
Chapter 2

Schrödinger equation for
central potentials

In this chapter we will extend the concepts and methods introduced in the
previous chapter ifor a one-dimenional problem to a specific and very important
class of three-dimensional problems: a particle under a central potential V (r),
i.e. depending only upon the distance r from a fixed center. The Schrödinger
equation we are going to study in this chapter is thus

Hψ(r) ≡
[
− h̄2

2me
∇2 + V (r)

]
ψ(r) = Eψ(r) (2.1)

The problem of two interacting particles via a potential depending only upon
their distance, V (|r1 − r2|), e.g. the Hydrogen atom, reduces to this case (see
the Appendix).

The general solution proceeds via the separation of the Schrödinger equation
into an angular and a radial part. In this chapter we will be concsider the
numerical solution of the radial Schrödinger equation. A non-uniform grid is
introduced and the radial Schrödinger equation is transformed to an equation
that can still be solved using Numerov’s method.

2.1 Variable separation

Let us introduce a polar coordinate system (r, θ, φ), where θ is the polar angle,
φ the azimuthal one, and the polar axis coincides with the z Cartesian axis.
The gradient operator is given by

∇ = ur
∂

∂r
+ uθ

1
r

∂

∂θ
+ uφ

1
r sin θ

∂

∂φ
(2.2)

and the Laplacian operator by

∇2 =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2
(2.3)
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as can be shown with some algebra. It is convenient to introduce the explicit
representation of the L2 operator:

L2 = −h̄2

[
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
(2.4)

where L2 = L2
x+L2

y+L2
z is the square of the angular momentum vector operator,

L = −ih̄r×∇, and acts only on angular variables. The Hamiltonian can thus
be written as

H = − h̄2

2m
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

L2

2mr2
+ V (r) (2.5)

The term L2/2mr2 also appears in the analogous classical problem: the ra-
dial motion of a mass having classical angular momentum Lcl can be described
by an effective radial potential V̂ (r) = V (r) +L2

c/2mr
2, where the second term

(the “centrifugal potential”) takes into account the effects of rotational mo-
tion. For high Lcl the centrifugal potential “pushes” the equilibrium positions
outwards.

In the quantum case, both L2 and one component of the angular momentum,
for instance Lz:

Lz = −ih̄ ∂

∂φ
(2.6)

commute with the Hamiltonian, so L2 and Lz are conserved and H, L2, Lz have
a (complete) set of common eigenfunctions. We can thus use the eigenvalues of
L2 and Lz to classify the states. Let us now proceed to the separation of radial
and angular variables, as suggested by Eq.(2.5). Let us assume

ψ(r, θ, φ) = R(r)Y (θ, φ) (2.7)

After some algebra we find that the Schrödinger equation can be split into an
angular and a radial equation. The solution of the angular equations are the
spherical harmonics, known functions that are eigenstates of both L2 and of
Lz:

LzY`m(θ, φ) = mh̄Y`m(θ, φ), , L2Y`m(θ, φ) = `(`+ 1)h̄2Y`m(θ, φ) (2.8)

(` ≥ 0 and m = −`, ..., ` are integer numbers).
The radial equation obeys

1
R(r)

∂

∂r

(
r2∂R

∂r

)
− 2mr2

h̄2 [V (r)− E] = `(`+ 1) (2.9)

that is

− h̄2

2m
1
r2

∂

∂r

(
r2∂Rn`

∂r

)
+

[
V (r) +

h̄2`(`+ 1)
2mr2

]
Rn`(r) = En`Rn`(r) (2.10)

In general, the energy will depend upon ` because the effective potential does;
moreover, for a given `, we expect a quantization of the bound states (if existing)
and we have indicated with n the corresponding index.
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Finally, the complete wave function will be

ψn`m(r, θ, φ) = Rn`(r)Y`m(θ, φ) (2.11)

The energy does not depend upon m. As already observed, m classifies the
projection of the angular momentum on an arbitrarily chosen axis. Due to
spherical symmetry of the problem, the energy cannot depend upon the orien-
tation of the vector L, but only upon his modulus. An energy level En` will
then have a degeneracy 2` + 1 (or larger, if there are other observables that
commute with the Hamiltonian and that we haven’t considered).

