneity is
considered rigorously. We thus attribute the saturation to a slightly off-critical density of

the cell.
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E. Simulation results
1. Temperature dependence and scaling

A simulation is compared to the experiment performed at (i) a large distance from the
critical point To — T, = 3 K (Fig. 8a) and (ii) at a short distance Ty — T, = 50 mK (Fig. 8b).
One notes that the simulation represents relatively well the temperature evolution of the
head with, however, some systematic discrepancies. These differences are also found in the
transmitted flux, somewhat smaller in the simulation far from T, corresponding to a larger
rise in Ty, and larger close to T, corresponding to a smaller rise in Ty. We attribute these
discrepancies to the EOS which is not supposed to be correct in the close vicinity of the

critical point.
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FIG. 8. Comparison between simulation and experiments concerning the evolution of the trans-
mitted heat flux Pp (simulation: solid black line; experiment: squares) and head temperature
Ty — Tp (simulation: solid gray line; experiment: circles). Dashed line (V): contribution of the
wall conduction for the empty cell (the same as the black curve in Fig. 7), to be compared with
the dotted line (W) that represents the contribution of the wall conduction in the filled cell. (a)

To =T, +3 K. (b) Ty = T, + 50 mK.

For the sake of comparison, the quantities P}/ and dPg/dt for both the experiments and
the simulations, obtained as an average slope between 27 s and 47 s (as in section II1 C) have

also been plotted in Fig. 9. dPg/dt evolves strongly in this time range for T'— T, < 0.2 K
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and for this reason is not plotted. However, it is clear that the initial slope dPg/dt grows
as T — T, decreases. The saturation of P3 near T, is probably related to the change of the
fluid properties with temperature in the bulk fluid that occur at large times. The agreement
is fair if one considers the differences in the two experimental runs and the fact that the

EOS apparently overestimates the divergence of the compressibility close to T..
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FIG. 9. Comparison (log-log plots) between simulation and experiments concerning the 7' — T
behavior of: (a) the transmitted heat flux initial rise dPg/dt and reduced yield rise dY/d¢ (see
text). Simulations: solid line and crosses. Experiments: Run 1: circles, run 2: squares. (b):
maximum heat transmission P3 and Y™ (see text). Simulations: line. Experiments: Run 1:

circles, run 2: squares.

2. Length dependence

We consider now the length dependence of the flux yield. The efficiency of the bulk
heating produced by the Piston effect is inversely proportional to the fluid volume v, see Eq.
(25). According to Eq. (33), Pg (and thus Y') should be inversely proportional to h at small
times. Although it is obvious that the maximum of yield should decrease with increasing pipe
length, it is difficult to obtain the analytical dependence on h at long evolution times and a

numerical simulation is necessary. The simulations are carried out for a single temperature
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T. + 3 K and different multiples of 16.5 mm: (x2: 33 mm; x5: 82.5 mm; x10: 165 mm).
The results are reported in Fig.10. The maximum yield is seen to decrease according to a
law close to logarithmic Y™ = YjIn(hys/h), with Yy = 0.0267 4 0.0006 and hy; = 475 + 23.

The reason for such a law is unclear.
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FIG. 10. Variation at 7T, + 3 K of the maximum heat flux Pg and corresponding yield Y™ with
respect to cell length (semi-log scale) for 7.5 mW injected power. In the insert is shown the

evolution for the different lengths.

3. Generalization to COq

The simulation realized for the same parameters can be applied to another fluid, COs,
whose critical temperature is 7, = 304 K. The restricted cubic parametric EOS [18] has
been used to describe CO,. For the sake of comparison, the material parameters of the cell
solid cell components were chosen to be the same as for the experimental cell at 30 K. The
simulation is carried out for 4 temperature values (7o = 7. +5 K, 3 K, 1 K, 0.5 K), which
correspond to about the same reduced temperatures (7y — 1¢.)/T. as Hy at T, + 0.5 K, 0.3
K, 100 mK and 50 mK. The results are shown in Fig.11. The yield is larger with respect to
that of Hy. In particular, it is on order 30% at Ty, — 7. = 1 K, whereas it is about 10% for H,
at To — T. = 0.11 K, which corresponds to the same reduced temperature (0.033). This can
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be explained by the fact that the same power causes a smaller rise in reduced temperature

so that the ratio: (fluid heat capacity)/(head heat capacity) is larger for COq than for Hs.
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FIG. 11. (a) COz2 heat pipe simulation for 7.5 mW injected power. (a) Evolution of the trans-
mitted heat flux Pp (black curves) and head temperature Ty — T (gray curves) for different base
temperatures: Ty — T, = 5 K (solid line); 3 K: broken line, short dashes; 1 K: broken line, long
dashes; 0.5 K: dotted line). (b): Semi-log plot of the maximum heat flux P! and corresponding
yield YM with respect to Ty — T, (lower abscissa) or to the reduced temperature (Ty — T.)/T.

(upper abscissa).

IV. CONCLUSION

This study aimed to determine whether the piston effect in near critical fluids could be
used to transport heat at large distance, as heat pipes do. The yield defined as the ratio of
the injected and transported heat power, does not exceed 10-30%. It also decreases with the
tube length (nevertheless, with a slow logarithmic decay). An interesting transport property,
however, has been found. Any change in injected power is transmitted very rapidly, with a
rate that is only limited by the heat capacity of the cell. Although the experiments (and
most simulations) were performed with Hy, the conclusions are applicable to any other fluid.

In particular to CO,, which was studied numerically. This fast heat change transmission
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remains valid in a large temperature range around the critical point (10 K in Hy, 100 K in
COs). This means that a tube filled with such (appropriately chosen according to the tem-
perature range) fluid can be used as a thermal link installed in parallel with a conventional
heat pipe. Such a tube filled with fluid is an efficient thermal link during fast changes of the
applied power.
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