
Possibility of long-distance heat transport in weightlessness using

supercritical fluids

D. Beysens,1, 2 D. Chatain,1 V. S. Nikolayev,1, 2 J. Ouazzani,3 and Y. Garrabos4

1Service des Basses Températures, INAC/CEA,

17 rue des Martyrs, 38054 Grenoble Cedex 9, France

2ESEME, PMMH-ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 5, France

3SARL ArcoFluid, Parc Unitec 1, 4 Allée du Doyen Georges Brus, 33600 Pessac, France

4Institut de Chimie de la Matière Condensée de Bordeaux, UPR 9048,

CNRS, 87 avenue du Dr. Schweitzer, 33608 Pessac Cedex, France

Abstract

Heat transport over large distances is classically performed with gravity or capillarity driven heat

pipes. We investigate here whether the ”piston effect”, a thermalization process that is very efficient

in weightlessness in compressible fluids, could also be used to perform long distance heat transfer.

Experiments are performed in a modeling heat pipe (16.5 mm long, 3 mm inner diameter closed

cylinder), with nearly adiabatic polymethylmethacrylate walls and two copper base plates. The

cell is filled with H2 near its gas-liquid critical point (critical temperature: 33K). Weightlessness is

achieved by submitting the fluid to a magnetic force that compensates gravity. Initially the fluid is

isothermal. Then heat is sent to one of the bases with an electrical resistance. The instantaneous

amount of heat transported by the fluid is measured at the other end. The data are analyzed and

compared with a 2-D numerical simulation that allows an extrapolation to be made to other fluids

(e.g. CO2, with critical temperature 300 K). The major result is concerned with the existence of a

very fast response at early times that is only limited by the thermal properties of the cell materials.

The yield in terms of ratio: injected/transported heat power does not exceed 10-30% and is limited

by the heat capacity of the pipe. These results are valid in a large temperature domain around the

critical temperature.
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I. INTRODUCTION

Heat transport over large distances is classically performed by the latent heat transport.

Conduction is effective only on short distances because of the slowness of the heat diffusion

process. In the 1990s, a new way of the heat transfer in very compressible fluids has been

evidenced. This phenomenon, which is particularly important under weightlessness, has

been called piston effect [1–3]. When heating a fluid confined in a container, a thin hot

boundary layer (HBL) of thickness δ1 forms close to the heating wall [4]. This layer expands

and at the same time compresses adiabatically the rest of the fluid. As a result, a spatially

uniform heating of the bulk fluid is achieved in a very short time.

The heat flux is limited by the temperature gradient in the heating wall and in the fluid

HBL. If the other side of the sample, located at a distance L from the heating wall, is colder,

a cold boundary layer (CBL) of length δ2 will simultaneously form at the corresponding wall,

see Fig. 1c below. In between, the temperature is homogeneous. A heat transport can thus

be performed in both HBL and CBL, connected by the bulk fluid that acts as a kind of

thermal short circuit. While such a ”heat pipe” does not work in the stationary regime (the

piston effect concerns only transient behavior), it could serve to quickly transfer heat.

Studies of transient heat flux in presence of piston effect have already been performed in

3He under Earth’s gravity in a flat sample of large aspect ratio (thickness 1 mm, diameter

57 mm) perpendicular to gravity, for Rayleigh numbers below and above the convection

threshold [5] and in CO2 under weightlessness [6]. Here, in order to evaluate whether this

process can be used to transport heat on large distances under weightlessness, experiments

are performed under the conditions of magnetic gravity compensation in a cylindrical cell

with the largest length that preserves magnetic compensation (aspect ratio 0.182). The cell

is filled with H2 near its gas-liquid critical point (critical temperature Tc = 33 K).

II. EXPERIMENTAL SETUP

Weightlessness conditions are achieved by using magnetic forces to compensate the grav-

ity. The magnetic gravity compensation technique is recently reviewed in [7]. The HYLDE

(Hydrogen Levitation DEvice) situated at CEA/Grenoble has been used here. It is described

in details in [8, 9].
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A. The cell

The fluid is confined in a cylinder of L = 16.5 mm long, 3 mm inner diameter and

4 mm outer diameter made of polymethylmetacrylate (PMMA = Plexiglas, denoted below

with the subscript PA) (Fig. 1). The cylinder axis coincides with the magnetic coil axis.

PMMA has been chosen because it is transparent and has a low thermal conductivity (kPA =

0.125 Wm−1K−1 at 33K) and the specific heat of the walls is low (CPA = 180 J kg−1K−1

at 33K). With a mass density of 1.15 · 103 kgm−3, the thermal diffusivity is DPA = 6.04 ·

10−7 m2s−1, corresponding to the characteristic diffusion time tPA = L2/DPA = 450 s. The

PMMA cylinder is sealed with stainless steel rings to two parallel electrolytic copper (thermal

conductivity at 33K is 1130 Wm−1K−1) blocks. They are in thermal contact with the helium

bath provided by thermal conductors. The temperatures of the blocks are measured with

Cernoxr thermistors. They are made of a composite that provides a very weak resistance

variation with the magnetic field. Their time constant is of the order of 20 ms. Stainless steel

is a thermal insulator at these low temperatures (thermal conductivity is 3.37 Wm−1K−1).

