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This paper deals with the numerical modelling of the pul-
sating heat pipe (PHP) and is based on the film evapo-
ration/condensation model recently applied to the single
bubble PHP (Das et al., 2010). The described numerical
code can treat the PHP of arbitrary number of bubbles and
branches. Several phenomena that occur inside the PHP are
taken into account: coalescence of liquid plugs, film junction
or rupture, etc. The model reproduces some of the exper-
imentally observed regimes of functioning of the PHP like
chaotic or intermittent oscillations of large amplitude. Some
results on the PHP heat transfer are discussed.
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1 Introduction
The pulsating (or oscillating) heat pipe (PHP) is a long

capillary tube bent into many branches and partially filled
with a two-phase, usually single component, working fluid
[1]. The tube is simple, a wick structure is not required. The
fluid spontaneously forms multiple vapor bubbles separated
by liquid plugs inside the tube. Evaporation of liquid in the
hot (evaporator) sections and subsequent condensation in the
cold (condenser) sections creates oscillations of the bubble-
plug structure. These oscillations are very important because
they lead to a substantial increase of the heat transfer rate in
comparison with other types of heat pipes [2]. In addition to
the latent heat transfer characteristic for them, the sensible
heat transfer is important in PHP. While sweeping a section
belonging to evaporator, a liquid plug accumulates the heat,
which is then transferred to the condenser section when the
plug penetrates there.

Because of their simplicity and high performance, PHPs
are often considered as highly promising. Their industrial
application is however limited because their functioning is
non-stationary and thus difficult to be controlled. During the
last decade, researchers have extensively studied PHPs [3].
Tong et al. [4], Miyazki and Arikawa [5], Khandekar et
al. [6], Xu et al. [7], Gi et al. [8] and Inoue et al. [9] have
carried out flow visualization studies with several working
fluids. These experiments confirmed the existence of self-
sustained thermally driven oscillations in PHPs. Several ex-
perimental groups [10–14] performed experiments with dif-

ferent tube diameters, configurations, orientations and filling
ratios and studied the thermal performance of PHPs in dif-
ferent conditions. However, the functioning of PHPs is not
completely understood. A complicated interplay of different
hydrodynamic and phase-exchange phenomena needs to be
accounted for. The experimental studies of the background
physical phenomena that cause the instability or are respon-
sible for the PHP behavior are only a few [14, 15].

There are several modeling approaches available in the
literature. Shafii et al. [16] initiated the modeling approaches
for multi-branch PHPs. The evaporation-condensation mass
exchange was accounted for with the temperature difference
terms ∝ (Twall−Ti) where Twall was either Te or Tc depending
on the bubble location. The problem was solved numerically
with the explicit Euler scheme. Periodical (nearly sinusoidal)
oscillations appeared after a transient. Their amplitude was
small: the displacement amplitude did not exceed the evapo-
rator size. It was concluded that the heat is transferred mainly
via the sensible heat transfer; the latent heat transfer was an
order of value smaller. The same model has been used later
by another team [17].

It is well known from the analysis of the conventional
heat pipes that in reality, most of evaporation in the evapo-
rator occurs through the liquid films that might cover only
a part of the heated surface. Dobson [18, 19] introduced a
lumped meniscus model where the films are considered to
be of constant thickness δ f but of varying length. Apart
from the film introduction, the model was similar to [16].
Single bubble PHP with an open end was considered. The
oscillations were unstable and consisted of a nearly period-
ical pattern which began with a strong displacement during
which the meniscus penetrated into the evaporator. This ini-
tiated high frequency declining to zero oscillations around
an average position situated in the condenser. Das et al. [15]
attempted to reproduce the results of Dobson with his model
for the same parameters. They obtained only small ampli-
tude periodical oscillations during which the meniscus never
penetrated into the evaporator. They attributed the disagree-
ment to the poor stability of the numerical algorithm (explicit
Euler) used by Dobson. The 4th order Runge-Kutta method,
well known to be stable, was used in [15]. A rigorous an-



alytic analysis of a simplified version of the model, where
the evaporation-condensation dynamics is modeled with the
(Twall − Ti) term, has been also carried out by Das et al.
An analytic expression giving the condition, under which
the self-sustained oscillations appear, was obtained. It was
shown that such a model leads necessarily to small ampli-
tude oscillations.