2.1.1 Radial equation

The probability to find the particle at a distance between r and r+dr from the
center is given by the integration over angular variables:∫

|ψn`m(r, θ, φ)|2rdθ r sin θ dφdr = |Rn`|2r2dr = |χn`|2dr (2.12)

where we have introduced the auxiliary function χ(r) as

χ(r) = rR(r) (2.13)

and exploited the normalization of the spherical harmonics:∫
|Y`m(θ, φ)|2dθ sin θ dφ = 1 (2.14)

(the integration is extended to all possible angles). As a consequence the nor-
malization condition for χ is ∫ ∞

0
|χn`(r)|2dr = 1 (2.15)

The function |χ(r)|2 can thus be directly interpreted as a radial (probability)
density. Let us re-write the radial equation for χ(r) instead of R(r). Its is
straightforward to find that Eq.(2.10) becomes

h̄2

2me

d2χ

dr2
+

[
E + V (r)− h̄2`(`+ 1)

2mer2

]
χ(r) = 0 (2.16)

We note that this equation is completely analogous to the Schrödinger equa-
tion in one dimension, Eq.(1.1), for a particle under an effective potential

V̂ (r) = V (r) +
h̄2`(`+ 1)

2mer2
(2.17)

As already explained, the second term is the centrifugal potential. The same
methods used to find the solution of Eq.(1.1), and in particular, Numerov’s
method, can be used to find the radial part of the eigenfunctions of the energy.
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2.2 Coulomb potential

The most important and famous case is when V (r) is the Coulomb potential:

V (r) = − Ze2

4πε0r
, (2.18)

where e = 1.6021 × 10−19 C is the electron charge, Z is the atomic number
(number of protons in the nucleus), ε0 = 8.854187817× 10−12 in MKSA units.
In physics it is still much used the CGS system, in which the Coulomb potential
is written as:

V (r) = −Zq2
e/r. (2.19)

In the following we will use q2
e = e2/(4πε0) so as to fall back into the simpler

CGS form.
It is often practical to work with atomic units (a.u.): units of length are

expressed in Bohr radii (or simply, “bohr”), a0:

a0 =
h̄2

meq2
e

= 0.529177Å = 0.529177× 10−10m, (2.20)

while energies are expressed in Rydberg (Ry):

1Ry =
meq

4
e

h̄2 = 13.6058eV. (2.21)

with me = electron mass, not reduced mass. It is straightforward to verify that
in such units, h̄ = 1, me = 1/2, q2

e = 2.
We may also take the Hartree (Ha) instead or Ry as unit of energy:

1 Ha = 2 Ry =
meq

4
e

h̄2 = 27.212 eV (2.22)

thus obtaining another set on atomic units, in which h̄ = 1,me = 1, qe = 1.
Beware! Never talk about ”atomic units” without first specifying which ones.
In the following, the first set (”Rydberg” units) will be occasionally used.

We note first of all that for small r the centrifugal potential is the dominant
term in the potential. The behavior of the solutions for r → 0 will then be
determined by

d2χ

dr2
' `(`+ 1)

r2
χ(r) (2.23)

yielding χ(r) ∼ r`+1, or χ(r) ∼ r−`. The second possibility is not physical
because χ(r) is not allowed to diverge.

For large r instead we remark that bound states may be present only if
E < 0: there will be a classical inversion point beyond which the kinetic energy
becomes negative, the wave function decays exponentially, only some energies
can yield valid solutions. The case E > 0 corresponds instead to a problem of
electron-nucleus scattering, with propagating solutions and a continuum energy
spectrum. In this chapter, the latter case will not be treated.
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The asymptotic behavior of the solutions for large r → ∞ will thus be
determined by

d2χ

dr2
' −2me

h̄2 Eχ(r) (2.24)

yielding χ(r) ∼ exp(±kr), where k =
√
−2meE/h̄. The + sign must be dis-

carded as unphysical. It is thus sensible to assume for the solution a form
like

χ(r) = r`+1e−kr
∞∑
n=0

Anr
n (2.25)

which guarantees in both cases, small and large r, a correct behavior, as long
as the series does not diverge exponentially.