The mass of the upper copper block (hot part), called the “head”, is m = 2.37 g. The

other block, the “base” (a colder part) is kept at constant temperature TB by a closed loop

temperature regulation, the proportional integral differential device (PID). The temperature

control accuracy is ±1 mK at 33 K and the working temperature range is 15-40 K.

The cell can be filled in situ with pure pressurized H2 through a capillary. This capillary is

closed by an H2 ice plug (H2 solidification temperature is 14 K), whose formation is provided

locally by a thermal conductor in contact with the helium bath. The cell is observed by

light transmission. Parallel light is directed with mirrors from outside the anticryostat to

the sample. The beam is parallel to the axis of the cylindrical cell and is deflected by mirrors

to the camera outside the anticryostat. The whole set-up is situated in a vacuum chamber.

At room temperature and at equilibrium, H2 is actually a mixture of three volumes of

orthohydrogen (parallel spins of H nuclei, o-H2) with one volume of para hydrogen (an-

tiparallel spins, p-H2). This gas is called normal hydrogen, n-H2. When H2 is cooled, the

o-H2–p-H2 equilibrium is shifted and almost all o-H2 gradually transforms to p-H2 (more

precisely, 96% of p-H2 at equilibrium at 30K). The exact critical pressure, temperature and

density of p-H2 are Tc = 32.976 K, pc = 1.2928 MPa, ρc = 31.426 kgm−3 [8]. The cell is

filled at critical density ρc by checking that the gas-liquid meniscus does not displace in the
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cell while approaching Tc from below. The precision is of the order of ±0.5 mm which corre-

sponds to the ±3% uncertainty of the critical density. The precision of the determination of

Tc is within 1 mK. This value shifts with the conversion o-H2 - p-H2 with a time constant of

order 50 hours [8]. Then the experiments close to Tc are performed more than 2 days after

the beginning of the runs with the value Tc checked before and after these runs.
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FIG. 1. (Color online) The experimental piston effect heat pipe. (a): photo. (b) heat exchange

model. Both the head and the base are connected to the helium bath via heat conductors (thin

wires). The heat power P full
w leaks from the head to the bath, see section III A 2. The controlled

heat power is supplied to the head (P full
H ) and to the base (P full

B ). (c) Schematic instantaneous

fluid temperature variation provided by the piston effect. The cold (CBL) and hot (HBL) boundary

layers are indicated.

B. Measurement procedure

Initially, the base, the head, the fluid and the cell walls are at the same temperature T0.

The head temperature is maintained constant by sending a constant power (∼ 5 mW) that

compensates the heat losses through the wiring (Fig. 1). It is important to precisely calibrate

the head and base temperature sensors. We took benefit of the strong convective flows that

form a few mK to Tc under gravity in the presence of the slightest temperature gradients.

Head (TH) and base (TB) temperatures are assumed to be equal when, under Earth gravity,
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the convection disappears. Then the magnetic field is switched on and further measurements

are performed at weightlessness.

The electric power P full
B is supplied to the cell base by the temperature regulation that

maintains TB constant. P full
B (t = 0) ≈ 200 mW when the head and the base are at the same

temperature. The power P full
H is supplied to the head. P full

B , P full
H , TH and TB are recorded

throughout the experiment.

At t = 0, the power P0 = 7.5 mW is sent during ∆t = 300 s in the head by increasing in a

single step the power P full
H . This value corresponds to 1 kW/m2. It has been chosen because

(1) it is the smallest value that provides enough precision in the data; (2) this power is close

to the maximum power that can be extracted by the cell base temperature regulation. The

initial temperature T0 remains the reference for the base temperature regulation PID (i.e.

TB = T0 within the precision of the PID). During the experiment, the temperature of the

base varies only slightly, of the order of 6 mK (Fig. 2). The integration time of the PID is

typically 10 s. This value thus corresponds to the temporal resolution of the transient heat

flux measurements.

The heat power PB transferred by the cell is determined as

PB(t) = P full
B (t = 0)− P full

B (t). (1)

The power PB(t) is thus limited by the value P full
B (t = 0).

The measurements were initially carried out in the empty cell to evaluate the heat con-

duction by the PMMA walls. The cell is then filled and measurements are performed at

different temperatures T0.

