
Chapter 4

The Variational Method

The exact analytical solution of the Schrödinger equation is possible only in
a few cases. Even the direct numerical solution by integration is often not
feasible in practise, especially in systems with more than one particle. There are
however extremely useful approximated methods that can in many cases reduce
the complete problem to a much simpler one. In the following we will consider
the variational principle and its consequences. This constitutes, together with
suitable approximations for the electron-electron interactions, the basis for most
practical approaches to the solution of the Schrödinger equation in condensed-
matter physics.

4.1 Variational Principle

Let us consider a Hamiltonian H and a function ψ, that can be varied at will
with the sole condition that it stays normalized. One can calculate the expec-
tation value of the energy for such function (in general, not an eigenfunction of
H):

〈H〉 =
∫
ψ∗Hψ dv (4.1)

where v represents all the integration coordinates.
The variational principle states that functions ψ for which 〈H〉 is stationary—

i.e. does not vary to first order in small variations of ψ—are the eigenfunctions
of the energy. In other words, the Schrödinger equation is equivalent to a sta-
tionarity condition.

4.1.1 Demonstration of the variational principle

Since an arbitrary variation δψ of a wave function in general destroys its nor-
malization, it is convenient to use a more general definition of expectation value,
valid also for non-normalized functions:

〈H〉 =
∫
ψ∗Hψ dv∫
ψ∗ψ dv

(4.2)
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By modifying ψ as ψ + δψ, the expectation value becomes

〈H〉+ δ〈H〉 =
∫

(ψ∗ + δψ∗)H(ψ + δψ) dv∫
(ψ∗ + δψ∗)(ψ + δψ) dv

=
∫
ψ∗Hψ dv +

∫
δψ∗Hψ dv +

∫
ψ∗Hδψ dv∫

ψ∗ψ dv +
∫
δψ∗ψ dv +

∫
ψ∗δψ dv

=
(∫

ψ∗Hψ dv +
∫
δψ∗Hψ dv +

∫
ψ∗Hδψ dv

)
×

1∫
ψ∗ψ dv

(
1−

∫
δψ∗ψ dv∫
ψ∗ψ dv

−
∫
ψ∗δψ dv∫
ψ∗ψ dv

)
(4.3)

where second-order terms in δψ have been omitted and we used the approxi-
mation 1/(1 + x) ' 1 − x, valid for x << 1. By omitting again higher-order
terms:

δ〈H〉 =
∫
δψ∗Hψ dv∫
ψ∗ψ dv

+
∫
ψ∗Hδψ∗ dv∫
ψ∗ψ dv

− 〈H〉
(∫

δψ∗ψ dv∫
ψ∗ψ dv

+
∫
ψ∗δψ dv∫
ψ∗ψ dv

)
. (4.4)

The two terms in parentheses are complex conjugates; the same holds for the
first two terms, because H is a hermitian operator, satisfying∫

a∗Hbdv =
(∫

b∗Hadv

)∗
(4.5)

for any pair of functions a and b. We can thus simplify the above expression as

δ〈H〉 =
(∫

δψ∗Hψ dv∫
ψ∗ψ dv

+ c.c.
)
− 〈H〉

(∫
δψ∗ψ dv∫
ψ∗ψ dv

+ c.c.
)
. (4.6)

Let us now assume that ψ is such that 〈H〉 is stationary with respect to any
variation of it: then δ〈H〉 = 0, i.e.∫

δψ∗ [H − 〈H〉]ψ dv + c.c. = 0 (4.7)

for an arbitrary variation δψ. This implies

[H − 〈H〉]ψ = 0 (4.8)

that is, ψ is a solution of the Schrödinger equation:

Hψ = Eψ (4.9)

4.1.2 Alternative demonstration of the variational principle

A different and more general way to demonstrate the variational principle,
which will be useful later, is based upon Lagrange multipliers method. This
method deals with the problem of finding stationarity conditions for an integral
I0 while keeping at the same time constant other integrals I1 . . . Ik. One can
solve instead the equivalent problem