The radial equation for the Colomb potential can then be solved along the
same lines as for the harmonic oscillator, Sect.1.1. The expansion (2.25) is
introduced into (2.16), a recursion formula for coefficients An is derived, one
finds that the series in general diverges like exp(2kr) unless it is truncated to a
finite number of terms, and this happens only for some particular values of E:

En = −Z
2

n2

meq
4
e

2h̄2 = −Z
2

n2
Ry (2.26)

where n ≥ ` + 1 is an integer known as main quantum number. For a given `
we find solutions for n = `+ 1, `+ 2, . . .; or, for a given n, possible values for `
are ` = 0, 1, . . . , n− 1.

Finally, the solution for the radial part of the wave functions is

χn`(r) =

√
(n− `− 1)!Z
n2[(n+ `)!]3a3

0

x`+1e−x/2L2`+1
n+1 (x) (2.27)

where

x ≡ 2Z
n

r

a0
= 2

√
−2meEn

h̄2 r (2.28)

and L2`+1
n+1 (x) are Laguerre polynomials of degree n− `− 1. The coefficient has

been chosen in such a way that the following orthonormality relations hold:∫ ∞
0

χn`(r)χn′`(r)dr = δnn′ (2.29)

The ground state has n = 1 and ` = 0: 1s in “spectroscopic” notation (2p is
n = 2, ` = 1, 3d is n = 3, ` = 2, 4f is n = 4, ` = 3, and so on). For the Hydrogen
atom (Z = 1) the ground state energy is −1Ry and the binding energy of the
electron is 1 Ry (apart from the small correction due to the difference between
electron mass and reduced mass). The wave function of the ground state is a
simple exponential. With the correct normalization:

ψ100(r, θ, φ) =
Z3/2

a
3/2
0

√
π

e−Zr/a0 (2.30)

The dominating term close to the nucleus is the first term of the series,
χn`(r) ∼ r`+1. The larger `, the quicker the wave function tends to zero when
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approaching the nucleus. This reflects the fact that the function is “pushed
away” by the centrifugal potential. Thus radial wave functions with large ` do
not appreciably penetrate close to the nucleus.

At large r the dominating term is χ(r) ∼ rn exp(−Zr/na0). This means
that, neglecting the other terms, |χn`(r)|2 has a maximum about r = n2a0/Z.
This gives a rough estimate of the “size” of the wave function, which is mainly
determined by n.

In Eq.(2.27) the polynomial has n− `−1 degree. This is also the number of
nodes of the function. In particular, the eigenfunctions with ` = 0 have n − 1
nodes; those with ` = n− 1 are node-less. The form of the radial functions can
be seen for instance on the Wolfram Research site1 or explored via the excellent
Java applet at Davidson College2.

2.3 Accidental degeneracy and dynamical symmetry

Although the effective potential appearing in Eq.(2.16) depend upon `, and the
angular part of the wave functions also strongly depend upon `, the energies
(2.26) depend only upon n. We have thus a degeneracy on the energy levels
with the same n and different `, in addition to the one due to the 2` + 1
possible values of the quantum number m (as implied in (2.10) where m does
not appear). The total degeneracy3 for a given n is thus

n−1∑
`=0

(2`+ 1) = n2 (2.31)

The degeneracy of the energies having different ` and same n is present only
if the interaction potential is Coulombian. Although it is known as accidental
degeneracy, it is not really “accidental”. A degeneracy usually indicates the
presence of a symmetry and thus of a conserved quantity. For instance, the
degeneracy in m is related to spherical symmetry and to conservation of angular
momentum.

In classical mechanics, the equivalent of the accidental degeneracy is the
conservation of the Runge-Lenz vector

M =
p× L
m

− α

r
r (2.32)

verified for a classical Hamiltonian

H =
p2

2m
− α

r
(2.33)

This is the case of the relative motion of two bodies interacting via gravitational
forces. In this case, the orbits are ellipses, and they are always closed: the
orientation of the ellipses does not change with time. The Runge-Lenz vector
lies along the major ellipses axis.