C. Measurement results

In Fig. 2 are shown typical evolutions of the transmitted power PB and head temperature

when the pipe contains H2 initially at T0 = Tc + 5 mK. The corresponding curves for the

empty (under vacuum) cell are shown for comparison. In this latter case, heat is transmitted

by the PMMA pipe walls only. One notes that (i) TH is lower when the pipe is filled, which

agrees with the higher value of PB, (ii) the dynamics of PB at small time is quite different

with empty and filled cells. This is even clearer from Fig. 3 where the typical small time

behavior is reported for different temperatures. After the 10 s reaction time of the thermal
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FIG. 2. (Color online) Typical measurements of the transmitted heat flux (PB), head temperature

(TH) and base temperature (TB, in the insert) when a 7.5 mW power is injected into the head

during about 300 s (shown with a bar). Solid lines: filled cell, T0 = Tc + 100 mK; dotted lines:

empty cell (under vacuum).

regulation, PB increases linearly. In contrast, the heat flux in the empty pipe remains close

to zero for long time. The difference in behavior highlights two different mechanisms of

heat transfer (i) thermal diffusion in the walls of the empty pipe where the heat flux is zero

before the front of heat diffusion reaches the base, and (ii) piston effect in the filled pipe.

In the latter case, the dynamics (and the yield, see below) increases when nearing Tc. The

behavior of PB(t) at T0 < Tc (i.e. when both liquid and gas phases are present in the pipe)

is similar to that at T0 > Tc.

The measured time evolution of the transmitted power PB is plotted at different temper-

atures above and below Tc in Fig. 4. One notes that the behavior at T0 < Tc is similar to

the one at T0 > Tc, even very close to Tc. The yield defined as Y = PB/P0 attains at its

maximum about 10%. The yield for the filled pipe is always larger than for the empty pipe.

At large times, the pipe walls contribute to the heat transfer, as seen in Fig. 4, where the

rise of PB for the filled cell is roughly parallel to the empty cell curve. The maximum heat

flux (PM
B ) is then always reached at the end of the heating period.
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FIG. 3. Small time evolution of the transmitted power (PB) for several temperature distances

T0 − Tc, both above and below the critical point. The head temperature evolution (dotted line) is

also shown to precisely detect the onset of heating. V: empty cell; T0 − Tc = 5 mK (solid line),

30 mK (broken line, long dashes), 0.1 K (double broken line), 3 K (broken line, short dashes),

-0.1 K (dotted line), -1 K (dotted-dashed line).

In order to determine what are the relative contributions of the cell walls and the fluid,

it is necessary to analyze the process in great detail. This is performed in the section III. It

is found that the wall contribution is much smaller than in the empty cell due to the rapid

thermalization of the bulk fluid that reduces the temperature gradient in the pipe walls.

It is possible to infer the ”initial” slope dPB/dt from Fig. 3. Heat is sent into the cell

head at t = 0 and, after 10 to 15 s, PB grows linearly in time during at least 20–30 s. One

thus define as initial slope the value of dPB/dt as measured between 27 s and 47 s. During

this period, the contribution of the transient conduction by the pipe walls is negligible. The

temperature dependence of this slope is reported in Fig. 5a for two experimental runs. The

data are similar above and below Tc. The slope increases when going to Tc and saturates for

|T0 − Tc| ≤ 0.3 K. The maximum heat flux (at 300 s) PM
B (Fig.4) is plotted with respect to

temperature in Fig. 5b for two different runs. Data between both runs show a systematic

difference of order 15% that we attribute to the uncertainty of filling of the cell at critical
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density (±3%). They, however, exhibit the same behavior, similar to dPB/dt, with an

increase when going to Tc and saturation for |T0 − Tc| ≤ 0.3 K.

III. 2D NUMERICAL SIMULATION AND ANALYSIS

Several important points influence the choice of a numerical method for the simulation.

(i) 1D numerical simulations are relatively easy to perform. However, in the present

study, a 1D simulation would not take into account an important effect, the heat exchange

with the lateral walls. Lateral walls are heated by the bulk fluid that is quickly thermalized

by the piston effect. This wall influence limits the fluid temperature rise and thus the value

of the output heat flux. At least a 2D numerical simulation is necessary to take this influence

into account.

(ii) The near-critical fluid introduces a nonlinearity in our system. Its simulation thus

requires an iterative algorithm. On each iteration a complete set of temperature values at
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FIG. 5. (a) Measured transient of the transmitted heat flux initial rise dPB/dt (see text) with

respect to |T0 − Tc|. Run 1: circles, run 2: squares. T0 > Tc: black circles; T0 < Tc: open circles.