A 2D model of the single-bubble PHP was considered
by Zhang and Faghri [20]. A conceptual difference with the
previous approaches concerned the vapor equation of state.
Instead of the ideal gas model, the vapor was considered to
be at saturation temperature Tsat corresponding to its pres-
sure P. Small amplitude periodic nearly harmonic oscilla-
tions were obtained. Holley and Faghri [21] applied the same
assumption to the PHP with spatially varying diameter.

Das et al. introduced the film evaporation-condensation
model. The film is introduced similarly to [18,19]. The vapor
mass exchange is assumed to be limited by the heat conduc-
tion in the film like in the work [20]. This leads to the mass
exchange rate λl [Twall−Tsat(P)]/(δ f hlv) where Tsat(P) is the
gas-liquid interface temperature. This approach is different
from all previous approaches because a strong temperature
gradient is assumed to exist in the vapor so that the temper-
ature T of its bulk is allowed to be different from Tsat(P).
The validity of this assumption is checked in [15] a pos-
teriori. The simulations have shown that most of the time
T > Tsat(P). The same form of the mass exchange term
has been used recently by Senjaya et al. [22]. They how-
ever did not use the variable films. The film evaporation-
condensation model was validated against the single branch
experiment [15]. It reproduces oscillations the amplitude of
which might be larger than the size of evaporator. The pur-
pose of the present article is to apply it to the multi-bubble
PHP. The closed loop PHP will be considered. The model is
however can be applied also to the unlooped PHP.

2 Problem statement

 

cL  

 

eL  

eL  

2
eL

  aL   
2

cL
 

x 

(a) 

(b) 

(c) 

g
��

    

0 

aL  

aL  

aL  

aL  

g
��

g
��

g
��

g
��

Fig. 1. (Color online) (a) Sketch of the closed loop PHP with the
default gravity direction. Evaporator is to the left. (b,c) Topological
transformations of the tube. (b) Unlooping. (c) Unbending and pro-
jection to the x axis. The splitting of the x axis to branches is shown.

Like in [16, 17], the PHP meandering tube is projected
to a straight axis x so that it consists of periodic sequence
of different domains corresponding to the PHP sections (Fig.
1). One PHP spatial “period” of the length Lp = 2La +Lc +
Le is assumed to contain the sections in the following order:
evaporator, adiabatic, condenser, adiabatic. The point x = 0
is assumed to coincide with the beginning of an evaporator.
The PHP branch is a half of a period (Lb = 0.5Lp) beginning
in the middle of a condenser or an evaporator. Lt = NpLp is
the total PHP length. Each bubble is identified by the index i.
The neighboring from the right side liquid plug is denoted by
the same index. The total number M of bubbles may change
in time.

Unlike [16], the axis and the periodical pattern of sec-
tions on it are continued to infinity in both directions. At
t = 0, the bubbles are positioned at the axis and may move at
t > 0 along the infinite axis x as far as needed. This means
that the x value itself does not have any significance; only the
relative positions are meaningful; they are determined with
the remainder operator defined as y mod z = y− z int(y/z)≥
0 where int(z) means the integer part of z, i.e. the largest
integer smaller than z. E. g. x belongs to evaporator if
x mod Lp ≤ Le. Since the PHP loop is closed, each point x is
equivalent to the point Lt +x. Such an approach is convenient
because it simplifies the management of any kind of bubble
motion, in particular their unidirectional circulation. Within
such a description, the coordinate X l

i of the left meniscus of
the bubble i is always smaller than that of its right meniscus
X r

i and the bubble order does not change during their motion.
Note that the coordinate X r

M of the left end of the last liquid
plug is larger than that of its right end X l

1.
The constant temperatures Te and Tc are imposed at the

inner walls of the evaporator and condenser.