1http://library.wolfram.com/webMathematica/MSP/Explore/Physics/Hydrogen
2http://webphysics.davidson.edu/Applets/Hydrogenic/
3excluding spin
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The corresponding quantum vector has a slightly different expression:

M =
1

2m
(p× L− L× p)− Zq2

e

r
r (2.34)

It is possible to show that M is orthogonal to L, and that [M, H] = 0, i.e. it is
a conserved quantity.

2.4 Code: hydrogen

The code hydrogen radial.f904 or hydrogen radial.c5 solves the radial equa-
tion for a one-electron atom. It is based on harmonic1, but solves a slightly
different equation on a logarithmically spaced grid. Moreover it uses a more
sophisticated approach to locate eigenvalues, based on a perturbative estimate
of the needed correction.

2.4.1 Logarithmic grid

The straightforward numerical solution of Eq.(2.16) runs into the problem of
the singularity of the potential at r = 0. One way to circumvent this difficulty
is to work with a variable-step grid instead of a constant-step one, as done until
now. Such grid becomes denser and denser as we approach the origin. “Serious”
solutions of the radial Schrödinger in atoms, especially in heavy atoms, invari-
ably involve such kind of grids, since wave functions close to the nucleus vary on
a much smaller length scale than far from the nucleus. A detailed description of
the scheme presented here can be found in chap.6 of The Hartree-Fock method
for atoms, C. Froese Fischer, Wiley, 1977.

Let us introduce a new integration variable x and a constant-step grid in
x, so as to be able to use Numerov’s method without changes. We define a
mapping between r and x via

x = f(r) (2.35)

The relation between the constant-step grid spacing ∆x and the variable-step
grid spacing is given by

∆x = f ′(r)∆r (2.36)

We make the specific choice

f(r) ≡ log
Zr

a0
(2.37)

(note that x is adimensional) yielding

∆x =
∆r
r

(2.38)

The ∆r/r ratio remains thus constant on the grid of r, called logarithmic grid,
so defined.

4http://www.fisica.uniud.it/%7Egiannozz/Corsi/MQ/Software/F90/hydrogen radial.f90
5http://www.fisica.uniud.it/%7Egiannozz/Corsi/MQ/Software/C/hydrogen radial.c
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There is however a problem: by transforming Eq.(2.16) in the new vari-
able x, a term with first derivative appears, preventing the usage of Numerov’s
method (and of other integration methods as well). The problem can be cir-
cumvented by transforming the unknown function as follows:

y(x) =
1√
r
χ (r(x)) (2.39)

It is easy to verify that by transforming Eq.(2.16) so as to express it as a
function of x and y, the terms containing first-order derivatives disappear, and
by multiplying the equation by r3/2 one finds

d2y

dx2
+

[
2me

h̄2 r2 (E − V (r))−
(
`+

1
2

)2
]
y(x) = 0 (2.40)

where V (r) = −Zq2
e/r for the Coulomb potential. Note that this equation no

longer presents any singularity for r = 0.
The code uses atomic (Rydberg) units, so lengths are in Bohr radii (a0 = 1),

energies in Ry, h̄2/(2me) = 1, q2
e = 2.

Subroutine do mesh defines at the beginning and once for all the values of
r,
√
r, r2 for each grid point. The potential is also calculated once and for all

in init pot. The grid is calculated starting from a minimum value x = −8,
corresponding to Zrmin ' 3.4 × 10−3 Bohr radii. Note that the grid in r does
not include r = 0: this would correspond to x = −∞.

2.4.2 Improving convergence with perturbation theory

A few words are in order to explain the section of the code:

i = icl
ycusp = (y(i-1)*f(i-1)+f(i+1)*y(i+1)+10.d0*f(i)*y(i)) / 12.d0
dfcusp = f(i)*(y(i)/ycusp - 1.d0)
! eigenvalue update using perturbation theory
de = dfcusp/ddx12 * ycusp*ycusp * dx

whose goal is to give an estimate, to first order in perturbation theory, of the
difference δe between the current estimate of the eigenvalue and its final value.