The dotted (broken) line is the run 1 (2) smoothing of T0 > Tc data. (b): Fluid maximum heat

transmission PM
B (see text) with respect to |T0 − Tc|. Run 1: circles, run 2: circles. T0 > Tc: filled

circles; T0 < Tc: open circles. The dotted (broken) line is the run 1 (2) smoothing of T0 > Tc data.

each node point should be determined. It means that (i) in practice, the equation of state

(EOS), i.e. the relation between fluid temperature T , pressure p and density ρ, must be

solved at each iteration, node point and time step. It involves an enormous total number of

EOS treatments. At the same time, the system is driven quite far from the critical point,

the relative temperature distance can be as large as (T − Tc)/Tc ∼ 0.15. This means that

(ii) any simple model EOS (parametric [10], van der Waals, linearized [11], etc.) would not

work well. A real EOS for H2 needs to be used in the simulation. The available hydrogen

EOS [12, 13], is the modified Benedict-Webb-Rubin (MBWR) EOS that includes dozens of

terms. The requirements (i) and (ii) make the computation time prohibitively long when

the full hydrodynamic description of the supercritical fluid (as in [11]) is used.

Recently, some of us [10] suggested a fast calculation method that results in accurate

heat transfer calculations wherever the impact of the fluid advection on the heat transfer

can be neglected. It makes use of the Boundary Element Method (BEM) [14] that permits

a reduction by one of the dimensionality of the problem: only the boundary surfaces needs
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to be meshed. Here we use this method to simulate this problem in microgravity where the

fluid convection can be neglected.

A. Problem statement

We aim to model the amount of heat transferred to the base from the head of the cell

while the temperature of the base TB remains constant. Initially, the temperature of the

whole cell is equal to T0.

The cell consist of several parts: (i) Cell base (denoted by B index), (ii) Cell head

(denoted by H index), (iii) PMMA tube (denoted by PA index), (iv) Fluid (denoted by F

index). These parts need to be modelled separately.

1. Cell base model

The cell base is made of electrolytic copper and is assumed isothermal thanks to its very

high thermal conductivity. Its temperature TB is controlled by the temperature regulation

and assumed to be constant(= T0) during each experiment. In reality, the temperature

regulation device (see above section II B) exhibits an integration time tI ' 10 s that char-

acterizes the time over which it averages the actual base temperature data TB in order to

maintain the base temperature at its reference value T0. We take into account this regulation

”inertia” indirectly by integrating over tI the function PB(t) obtained in the simulation.

The power PB transferred to the base is the main output of the simulation, to be compared

with the experiment. It is a sum of the heat power that arrives from the cell head by the

tube walls and by the fluid column:

PB = −kPA
∫

(SPA)

∂TPA
∂~n

∣∣∣∣
B

dS − kF
∫

(SF )

∂TF
∂~n

∣∣∣∣
B

dS (2)

where k denotes the thermal conductivity and the integration is performed over the cross

section areas of the PMMA tube SPA and of the fluid SF (see Fig. 6); the unit normal vector

~n is directed inside the base. Since TB is assumed to be constant in time, the heat power

that leaks to the He bath remains constant and PB given by (2) corresponds to the measured

quantity (1).
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FIG. 6. Scheme of the cell representation in 2D (fluid layer sandwiched between the PMMA walls).

2. Cell head model

The main part of the head is made of electrolytic copper that can be assumed isothermal

thanks to its very high thermal conductivity at this temperature. The other part is made of

stainless steel, which conducts heat much worse than copper (ratio of thermal conductivities

steel/copper is 0.003, see section II A). However, because of its very small thickness, slow

temperature evolution and a good thermal contact with copper, it can also be assumed

isothermal.

The power balance of the head can then be written in the form

P full
H = kPA

∫
(SPA)

∂TPA
∂~n

∣∣∣∣
H

dS + kF

∫
(SF )

∂TF
∂~n

∣∣∣∣
H

dS + CH
dTH
dt

+ P full
w (TH), (3)

where P full
H is the controlled heat power supplied to the head. The first two terms at the

r. h. s. correspond to the heat power transferred to the tube walls and the fluid respectively.

The unit normal vector ~n is chosen to be directed towards the head. The third term reflects

the heat inertia of the head, the head total heat capacity (measured in J/K) being denoted

by CH . The power P full
w = P full

w (TH) is the heat leak due to the copper wire that connects

the head to the He bath at temperature THe = 2.17 K. Due to the high thermal diffusivity of

the copper, the temperature distribution in the wire can be assumed to follow immediately
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the temperature of the head. This implies that

P full
w (T ) =

Sw
lw

∫ T

THe

kCu(T )dT, (4)

where Sw = 0.05 mm2 and lw = 20 cm are the section area and the length of the wire. Since

the copper thermal conductivity kCu does not exhibit a strong temperature dependence

between 33K and 43K (where the experiments are carried out), Pw(TH) can be approximated

by the linearized expression

P full
w (TH) ' P full

w (T0) +
Sw
lw
kCu(T0)(TH − T0). (5)

Note that the constant power P full
w (T0) needs to be supplied to the head both before (to

maintain TH = T0) and during the experiment (as a part of P full
H ) to compensate the heat

leaks. In the following, we will denote PH(t) = P full
H (t)− P full

w (T0). It represents the excess

of the supplied power with respect to its value at t = 0. In the above experiment, PH was

switched on at t = 0, kept at a constant level P0 during the time ∆t, and then switched off.