2.1 Film dynamics in evaporators
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Fig. 2. (Color online) Vapor bubble i that extends over Ne,i evapo-
rators and the liquid films inside it.

According to the film evaporation/condensation model
[15], the film length may vary because of two reasons:
(i) evaporation or condensation and (ii) film deposition
(Landau-Levich phenomenon) or film “eating up” during re-
ceding or advancing of the liquid meniscus, respectively. We
generalize this model here to the case of multiple branches.
The liquid film is assumed to always cover the inner walls



of the tube (i.e. to be continuous) in the condenser and adi-
abatic sections when the whole bubbles or their parts are lo-
cated inside them. The film may be partially or completely
evaporated in the evaporator. The films are assumed to have
a homogeneous thickness δ f in all the sections.

Let us consider the i-th bubble that may extend over sev-
eral PHP bends or, equivalently, evaporators (Fig. 2). A
number Ne,i of pairs of films per bubble (left+right each) co-
incides with the number int(X r

i /Lp)− int[(X l
i − Le)/Lp] of

evaporators to which at least a part of the bubble belongs if
the latter quantity is nonzero. In the opposite case, Ne,i = 1 to
describe the continuous film in the adiabatic and condenser
sections. The evaporators are counted left-to-right by the in-
dex k = 1 . . .Ne,i. The (non-negative) lengths of the left and
right films of the bubble in the k-th evaporator are denoted
Ll,k

f ,i and Lr,k
f ,i, respectively. When the film in the evaporator is

not continuous, their dynamics is described by the equations
(cf. Eq. (26) of [15])

L̇l,k
f ,i =


0 if Ll,k

f ,i = 0, Ẋ l
i > 0 and

X l
i ∈ k-th evaporator,

−ṁl,k
f e,i/(ρlπdδ f ) if X l

i /∈ k-th evaporator,
−ṁl,k

f e,i/(ρlπdδ f )− Ẋ l
i otherwise,

(1)

L̇r,k
f ,i =


0 if Lr,k

f ,i = 0, Ẋ r
i < 0 and

X r
i ∈ k-th evaporator,

−ṁr,k
f e,i/(ρlπdδ f ) if X r

i /∈ k-th evaporator,
−ṁr,k

f e,i/(ρlπdδ f )+ Ẋ r
i otherwise,

(2)

where dot means the time derivative. Evidently, the condi-
tion “X s

i ∈ k-th evaporator” may be satisfied only for k = 1 if
s = l and for k = Ne,i if s = r. The mass evaporation rate at
k-th evaporator ṁs,k

f e,i from the film s ∈ {r, l} is defined by the
interfacial heat balance equation

hlvṁs,k
f e,i =UπdLs,k

f ,i[Te−Tsat(Pi)]. (3)

As discussed in the Introduction, the heat transfer coefficient
is defined by the expression

U = γλl/δ f , (4)

where γ . 1 is a coefficient accounting for the spatial varia-
tion of the film thickness that exists in reality. The meaning
of Eqs. (1, 2) is simple: the film length may decrease due
to evaporation or due to the meniscus advancing in the direc-
tion of the film edge (“eating up” of the liquid film). The film
length increases when the film is left during the receding mo-
tion of the meniscus (Landau-Levich film deposition). It is
assumed that the triple contact line (i.e. film edge) is pinned
and does not recede in the absence of evaporation.

The coordinates of the left and right film edges in each
of Ne,i evaporators (X l,k

f ,i and X r,k
f ,i , respectively) may coincide

with one of the ends of the evaporator or with a position of a
meniscus if the corresponding film length is zero. Provided
X l

i ,X
r
i ,L

l,k
f ,i,L

r,k
f ,i are known, X l,k

f ,i and X r,k
f ,i can be determined

from the following reasoning.
When no part of the bubble situates in evaporators,

Ne,i = 1 and the film is continuous as mentioned above. This
is equivalent to a junction of the left and right films at a point
(denoted X1

j ) that needs to be chosen. This choice is of im-
portance because in the simulation it defines the point of the
film rupture that may occur. Therefore X1

j =X l,1
f ,i =X r,1

f ,i is as-
sumed to coincide with the left or right meniscus (i.e with X l

i
or X r

i ), correspondingly to the direction of the bubble motion
so that the evolution of the film edges exhibits no discon-
tinuity when the Landau-Levich film begins to be deposed
according to (1, 2).

