Superconductivity

S2634: Physique de la matière condensée & nano-objets

Miguel Anía AsenjoAlexandre Le BoitéChristine Lingblom

What is superconductivity?

Superconductivity

 \bullet Superconductivity generally occurs at very low temperatures. \bullet In this state the materials have exactly zero electrical resistivity. \bullet As the material drops below its superconducting critical temperature, magnetic fields within the material are (totally or partially) expelled. \bullet Superconductivity occurs in a wide variety of materials, including simple elements like tin and aluminium, various metallic alloys and some heavily-doped semiconductors.

Alama Missour

Meissner effect

 \bullet When a superconductor is placed in a weak external magnetic field, the field penetrates the superconductor only at a small distance, called the London penetration depth, decaying exponentially to zero within the bulk of the material.

$$
\chi\big|_{bulk}=-1
$$

- \bullet This is called the Meissner effect, and is a defining characteristic of superconductivity.
- \bullet For most superconductors, the London penetration depth is on the order of 100 nm.

 $2\left(\frac{1}{2}x_{1}+x_{2}-x_{3}-x_{4}\right)$

Phase transition

- \bullet In superconducting materials, the phase transition appear when the temperature T is lowered below a *T* is lowered below a critical temperature *Tc*. The value of this critical temperature varies from material to material
- \bullet Superconductors usually have
critical temperatures below 20 K
(down to less than 1 K)
- Cuprate superconductors can have much higher critical temperatures. Mercury-based cuprates have been found with critical \bullet temperatures in excess of 130 K

Type I superconductors

 \bullet Type I superconductors are superconductors that cannot be penetrated by magnetic flux lines (complete Meissner effect). As such, they have only a single critical temperature at which the material ceases to superconduct, becoming resistive. Elementarymetals, such as aluminium,
mercury and lead behave mercury and lead behave as typical Type I superconductors below their respective critical temperatures

 $2\sqrt{(x_{12} - x_{21} - x_{31} - x_{42} - x_{51} - x_{61} -$

Type II superconductors

- \bullet A Type-II superconductor is a superconductor characterised by its gradual transition from the superconducting to the normal state within an increasing magnetic field
	- Typically they superconduct at higher temperatures and magnetic fields than Type-I superconductors. This allows them to conduct higher currents

 \bullet

 \bullet

 Type-II superconductors are usually made of metal alloys or complex oxide ceramics

A line and a bord

Critical Field vs Transition Temperature

GO SERVICE

$$
\frac{H_c(T)}{H_c(0)} \approx 1 - \left(\frac{T}{T_c}\right)^2
$$

History of Superconductivity

- 0 1911 - Discovery of superconductivity by Heike Kamerlingh Onnes, while studying the resistance of solid mercury at cryogenic temperatures using liquid helium.
- \bullet 1933 - Meissner and Ochsenfeld discover the Meissner Effect.
- \bullet 1950 - Ginzburg-Landau theory.
- \bullet 1957 - Complete microscopic theory of superconductivity proposed by Bardeen, Cooper, and Schrieffer (1972 Nobel Prize winners in Physics).
- \bullet 1962 – Josephson Effect

Ochsenfeld

Meissner Landau

Kamerlingh Onnes

Josephson

London theory (1935)

- Macroscopic theory
- **Fundamental facts :**
	- When T<Tc supercurrent flows without resistance
	- **B**=0 inside the superconductor

London equation

 \bullet The electrons are freely accelerated by the electric field :

$$
m\frac{d\mathbf{v}_s}{dt} = -e\mathbf{E}.
$$

Supercurrent is given by : $-eV_s n_s$ \bullet

- \bullet Therefore : $\frac{d}{dt} j = \frac{n_s e^2}{m} E$.
- \bullet Substituting the previous into the equation for Faraday's law :

$$
\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t},
$$

We obtain a first equation :

 \bullet

$$
\frac{\partial}{\partial t}\left(\nabla \times \mathbf{j} + \frac{n_s e^2}{mc} \mathbf{B}\right) = 0.
$$

London equation

 \bullet But this does not immediately imply **^B**=0. Let us assume that :

$$
\nabla \times \mathbf{j} = -\frac{n_s e^2}{mc} \mathbf{B},
$$

• Using:
$$
\mathbf{v} \times \mathbf{B} =
$$

 $\frac{4\pi}{c}$ j.