3. PMMA walls model

To estimate correctly the heat exchange between the fluid and the tube, it is important

that the heat exchange area 2πRih be reproduced correctly in the simulated 2D configu-

ration. The fluid layer is supposed to be sandwiched between two plain walls (see Fig. 6)

so that the PMMA-fluid contact area is 2dh. This condition defines the depth d = πRi

of the sandwich. The effective fluid layer half-thickness is then lF = SF/2d = Ri/2. The

effective wall thickness is lPA = SPA/2d. The heat flux and temperature are continuous at

the PMMA-fluid contact area, where the normal is directed inside the PMMA:

kPA
∂TPA
∂~n

= kF
∂TF
∂~n

,

TPA = TF .
(6)

Since the cell is in vacuum and the radiative heat transfer is negligible because of the low

temperature, the zero flux boundary condition can be defined at the external surface of the

cell PMMA walls. The isothermal conditions TPA = TH and TPA = T0 are defined at the

areas of contact PMMA-head and PMMA-base respectively. Notice that while T0 remains

constant, TH is a function of time. Its evolution is calculated by using the Eqs. (4-5).
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The heat conduction problem has trivial initial conditions

∂ϕ

∂t
= DPA∇2ϕ,

ϕ|t=0 = 0,
(7)

where DPA is the thermal diffusivity of the PMMA. It has to be solved for the reduced

temperature ϕ = TPA(~x, t) − T0 (where ~x is the position vector) to find the variation of

the temperature TPA inside the PMMA. The parameters kPA and DPA are assumed to be

constant.

4. Fluid model

Due to the symmetry, only half of the cell through a cut along the axis needs to be

simulated, the zero radial flux being imposed at the cell axis. The approach [10] was used

in the simulations. We summarize it below.

The fluid temperature satisfies the equation

∂TF
∂t

= DF∇2TF + g(t), (8)

with

g(t) =

(
1− cv

cp

)
dT̄

dt
, (9)

where T̄ = T̄ (t) is the average fluid temperature (not to be confused with space- and time-

dependent local fluid temperature TF ), cv(cp) is the specific heat of the fluid at constant

volume (pressure), and DF is the fluid thermal diffusivity. The initial condition for TF is

TF |t=0 = T0. (10)

One can note that the term g(t) is only relevant near the critical point where cp � cv.

Since the cell is closed, the mean fluid density ρ in the cell remains constant. The average

temperature T̄ is defined using the fluid EOS

Λ(p, ρ, T̄ ) = 0. (11)

where p is the fluid pressure. To obtain realistic results in a wide temperature interval (in the

experiments, the temperature varied within 20% from Tc), we have to use a realistic EOS.

Only the quite complicated NIST MBWR EOS [12, 13] is available for parahydrogen. It is
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unfortunately precise only relatively far from the critical point, typically for T0 − Tc > 0.5

K. Discrepancies between simulation and experiments can be then expected very close to

the critical point because the critical divergence of some parameters will not be properly

accounted for in the simulation.

Several methods are available to simulate the thermal behavior of the cell, see [5, 15, 16].

However, with such a complicated EOS, only the approach [10] developed by some of us

can be used, the others being prohibitively time consuming. The temporal evolution of the

average temperature is given directly by the equation first derived in [3], which replaces the

more complicated pressure evolution determination:

dT̄

dt
=

1

ρvcv

∫
A

kF
∂TF
∂~n

dA, (12)

where v = SFh is the total fluid volume. The integration is performed over the whole

fluid boundary A. ~n is the outward normal to A. Instead of the local values for the

fluid parameters (cv, cp, kF , . . .) we use everywhere their time-dependent spatially averaged

counterparts defined. The EOS (11) is used to determine the average density ρ and the

average temperature T̄ . The fluid thermal conductivity kF is determined with a correlation

implemented in the NIST REFPROP data base [13]. Eq. (12) have to be complemented

with the initial condition

T̄ |t=0 = T0. (13)

5. Reduction of the fluid problem

Two more steps must be performed before the numerical procedure can be applied. First,

it is convenient to introduce a new ψ variable instead of TF :

ψ(~x, t) = TF (~x, t)− T0 −
∫ T̄

T0

(
1− cv

cp

)
dT̄ . (14)

Eq. (8) reduces then to the equation

∂ψ

∂t
= DF∇2ψ. (15)