δ

(
I0 +

∑
k

λkIk

)
= 0 (4.10)
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where λk are constants to be determined (Lagrange multipliers). In our case we
have

I0 =
∫
ψ∗Hψ dv (4.11)

I1 =
∫
ψ∗ψ dv (4.12)

and thus we assume
δ(I0 + λI1) = 0 (4.13)

where λ must be determined. By proceeding like in the previous section, we
find

δI0 =
∫
δψ∗Hψ dv + c.c. (4.14)

δI1 =
∫
δψ∗ψ dv + c.c. (4.15)

and thus the condition to be satisfied is

δ(I0 + λI1) =
∫
δψ∗[H + λ]ψ dv + c.c. = 0 (4.16)

that is
Hψ = −λψ (4.17)

i.e. the Lagrange multiplier equals, apart from the sign, the energy eigenvalue.
Again we see that states whose expectation energy is stationary with respect to
any variation in the wave function are the solutions of the Schrödinger equation.

4.1.3 Ground state energy

Let us consider the eigenfunctions ψn of a Hamiltonian H, with associated
eigenvalues (energies) En:

Hψn = Enψn (4.18)

Let us label the ground state with n = 0 and the ground-state energy as E0.
Let us demonstrate that for any different function ψ, we have necessarily

〈H〉 =
∫
ψ∗Hψ dv∫
ψ∗ψ dv

≥ E0 (4.19)

In order to demonstrate it, let us expand ψ using as basis energy eigenfunctions
(this is always possible because energy eigenfunctions are a complete orthonor-
mal set):

ψ =
∑
n

cnψn (4.20)

Then one finds

〈H〉 =
∑
n |cn|2En∑
n |cn|2

= E0 +
∑
n |cn|2(En − E0)∑

n |cn|2
(4.21)
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This demonstrates Eq.(4.19), since the second term is either positive or zero,
as En ≥ E0 by definition of ground state,

This simple result is extremely important: it tells us that any function ψ,
yields for the expectation energy an upper estimate of the energy of the ground
state. If the ground state is unknown, an approximation to the ground state
can be found by varying ψ inside a given set of functions and looking for the
function that minimizes 〈H〉. This is the essence of the variational method.

4.1.4 Variational method in practice

One identifies a set of trial wave functions ψ(v;α1, . . . , αr), where v are the
variables of the problem (coordinates etc), αi, i = 1, . . . , r are parameters. The
energy eigenvalue will be a function of the parameters:

E(α1, . . . , αr) =
∫
ψ∗Hψ dv (4.22)

The variational method consists in looking for the minimum of E with respect
to a variation of the parameters, that is, by imposing

∂E

∂α1
= . . . =

∂E

∂αr
= 0 (4.23)

The function ψ satisfying these conditions with the lowest E is the function
that better approximates the ground state, among the considered set of trial
functions.

It is clear that a suitable choice of the trial functions plays a crucial role
and must be carefully done.

4.2 Secular problem

The variational method can be reduced to an algebraic problem by expanding
the wave function into a finite basis of functions, and applying the variational
principle to find the optimal coefficients of the development. Based on Eq.
(4.10), this means calculating the functional (i.e. a “function” of a function):

G[ψ] = 〈ψ|H|ψ〉 − ε〈ψ|ψ〉

=
∫
ψ∗Hψ dv − ε

∫
ψ∗ψ dv (4.24)

and imposing the minimum condition on G[ψ]. Such procedure produces an
equation for the expansion coefficients that we are going to determine.