When at least a part of the bubble situates in evaporators,
one applies the following expressions to each of them (k =
1 . . .Ne,i):

X l,k
f ,i =

{
X l

i if X l
i ∈ k-th evaporator

X l,k
e,i otherwise

}
+Ll,k

f ,i, (5)

X r,k
f ,i =

{
X r

i if X r
i ∈ k-th evaporator

X r,k
e,i otherwise

}
−Lr,k

f ,i. (6)

Here

X l,k
e,i = Lp

[
int
(

X l
i −Le

Lp

)
+ k
]

(7)

is the left edge of the k-th evaporator and X r,k
e,i = X l,k

e,i +Le is
its right edge.

At some occasion, Eqs. (5, 6) may result in X l,k
f ,i ≥ X r,k

f ,i
(i.e in a small film overlap allowed in the numerical calcu-
lation where the time steps are discrete). This signifies an
appearance of a continuous liquid film. The point Xk

j (where
the film will disrupt should the film rupture occur) needs to
be defined. It is assumed to coincide with the point of film
junction where the film is thinner there and likely to be evap-
orated quicker than elsewhere. Once Xk

j is defined, X r,k
f ,i and

X l,k
f ,i are reassigned to Xk

j . Next, Lr,k
f ,i and Ll,k

f ,i are recalculated
with Eqs. (5, 6).

2.2 Remaining vapor bubble governing equations
Condensation occurs to the film that surrounds a bubble

portion Lc,i located in the condenser. Similarly to the evapo-
ration description, the film condensation rate m f c,i is defined
by the expression

hlvṁ f c,i =UπdLc,i[Tsat(Pi)−Tc]. (8)

Although much weaker than at the film interface, the
mass exchange occurs at the remaining meniscus part (its



portion of the size Lm � d adjacent to the tube wall) and
exists even if the film is evaporated completely. The heat
balance on the meniscus depends on whether the meniscus
s ∈ {r, l} situates inside the evaporator or the condenser,

hlvṁs
me,i = UmπdLs

me,i[Te−Tsat(Pi)], (9)
hlvṁs

mc,i = UmπdLs
mc,i[Tsat(Pi)−Tc], (10)

where Um <U and

Ls
me,i =

{
Lm if X s

i ∈ evaporator,
0 otherwise, (11)

Ls
mc,i =

{
Lm if X s

i ∈ condenser,
0 otherwise, . (12)

(13)

The total bubble mass change rate ṁi can be expressed as

ṁi = ∑
s=r,l

[
Ne,i

∑
k=1

ṁs,k
f e,i + ṁs

me,i− ṁs
mc,i

]
− ṁ f c,i. (14)

The energy equation of the i-th bubble is [16, 23]

micvvṪi = ṁiRvTi +Qsens
i −PiS(Ẋ r

i − Ẋ l
i ), (15)

where the sensible heat exchange with the dry evaporator
walls is described by the expressions

Qsens
i =UvπdLsens

i (Te−Ti), (16)

where Uv = 2λv/d (it is assumed that the boundary layer in
the vapor is the tube radius) and

Lsens
i =

Ne,i

∑
k=1

(X r,k
f ,i −X l,k

f ,i ). (17)

The vapor equation of state is approximated with the ideal
gas equation

Pi =
miRvTi

S(X r
i −X l

i )
. (18)

Note that the ideal gas assumption is used [16, 23] while de-
riving (15).