One notes that since all the fluid parameters depend on the time-dependent average tem-

perature T̄ , the fluid thermal diffusivity can be written as

DF = Ddf(T̄ ) (16)
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and is time dependent. In this equation, the function f is non-dimensional and on the order

of unity and Dd is a constant. To eliminate this time dependence from DF in Eq. (15), one

makes a second step by introducing a new variable τ defined by the equations

dτ

dt
= f(T̄ ),

τ |t=0 = 0.
(17)

Since T̄ is a function of t only, the initial value of the problem is fully defined. The substitu-

tion of Eq. (17) into Eq. (15) results in a linear diffusion problem with a constant diffusion

coefficient Dd
∂ψ

∂τ
= Dd∇2ψ,

ψ|τ=0 = 0.
(18)

B. Numerical implementation

A linear 2D heat diffusion problem can be solved by BEM. Below we outline this method

for the problem (18) that is equivalent to the following integral equation

Dd

∫ τ

0

dτ ′
∫
A

[
G(~x− ~x′, τ − τ ′)q(~x′, τ ′)−

ψ(~x′, τ ′)
∂x′G(~x− ~x′, τ − τ ′)

∂~n

]
dx′A =

1

2
ψ(~x, τ), (19)

where q(~x, τ) = ∂ψ(~x, τ)/∂~n and G is the Green function for the infinite space:

G(~x, τ) =
1

4πτDd

exp

(
− |~x|

2

4τDd

)
. (20)

Eq. (19) is solved by breaking the integration contour A into straight Boundary Elements

(BE’s). On each of them ψ and q are assumed to be constant and equal to their values at

the node point ~xi in the middle of the i-th BE. The time interval (0, τ) is broken into the

intervals (τf−1, τf ) on which ψ and q are assumed to be constant and equal to ψfi and qfi

at the i-th BE. Eq. (19) then reduces to the set of linear algebraic equations

F∑
f=1

N∑
j=1

(qfjG
Ff
ij − ψfjH

Ff
ij ) = ψFi/2, (21)

where i = 1 . . . N . Hij and Gij are the BEM coefficients:

GFf
ij = Dd

∫ τf

τf−1

dt

∫
Aj

G(~xi − ~x, τF − t) dxA,

HFf
ij = Dd

∫ τf

τf−1

dt

∫
Aj

∂G(~xi − ~x, τF − t)
∂~nx

dxA.
(22)
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Their calculation is discussed in detail in [14]. The 2N variables {qFi, ψFi} (i = 1 . . . N) are

related via N more equations that correspond to the boundary conditions given at each of

the N BE’s. The total number of equations is then 2N and corresponds to the total number

of the unknowns. This set of equations should be solved sequentially for each time moment

τF , where F varies from 1 to the maximum required value.

The calculation algorithm needs to be iterative to find T̄ :

1. T̄ (tF−1) is taken as the initial guess for T̄ (tF ) (T0 is used for F = 1).

2. The fluid parameters are calculated for T̄ (tF ) using the EOS; τF is calculated with

Eqs. (17).

3. The coupled problems (7) and (18) are solved by BEM, the heat flux distribution over

the fluid boundary is found.

4. It is used to determine the corrected value of T̄ (tF ) with Eq. (12).

5. The steps 2–4 are repeated until the convergence is achieved.

6. The steps 1–5 are repeated for the next time moment.

Since the summation in Eqs. (21) has to be performed over all f = 1 . . . F , the described

BEM formulation has a disadvantage of an increase of the calculation volume with F . On

the other hand, the algorithm is very stable, which permits to choose a relatively large time

step with practically no loss in accuracy.

C. Adjustment of the cell parameters

First, one needs to check if the model parameters correspond to the actual experimental

values. The test consists in comparing the simulation and the experiments in an empty

cell of both the evolution of the heat flux and head temperature. This simulation appears

to be very sensitive to the precise value of the heat capacity of the head CH = mHcH ,

where mH and cH are the mass and the specific heat of the head. The pieces of the head

are made of stainless steel and copper, the specific heats of which at 35K being close. For

simplification, we will take that of copper (cH = 42.6 J/kg/K [17]). A good agreement

between the calculation and the experiment (Fig. 7) is found for mH = 6 g. Taking into
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account that the copper part weight is 2.4 g and the stainless steel pieces are about of the

same size, this mH value is quite reasonable.
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ters)for 7.5mW injected power. T0 = 33K. Black line and dots: transmitted power PB. Gray line

and squares: head temperature TH .