It is important to notice that our basis is formed by a finite number N of
functions, and thus cannot be a complete system: in general, it is not possible
to write any function ψ (including exact solutions of the Schrödinger equation)
as a linear combination of the functions in this basis set. What we are going to
do is to find the ψ function that better approaches the true ground state, among
all functions that can be expressed as linear combinations of the N chosen basis
functions.
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4.2.1 Expansion into a basis set of orthonormal functions

Let us assume to have a basis of N functions bi, between which orthonormality
relations hold:

〈bi|bj〉 ≡
∫
b∗i bj dv = δij (4.25)

Let us expand the generic ψ in such basis:

ψ =
N∑
i=1

cibi (4.26)

By replacing Eq.(4.26) into Eq.(4.24) one can immediately notice that the latter
takes the form

G(c1, . . . , cN ) =
∑
ij

c∗i cjHij − ε
∑
ij

c∗i cjδij

=
∑
ij

c∗i cj(Hij − εδij) (4.27)

where we have written

Hij = 〈bi|H|bj〉 =
∫
b∗iHbj dv (4.28)

Since both H and the basis are given, Hij is a perfectly known square matrix of
numbers. The hermiticity of the Hamiltonian operator implies that such matrix
is hermitian:

Hji = H∗ij (4.29)

(i.e. symmetric if all elements are real). According to the variational method,
let us minimize Eq. (4.27) with respect to the coefficients:

∂G

∂ci
= 0 (4.30)

This produces the condition ∑
j

(Hij − εδij)cj = 0 (4.31)

If the derivative with respect to complex quantities bother you: separate the
coefficients into a real and an imaginary part ck = xk + iyk, require that deriva-
tives with respect to both xk and yk are zero, find (exploiting hermiticity) a
system

Wk +W ∗k = 0
−iWk + iW ∗k = 0

where Wk =
∑
j(Hkj − εδkj)cj , that allows as only solution Wk = 0.

We note that, if the basis were a complete (and thus infinite) system, this
would be the form of the Schrödinger equation. We have finally demonstrated
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that the same equation, for a finite basis set, yield the best approximation to
the true solution according to the variational principle.

Eq.(4.31) is a system of N algebraic linear equations, homogeneous (there
are no constant term) in the N unknown cj . In general, this system has only
the trivial and unphysical solution cj = 0 for all coefficients (i.e. zero wave
function!). A nonzero solution exists if and only if the following condition on
the determinant is fulfilled:

det |Hij − εδij | = 0 (4.32)

Such condition implies that one of the equations is a linear combination of the
others and the system has in reality N − 1 equations and N unknowns, thus
admitting a no zero solution.

Eq.(4.32) is known as secular equation. It is an algebraic equation of degree
N in ε (as it is evident from the definition of the determinant, with the main
diagonal generates a term εN , all other diagonals generating lower-order terms),
that admits N solutions, or eigenvalues. Eq.(4.31) can also be written in matrix
form

Hc = εc (4.33)

where H is here the N × N matrix whose matrix elements are Hij , c is the
vector formed with ci components. The solutions c are also called eigenvectors.
For each root (eigenvalue) there will be a corresponding eigenvector (known
within a multiplicative constant, fixed by the normalization). We have thus N
eigenvectors and we can write that there are N solutions:

ψk =
∑
i

Cikbi , k = 1, . . . , N (4.34)

where Cik is a matrix formed by the N eigenvectors (written as columns and
disposed side by side):

Hψk = εkψk (4.35)

that is, in matrix form, taking the i−th component,

(Hψk)i =
∑
j

HijCjk = εkCik (4.36)

Eq.(4.33) is a common equation in linear algebra and there are standard
methods to solve it. Given a matrix H, it is possible to obtain, using standard
library routines, the C matrix and a vector ε of eigenvalues.

The solution process is usually known as diagonalization. This name comes
from the following important property of C. Eq.(4.34) can be seen as a trans-
formation of the N starting functions into another set of N functions, via a
transformation matrix. It is possible to show that if the bi functions are or-
thonormal, the ψk functions are orthonormal as well. Then the transformation
is unitary, i.e. ∑

i

C∗ijCik = δjk (4.37)

or, in matrix notations,
(C−1)ij = C∗ji ≡ C

†
ij (4.38)
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that is, the inverse matrix is equal to the conjugate of the transpose matrix,
known as adjoint matrix. The matrix C having such property is also called a
unitary matrix.