Reminder: icl is the index corresponding to the classical inversion point.
Integration is made with forward recursion up to this index, with backward
recursion down to this index. icl is thus the index of the matching point
between the two functions. The function at the right is rescaled so that the
total function is continuous, but the first derivative dy/dx will be in general
discontinuous, unless we have reached a good eigenvalue.

In the section of the code shown above, y(icl) is the value given by Nu-
merov’s method using either icl-1 or icl+1 as central point; ycusp is the value
predicted by the Numerov’s method using icl as central point. The problem
is that ycusp6=y(icl).

What about if our function is the exact solution, but for a different problem?
It is easy to find what the different problem could be: one in which a delta func-
tion, v0δ(x−xc), is superimposed at xc ≡x(icl) to the potential. The presence
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of a delta function causes a discontinuity (a ”cusp”) in the first derivative, as
can be demonstrated by a limit procedure, and the size of the discontinuity is
related to the coefficient of the delta function. Once the latter is known, we
can give an estimate, based on perturbation theory, of the difference between
the current eigenvalue (for the ”different” potential) and the eigenvalue for the
”true” potential.

One may wonder how to deal with a delta function in numerical integration.
In practise, we assume the delta to have a value only in the interval ∆x centered
on y(icl). The algorithm used to estimate its value is quite sophisticated. Let
us look again at Numerov’s formula (1.32): note that the formula actually
provides only the product y(icl)f(icl). From this we usually extract y(icl)
since f(icl) is assumed to be known. Now we suppose that f(icl) has a
different and unknown value fcusp, such that our function satisfies Numerov’s
formula also in point icl. The following must hold:

fcusp*ycusp = f(icl)*y(icl)

since this product is provided by Numerov’s method (by integrating from icl-1
to icl+1), and ycusp is that value that the function y must have in order to
satisfy Numerov’s formula also in icl. This explain the definition of dfcusp
(variation of fcusp) calculated by the program.

The next step is to calculate the corresponding variation of the potential
appearing in Eq.(2.40), i.e. W (x) = (2me/h̄

2)r2V + (` + 1/2)2. By differen-
tiating one finds that the variation of the potential δW that gives raise to a
variation δf is given by

δW = − h̄2

2me

12
(∆x)2

δf (2.41)

First-order perturbation theory gives then the corresponding variation of
the eigenvalue:

δe = 〈y|δW |y〉 =
∫
|y(x)|2δW (x)dx = |y(xc)|2δW∆x (2.42)

Here we have written the matrix element of the Delta potential (the integral
in the above formula) into a sum over grid points, with a single non-zero con-
tribution coming from the region of width ∆x centered at point xc =x(icl).
Finally

δe = − h̄2

2me

12
(∆x)2

|y(xc)|2δf∆x (2.43)

is the difference between the eigenvalue of the current potential (i.e. with a
superimposed Delta function) and that of the true potential. This expression
is used by the code to calculate the correction de to the eigenvalue. Since in
the first step this estimate may have large errors, the line

e = max(min(e+de,eup),elw)

prevents the usage of a new energy estimate outside the bounds [elw,eip]. As
the code proceeds towards convergence, the estimate becomes better and better
and convergence is very fast in the final steps.
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2.4.3 Laboratory

• Examine solutions as a function of n and `; verify the presence of acci-
dental degeneracy.

• Compare the numerical solution with the exat solution, Eq.(2.30), for the
1s case (or other cases if you know the analytic solution).

• Slightly modify the potential as defined in subroutine init pot, verify
that the accidental degeneracy disappears. Some suggestions: V (r) =
−Zq2

e/r
1+δ where δ is a small, positive or negative, number; or add an

exponential damping (Yukawa) V (r) = −Zq2
e exp(−Qr)/r where Q is a

number of the order of 0.05 a.u..

Possible code modifications and extensions:

• Consider a different mapping: r(x) = r0 ∗ (exp(x) − 1), that unlike the
one we have considered, starts from r = 0. Which changes must be done
to adapt the code to this mapping?
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