D. Some analytical results

1. Small time asymptotics

No heat exchange of the fluid with the tube walls is assumed in this section in order to

obtain analytical results. At small times, all fluid parameters can be approximated by their

values at the initial temperature, i.e. that of the base T0. The temperature profile in the

fluid is sketched in Fig. 1c. It shows three regions: hot and cold diffusion boundary layers

(HBL and CBL) that form near the extremities of the cell and a nearly isothermal bulk. The

thickness of both HBL and CBL can be estimated with the expression δ ∼
√
DF t where DF

is the fluid thermal diffusivity. This allows the main parameter, i.e. the transferred power

to be found in the form

PB ≈ SFkF (Tbk − TB)/δ, (23)
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where Tbk means the temperature in the bulk of the fluid and kF is the fluid thermal con-

ductivity. SF (= πR2
i ) is the fluid cross-section area. Unless stated otherwise, TB = T0 and

is constant. Similarly to Eq. (23), the transferred to the fluid power is

PH ≈ SFkF (TH − Tbk)/δ. (24)

The bulk of the fluid remains isothermal, which means that ∆Tbk = 0. By making use of

the Eqs. (8, 12) one obtains
dTbk
dt
≈
(

1− cv
cp

)
P

ρvcv
, (25)

where v = SFh is the total fluid volume, cv(cp) is the specific heat of the fluid at constant

volume (pressure) and P is the total heat supplied to the fluid per unit time.

Two kinds of model problems are considered below for the sake of comparison: a constant

heat flux boundary condition at the fluid-head interface, the numerical solution for which is

analyzed in [10], and a more realistic problem where the heat capacity of the head controls

the head temperature evolution. As previously, it is assumed that TB is equal to the initial

fluid temperature T0.

2. Constant heat flux boundary condition

In this case the P value is constant and one obtains from Eqs. (23, 25) the following small

time asymptotics :

Tbk − T0 ≈
(

1

cv
− 1

cp

)
P

ρv
t, (26)

PB ≈
(
cp
cv
− 1

)
P

h

√
tDF . (27)

One notices a steep rise of the output power PB with time [10] with dPB/dt→∞ when

t→ 0.

3. Heat capacity-limited regime

Let us assume that the contributions of the heat fluxes going both into the fluid and into

the PMMA walls are negligible in the head heat balance Eq. (3). One can then obtain from

Eqs. (3, 5)

PH = CH
dTH
dt

+
Sw
lw
kCu(TH − T0). (28)
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Since all the parameters in this equation are constant, one can infer from it the time evolution

of TH ,

TH = T0 +
PHτr
CH

[
1− exp

(
− t

τr

)]
, (29)

where τr = lwCH/(SwkCu) ≈ 600 s is the relaxation time. It appears that this regime applies

in our case. Indeed, Fig. 8 below shows a behavior similar to (29) with a relaxation time

of the order of several hundreds of seconds. This implies that if PH were switched on for a

long time in our experiment, TH would relax to the value T0 +PHτr/CH ≈ 50 K at the time

scale of several τr. Note that this behavior is completely independent of the fluid.

The small time asymptotics (t� τr) is linear

TH − T0 ≈
PH
CH

t. (30)

The total heat supplied to the fluid can be approximated by the following expression (see

Eqs. 23,24) :

P = PH − PB ≈ SFkF (TH − T0)/δ. (31)

Using it and Eq. (25) one obtains the small time asymptotics

Tbk − T0 ≈
(
cp
cv
− 1

)
PH
hCH

√
DF t

3/2. (32)

Eq. (23) then results in the linear small time behavior for PB:

PB ≈
(
cp
cv
− 1

)
PHSFkF
hCH

t. (33)

A comparison of Eq. (27) with Eq. (33) shows that the small time behavior of both TH and

PB depends strongly on the boundary condition imposed at the solid-fluid boundary. While

the slope dPB/dt is infinite for the constant heat flux injection, it remains finite for the heat

injector of finite heat capacity. This conforms to the experimental data. For the sample at

critical density, dPB/dt ought to increase as
(
cp
cv

)
kF ∼

(
T0−Tc
Tc

)−0.57

when approaching Tc.

In the experiments (Fig. 5a), a slope increase is indeed observed when approaching Tc. The

increase is followed however by a saturation of the slope for T0−Tc < 0.3 K. This saturation

cannot be attributed to a substantial change of the fluid properties with temperature in

the bulk fluid as only the early times are concerned. As a matter of fact, this saturation is

not observed in the simulation (see Fig. 9a below) where the temperature inhomogeneity is

considered rigorously. We thus attribute the saturation to a slightly off-critical density of

the cell.
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E. Simulation results

1. Temperature dependence and scaling

A simulation is compared to the experiment performed at (i) a large distance from the

critical point T0−Tc = 3 K (Fig. 8a) and (ii) at a short distance T0−Tc = 50 mK (Fig. 8b).