Let us consider now the matrix product C−1HC and let us calculate its
elements:

(C−1HC)kn =
∑
ij

(C−1)kiHijCjn

=
∑
i

C∗ik
∑
j

HijCjn

=
∑
i

C∗ikεnCin

= εn
∑
i

C∗ikCin

= εnδkn (4.39)

where the preceding results have been used. The transformation C reduces H
to a diagonal matrix, whose non-zero N elements are the eigenvalues. We can
thus see our eigenvalue problem as the search for a transformation that brings
from the original basis to a new basis in which the H operator has a diagonal
form, that is, it acts on the elements of the basis by simply multiplying them
by a constant (as in Schrödinger equation).

4.3 Plane-wave basis set

A good example of orthonormal basis set, and one commonly employed in
physics, is the plane-wave basis set. This basis set is closely related to Fourier
transforms and it can be easily understood if concepts from Fourier analysis are
known.

A function f(x) defined on the entire real axis can be always expanded into
Fourier components, f̃(k):

f(x) =
1√
2π

∫ ∞
−∞

f̃(k)eikxdk (4.40)

f̃(k) =
1√
2π

∫ ∞
−∞

f(x)e−ikxdx. (4.41)

For a function defined on a finite interval [−a/2, a/2], we can instead write

f(x) =
1√
a

∑
n

f̃(kn)eiknx (4.42)

f̃(kn) =
1√
a

∫ a/2

−a/2
f(x)e−iknxdx (4.43)

where kn = 2πn/a, n = 0,±1,±2, .... Note that the f(x) function of Eq.4.42 is
by construction a periodic function, with period equal to a: f(x+a) = f(x), as
can be verified immediately. This implies that f(−a/2) = f(+a/2) must hold
(also known under the name of periodic boundary conditions). The expressions
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reported here are immediately generalized to three or more dimensions. In the
following only a simple one-dimensional case will be shown.

Let us define our plane-wave basis set bi(x) according to Eq.(4.42):

bi(x) =
1√
a
eikix, ki =

2π
a
i, i = 0,±1,±2, ...,±N (4.44)

and the corresponding coefficients ci for the wave function ψ(x) as

ci =
∫ a/2

−a/2
b∗i (x)ψ(x)dx = 〈bi|ψ〉, ψ(x) =

∑
i

cibi(x). (4.45)

This base, composed of 2N + 1 functions, becomes a complete basis set in the
limit N →∞. This is a consequence of well-known properties of Fourier series.
It is also straightforward to verify that the basis is orthonormal: Sij = 〈bi|bj〉 =
δij . The solution of the problem of a particle under a potential requires thus
the diagonalization of the Hamiltonian matrix, whose matrix elements:

Hij = 〈bi|H|bj〉 = 〈bi|
p2

2m
+ V (x)|bj〉 (4.46)

can be trivially calculated. The kinetic term is diagonal (i.e. it can be repre-
sented by a diagonal matrix):

〈bi|
p2

2m
|bj〉 = − h̄2

2m

∫ a/2

−a/2
b∗i (x)

d2bj
dx2

(x)dx = δij
h̄2k2

i

2m
. (4.47)

The potential term is nothing but the Fourier transform of the potential (apart
from a multiplicative factor):

〈bi|V (x)|bj〉 =
1
a

∫ a/2

−a/2
V (x)e−i(ki−kj)xdx =

1√
a
Ṽ (ki − kj). (4.48)

A known property of Fourier transform ensures that the matrix elements of the
potential tend to zero for large values of ki − kj . The decay rate will depend
upon the spatial variation of the potential: faster for slowly varying potentials,
and vice versa. Potentials and wave functions varying on a typical length scale
λ have a significant Fourier transform up to kmax ∼ 2π/λ. In this way we can
estimate the number of plane waves needed to solve a problem.