 \bullet We find :

 \bullet

$$
\nabla^2 \mathbf{B} = \mathbf{B}/\lambda_L^2 \ .
$$

which is seen to account for the Meissner effect, since it does not allow a spatially uniform solution

We call $\lambda_L = (mc^2/4\pi nq^2)^{1/2}$ the penetration depth, which is of the order of 100nm

Landau-Ginzburg theory (1950)

- Phenomenological theory
- Based on Landau's theory of second order phase transitions
- Describes the phenomenon when T~Tc • The idea is to find an expression for the free energy introducing a so called "order parameter" $|\psi|^2 = n_s/2$.

Expression of the free energy

 \bullet Free energy in a metal with cubic symmetry when there is no electrmagnetic field :

$$
F = F_n + \int \left\{ \frac{\hbar^2}{4m} \mid \nabla \Psi \mid^2 + a \mid \Psi \mid^2 + \frac{b}{2} \mid \Psi \mid^4 \right\} dV.
$$

 \bullet When there is an electromagnetic field, jauge invariace imposes :

$$
F = F_{n0} + \int \left\{ \frac{B^2}{8\pi} + \frac{\hbar^2}{4m} \left| \left(\nabla - \frac{2ie}{\hbar c} A \right) \psi \right|^2 + a \left| \psi \right|^2 + \frac{b}{2} \left| \psi \right|^4 \right\} dV
$$

 Next we have to minimize this expression. We perform variations with respect rot are 3 parameters : ψ , ψ^* , and \vec{A} , γ , ∗ ψ, ψ

 \bullet

Landau-Ginzburg equations

 \bullet First equation:

$$
\frac{1}{4m}\left(-i\hbar\,\nabla-\frac{2e}{c}\,\mathbf{A}\,\right)^2\!\psi+a\psi+b\,|\,\psi|^2\,\psi=0
$$

 \bullet Second equation:

$$
\mathbf{j} = -\frac{ie\hbar}{2m} (\psi^* \nabla \psi - \psi \nabla \psi^*) - \frac{2e^2}{mc} |\psi|^2 A
$$

We recall Ampère's law:

$$
\operatorname{rot} B = \frac{4\pi}{c} j
$$

 \bullet When the field is weak, $|\psi|^2 = -\frac{a}{b}$, and we find the London equation:

$$
\nabla \times \mathbf{j} = -\frac{n_s e^2}{mc} \mathbf{B},
$$

Coherence length

 We can express the London penetration depth in terms of *a*and *b :*

$$
\delta = \left[\frac{mc^2b}{8\pi e^2 |a|}\right]^{1/2}
$$

• In GL theory, another parameter describing a superconductor states appears : **the coherence length**. It marks the fluctuation of $|\mathbf{\Psi}_\cdot|$:

 \bullet The ratio : $\varkappa = \frac{\delta(T)}{\varepsilon(T)}$

determines whether a superconductor behaves as type I or type II (when it is less or greater than $\frac{1}{\sqrt{2}}$ respectively). 1

BCS theory

 \bullet

 \bullet BCS: microscopic theory of superconductivity

The product of the process of

- Requires a net attractive interaction between electrons in the neighborhood of the Fermi surface – Cooper pairs
- Cooper pair wave functions are singlets with a symmetric, translationally invariant orbital part.
- By a variational calculation, the spatial range of the wavefunction is shown to be several orders of magnitude larger than the average spacing between electrons.
- Central feature: an energy gap exists between the energy of the cooper pairs in the BCS electronic ground state and the "single particle" excited states.

 BCS theory is widely applicable and tremendously predictive From He³ in its condensed state to type I and type II metallic and high-temperature superconductors

• Critical field, thermal properties, and most magnetic properties are consequences of the energy gap.