One notes that the simulation represents relatively well the temperature evolution of the

head with, however, some systematic discrepancies. These differences are also found in the

transmitted flux, somewhat smaller in the simulation far from Tc, corresponding to a larger

rise in TH , and larger close to Tc, corresponding to a smaller rise in TH . We attribute these

discrepancies to the EOS which is not supposed to be correct in the close vicinity of the

critical point.
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FIG. 8. Comparison between simulation and experiments concerning the evolution of the trans-

mitted heat flux PB (simulation: solid black line; experiment: squares) and head temperature

TH − T0 (simulation: solid gray line; experiment: circles). Dashed line (V): contribution of the

wall conduction for the empty cell (the same as the black curve in Fig. 7), to be compared with

the dotted line (W) that represents the contribution of the wall conduction in the filled cell. (a)

T0 = Tc + 3 K. (b) T0 = Tc + 50 mK.

For the sake of comparison, the quantities PM
B and dPB/dt for both the experiments and

the simulations, obtained as an average slope between 27 s and 47 s (as in section II C) have

also been plotted in Fig. 9. dPB/dt evolves strongly in this time range for T − Tc < 0.2 K
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and for this reason is not plotted. However, it is clear that the initial slope dPB/dt grows

as T − Tc decreases. The saturation of PM
B near Tc is probably related to the change of the

fluid properties with temperature in the bulk fluid that occur at large times. The agreement

is fair if one considers the differences in the two experimental runs and the fact that the

EOS apparently overestimates the divergence of the compressibility close to Tc.
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behavior of: (a) the transmitted heat flux initial rise dPB/dt and reduced yield rise dY/dt (see

text). Simulations: solid line and crosses. Experiments: Run 1: circles, run 2: squares. (b):

maximum heat transmission PM
B and YM (see text). Simulations: line. Experiments: Run 1:

circles, run 2: squares.

2. Length dependence

We consider now the length dependence of the flux yield. The efficiency of the bulk

heating produced by the Piston effect is inversely proportional to the fluid volume v, see Eq.

(25). According to Eq. (33), PB (and thus Y ) should be inversely proportional to h at small

times. Although it is obvious that the maximum of yield should decrease with increasing pipe

length, it is difficult to obtain the analytical dependence on h at long evolution times and a

numerical simulation is necessary. The simulations are carried out for a single temperature
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Tc + 3 K and different multiples of 16.5 mm: (×2: 33 mm; ×5: 82.5 mm; ×10: 165 mm).

The results are reported in Fig.10. The maximum yield is seen to decrease according to a

law close to logarithmic Y M = Y0 ln(hM/h), with Y0 = 0.0267± 0.0006 and hM = 475± 23.

The reason for such a law is unclear.
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3. Generalization to CO2

The simulation realized for the same parameters can be applied to another fluid, CO2,

whose critical temperature is Tc = 304 K. The restricted cubic parametric EOS [18] has

been used to describe CO2. For the sake of comparison, the material parameters of the cell

solid cell components were chosen to be the same as for the experimental cell at 30 K. The

simulation is carried out for 4 temperature values (T0 = Tc + 5 K, 3 K, 1 K , 0.5 K), which

correspond to about the same reduced temperatures (T0 − Tc)/Tc as H2 at Tc + 0.5 K, 0.3

K, 100 mK and 50 mK. The results are shown in Fig.11. The yield is larger with respect to

that of H2. In particular, it is on order 30% at T0−Tc = 1 K, whereas it is about 10% for H2

at T0 − Tc = 0.11 K, which corresponds to the same reduced temperature (0.033). This can
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be explained by the fact that the same power causes a smaller rise in reduced temperature

so that the ratio: (fluid heat capacity)/(head heat capacity) is larger for CO2 than for H2.
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FIG. 11. (a) CO2 heat pipe simulation for 7.5 mW injected power. (a) Evolution of the trans-

mitted heat flux PB (black curves) and head temperature TH − T0 (gray curves) for different base

temperatures: T0 − Tc = 5 K (solid line); 3 K: broken line, short dashes; 1 K: broken line, long

dashes; 0.5 K: dotted line). (b): Semi-log plot of the maximum heat flux PM
B and corresponding

yield YM with respect to T0 − Tc (lower abscissa) or to the reduced temperature (T0 − Tc)/Tc

(upper abscissa).

IV. CONCLUSION

This study aimed to determine whether the piston effect in near critical fluids could be

used to transport heat at large distance, as heat pipes do. The yield defined as the ratio of

the injected and transported heat power, does not exceed 10-30%. It also decreases with the

tube length (nevertheless, with a slow logarithmic decay). An interesting transport property,

however, has been found. Any change in injected power is transmitted very rapidly, with a

rate that is only limited by the heat capacity of the cell. Although the experiments (and

most simulations) were performed with H2, the conclusions are applicable to any other fluid.

In particular to CO2, which was studied numerically. This fast heat change transmission
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remains valid in a large temperature range around the critical point (10 K in H2, 100 K in

CO2). This means that a tube filled with such (appropriately chosen according to the tem-

perature range) fluid can be used as a thermal link installed in parallel with a conventional

heat pipe. Such a tube filled with fluid is an efficient thermal link during fast changes of the

applied power.
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