2.3 Liquid plug governing equations
The i-th liquid plug, i.e. that to the right of the i-th bub-

ble, has the mass

ml,i = ρlS(X l
i+1−X r

i ), (19)

where the index i+ 1 denotes the bubble to the right of the
i-th bubble. The velocity Vi of the plug’s center of mass is

Vi = 0.5(Ẋ l
i+1 + Ẋ r

i ). (20)

It obeys the momentum equation

d(Viml,i)

dt
= (Pi−Pi+1)S−Fi sign(Vi)+Gi, (21)

where Gi is the gravity term discussed below. The viscous
friction force Fi is defined by the expression corresponding
to the single phase friction [18]

Fi =
1
2

Kdρπ(X l
i+1−X r

i )V
2
i (22)

K =


16 Re < 1
16/Re 1≤ Re < 1180
0.078Re−0.25 Re≥ 1180

,

Re = |Vi|d/ν. (23)

As in the previous modelling approaches, an additional con-
tribution of the bends to Fi is neglected.

The liquid is assumed to be incompressible. This im-
plies that the liquid plug volume may vary because of only
two reasons: (i) phase change at its menisci and (ii) liquid
film deposition or, on the contrary, “eating up”. The velocity
of the plug ends relative to its center of mass is thus non-zero
and is defined by the change in the plug volume. This condi-
tion leads to the following condition of liquid mass balance
in the plug:

ṁl,i = ṁl
me,i+1− ṁl

mc,i+1 + ṁr
me,i− ṁr

mc,i +πdδ f ρl[{
0 if X l

i+1 ∈ evaporator, Ẋ l
i+1 > 0, and Ll,1

f ,i+1 = 0,
Ẋ l

i+1 otherwise.

}

−

{
0 if X r

i ∈ evaporator, Ẋ r
i < 0 and Lr,Ne,i

f ,i = 0,
Ẋ r

i otherwise,

}]
(24)

The upper options in both braces correspond to the menis-
cus advancement over the dry evaporator, and the lower op-
tions, to the film deposition or “eating up”. The equations for
Ẋ l

i , Ẋ
r
i need to be obtained from (19, 20, 24). It is evident that

Ẋ l
i+1≈ Ẋ r

i ≈Vi within quite small terms of the order δ f /d and
ρv/ρl that describe the liquid volume variation. For this rea-
son, Vi can be used in the conditional clauses of (24) instead



of Ẋ l
i+1, Ẋ

r
i . The set of equations (19, 20, 24) becomes linear

and can be solved straightforwardly for Ẋ l
i , Ẋ

r
i . We do not

however write their explicit expressions here because they
are cumbersome.

The liquid volume variation was neglected in previous
works. It is introduced here to provide the conservation of
the total fluid mass in the PHP. A small error that arises when
the conservation is violated accumulates and may become
important at large simulation times.

2.3.1 Gravity term
The gravity sign is constant along each PHP branch but

alters between branches, see Fig. 1c. The default gravity di-
rection coincides with the x axis direction within the branch
number n = 0 that starts at x = 0.5Le. The gravity sign corre-
sponding to the branch number n is thus (−1)n. The branch
number at a given x is

nb(x) = int
(

x−0.5Le

Lb

)
. (25)

The branch numbers of the liquid plug left and right ends are
therefore nl

i = nb(X r
i ) and nr

i = nb(X l
i+1), respectively. The

gravity force reads

Gi = ρlSg

{
(−1)nr

i

[(
X l

i+1−
1
2

Le

)
mod Lb−

1
2

Lb

]
−

(−1)nl
i

[(
X r

i −
1
2

Le

)
mod Lb−

1
2

Lb

]}
. (26)

It is evident that for nl
i = nr

i (i.e. when the entire plug belongs
to one branch),

Gi = ml,ig(−1)nl
i . (27)

The inclination angle θ of the PHP with respect to the vertical
direction can be simulated by replacing g by gsinθ. θ = π

can be used to describe the opposite (condenser on the top)
PHP position.