BCS theory: Quantitative Predictions

- \bullet Transition temperature:
- \bullet Energy gap:

 \bullet

Specific Heat:

$$
\frac{c_s}{\gamma T_c} = 1.34 \left(\frac{\Delta(0)}{T}\right)^{3/2} e^{-\Delta(0)/T}
$$

$$
k_B T_c = 1.13 \hbar \omega e^{-1/N_0 V_c}
$$

\n
$$
\Delta(0) = 2 \hbar \omega e^{-1/N_0 V_0}
$$

$$
\frac{\Delta(0)}{k_B T_c} = 1.76.
$$

}

• Magnetic flux through a superconductor ring is quantized, and the flux quantum (fluxoid) is given by:

 $\Phi_0 = 2\pi\hbar c/2e \approx 2.0678 \times 10^{-7}$ gauss cm²

 Duration of persistent currents "practically infinite" (in most cases the expected time required for one fluxoid to escape is calculated to be larger than the age of the universe)

BCS theory: Flux quantization

 \bullet GL formula for the superconducting current density:

$$
\mathbf{j} = -\frac{e}{2m} \left[\psi^* \left\{ \left(\frac{\hbar}{i} \nabla + \frac{2e}{c} \mathbf{A} \right) \psi \right\} + \left\{ \left(\frac{\hbar}{i} \nabla + \frac{2e}{c} \mathbf{A} \right) \psi \right\}^* \psi \right]
$$

 \bullet We suppose that the spatial variation of ψ is contained in its phase:

$$
\psi = |\psi|e^{i\phi} \text{ Therefore: } \mathbf{j} = -\left[\frac{2e^2}{mc}\mathbf{A} + \frac{e\hbar}{m}\nabla\phi\right]|\psi|^2
$$
\n
$$
0 = \oint \mathbf{j} \cdot d\mathbf{\ell} = \oint \left(\frac{2e^2}{mc}\mathbf{A} + \frac{e\hbar}{m}\nabla\phi\right) \cdot d\mathbf{\ell}.
$$
\n
$$
\int \mathbf{A} \cdot d\mathbf{\ell} = \int \nabla \times \mathbf{A} \cdot d\mathbf{S} = \int \mathbf{B} \cdot d\mathbf{S} = \Phi,
$$
\n
$$
\oint \nabla\phi \cdot d\mathbf{\ell} = \Delta\phi = 2\pi n. \implies |\Phi| = \frac{nhc}{2e} = n\Phi_0.
$$

BCS theory: Type II SupC's

- \bullet How do we explain the existence of type II superconductors?
- \bullet Theory of type II superconductors developed by G&L + Abrikosov & **Gorkov**
- \bullet Vortex State : Stable configurations of a superconductor in a magnetic field with rods or plates in the normal state surrounded by the superconducting region.
- \bullet From this model (which is verified experimentally) one can estimate the lower and upper critical fields.

 $H_{c1} \simeq \Phi_0 / \pi \lambda^2$ $H_{c2} \simeq \Phi_0 / \pi \xi^2$

 \bullet Finally, from thermodynamical stability considerations:

Less Control de Bicardo

 $(H_{c1}H_{c2})^{1/2} \approx H_c$

BCS Theory: Single particle tunelling

BCS Theory: Josephson tunelling

- \bullet Semiconductors separated by an insulator junction
- \bullet Due to electron-pair interaction accross the junction
	- **DC Josephson Effect :** DC current accross the junction with no applied voltage.
	- **DC Josephson Effect :** A DC voltage gives rise to current oscillations accross the junction.

$$
\omega=2eV/\hbar
$$

Macroscopic quantum interference: Total current shows

interference effects as a function of the applied magnetic flux. Used to design sensitive magnetometers.

Current maxima at :
 $e\Phi/\hbar c = s\pi$, $s = \text{integer}$

Applications

- Superconductors are used in NMR machines
- Mass spectrometers

 \bullet

- The beam-steering magnets used in particle accelerators \bullet
- Superconductors are used to build
Josephson junctions, which are the
building blocks of SQUIDs the most
sensitive magnetometers known. \bullet
- The large resistance change at the transition from the normal to the \bullet superconducting state is used to
build thermometers in cryogenic
micro-calorimeter photon detectors.
- Josephson junction can be used as a photon detector

Alather and Elevent

Superconductivity