4.4 Code: pwell

Let us consider the simple problem of a potential well with finite depth V0:

V (x) = 0 per x < − b
2
, x >

b

2
(4.49)

V (x) = −V0 per − b

2
≤ x ≤ b

2
(4.50)
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with V0 > 0, b < a. The matrix elements of the Hamiltonian are given by
Eq.(4.47) for the kinetic part. by Eq.(4.48) for the potential. The latter can be
explicitly calculated:

〈bi|V (x)|bj〉 = −1
a

∫ b/2

−b/2
V0e
−i(ki−kj)xdx (4.51)

= −V0

a

e−i(ki−kj)x

−i(ki − kj)

∣∣∣∣∣
b/2

−b/2
V0 (4.52)

=
V0

a

sin (a(ki − kj)/2)
(ki − kj)/2

, ki 6= kj . (4.53)

The case ki = kj must be separately treated, yielding

Ṽ (0) =
V0b

a
. (4.54)

Code pwell.f901 (or pwell.c2) generates the ki, fills the matrix Hij and di-
agonalizes it. The code uses units in which h̄2/2m = 1 (e.g. atomic Rydberg
units). Input data are: width (b) and depth (V0) of the potential well, width of
the box (a), number of plane waves (2N + 1). On output, the code prints the
three lowest energy levels; moreover it writes to file the wave function of the
ground state.

The diagonalization is performed by subroutine dsyev.f3 from the linear
algebra library LAPACK4. Moreover subroutines from the BLAS5 library (col-
lected here: dgemm.f6) are needed.

dsyev uses a well-established diagonalization algorithm (reduction to tri-
diagonal form), valid for any N × N symmetric matrix, that requires O(N3)
floating-point operations. The usage of dsyev requires either linking to a pre-
compiled LAPACK and BLAS libraries, or compilation of the Fortran version
and subsequent linking. Instructions on the correct way to call dsyev are con-
tained in the header of the subroutine; if calling from C, remember that variables
passed to Fortran routines must be C pointers. It may be necessary to add an
underscore (as in dsyev () ) in the calling program.

4.4.1 Laboratory

• Observe how the results converge with respect to the number of plane
waves, verify the form of the wave function. Verify the energy versus a
known case. You may use for instance the following case: for V0 = 1,
b = 2, the exact result is E = 0.4538. You may (and should) also verify
the limit V0 →∞ (what are the energy levels?).

1http://www.fisica.uniud.it/%7Egiannozz/Corsi/MQ/Software/F90/pwell.f90
2http://www.fisica.uniud.it/%7Egiannozz/Corsi/MQ/Software/C/pwell.c
3http://www.fisica.uniud.it/%7Egiannozz/Corsi/MQ/Software/Lapack/dysev.f
4http://www.netlib.org/lapack/
5http://www.netlib.org/blas/
6http://www.fisica.uniud.it/%7Egiannozz/Corsi/MQ/Software/Blas/dgemm.f
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• Observe how the results converge with respect to a. Note that for values
of a not so big with respect to b, the energy calculated with the variational
method is lower than the exact value. Why is it so?

• Try to modify the code, adapting it to a potential well having a Gaussian
form (whose Fourier transform can be analytically calculated: what is the
Fourier transform of a Gaussian function?) For the same ”width”, which
problem converges more quickly: the square well or the Gaussian well?

• We know that for a symmetric potential, i.e. V (−x) = V (x), the solutions
have a well-defined parity, alternating even and odd parity (ground state
even, first excited state odd, and so on). Exploit this property to reduce
the problem into two subproblems. one for even states and one for odd
states. Use sine and cosine functions, obtained by suitable combinations
of plane waves as above. Beware the correct normalization and the kn = 0
term! Why is this convenient? What is gained in computational terms?
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