2.3.2 Heat diffusion in liquid
The temperature distribution in the liquid plug Tl,i =

Tl,i(x, t) where x ∈ (X r
i ,X

l
i+1) is governed by the heat dif-

fusion equation [16],

∂Tl,i

∂t
= D

∂2Tl,i

∂x2 +D
4Nu
d2 (Twall−Tl,i). (28)

The last term accounts for the heat transfer with the tube wall
[16]. The Nusselt number depends on the plug velocity and
length. The expressions for Nu for different ranges of Re

are taken from [24]. Twall is Te or Tc depending on where
x situates. The last term is absent at all if x belongs to the
adiabatic section.

The boundary conditions for eq. (28) are given at the
menisci:

Tl,i(X r
i ) = Tsat(Pi), (29)

Tl,i(X l
i+1) = Tsat(Pi+1). (30)

Note that all previous equations of the model are independent
of Tl because Te and Tc are imposed and independent of the
heat load. Eq. (28) can thus be solved after the calculation
of the PHP dynamics. In our numerical code it is however
solved together with all other equations so that the boundary
conditions where Te and Tc depend on the heat load could be
easily implemented in the future.

2.4 Heat exchange rates
The instantaneous sensible heat power taken by the i-th

bubble-plug pair from the evaporator is calculated with the
following expression:

Qsens
e,i = 2πλ

∫
Nu(Te−Tl,i)dx+Qsens

i , (31)

where the integration is performed over the portion of the
liquid plug located in the evaporator. The heat power given
to the condenser is calculated accordingly,

Qsens
c,i = 2πλ

∫
Nu(Tl,i−Tc)dx, (32)

where the integration is performed over the portion of the
liquid plug located in the condenser. The instantaneous la-
tent heat power taken by the i-th bubble-plug pair from the
evaporator is

Qlat
e,i = hlv ∑

s=r,l

Ne,i

∑
k=1

ṁs,k
f e,i. (33)

That given to condenser is

Qlat
c,i = hlvṁ f c,i. (34)

The instantaneous heat power is a sum of the corre-
sponding terms over all bubbles of the PHP,

Qk
s =

M

∑
i

Qk
s,i, (35)

where k ∈ {sens, lat} and s ∈ {e,c}. The total heat power



reads

Qs = Qlat
s +Qsens

s . (36)

In the stationary regime, the condition

〈Qc〉= 〈Qe〉, (37)

where the angle brackets mean time average should be valid
for long enough averaging times: the amount of heat taken
from the evaporator should be equal to that given to the con-
denser.

2.5 Bubble-plug events
There are several kinds of events that can change the

bubble-plug morphology. They cause a change of the equa-
tions to be solved on the next time step. One of such events,
the film junction, was described in sec. 2.1. It changed equa-
tions but conserved their number. In this section, we rather
discuss the events that change the number of both differential
equations and unknowns.

First, it is the vapor bubble recondensation. It occurs
when a moving liquid plug overtakes another plug. The va-
por pressure grows and fast condensation occurs. A bubble
located between two plugs completely disappears and a new
long plug forms. Its mass is a sum of the masses of the par-
ent plugs and its velocity is determined from the momentum
conservation. On the next time step, the number of bubble-
plug pairs drops by one and the number of equations reduces
accordingly.

Another event met very often is a change in the number
of liquid films. Such an event occurs when a bubble pen-
etrates into extra evaporator or, on the contrary, withdraws
from it. Ne,i number then changes which means that the num-
ber of differential equations (1,2) changes too.

Other yet non implemented events include the vapor
bubble creation by boiling or the complete liquid plug evap-
oration.

3 Numerical implementation
The spatial integration of eq. (28) is performed at each

time step and needs to be discussed first.

3.1 Spatial integration of the heat diffusion equation
The i-th plug is divided to Nl,i + 2 finite elements ∆xk

i .
All (except of two ending) elements are of the same length;
two ending elements are half-length. The element length
varies slightly from plug to plug to keep the total number
of elements integer. The node points Xk

i are in the cen-
ters of the internal Nl,i elements. The node temperatures
are denoted T k

l,i. The temperature values at X0
i = X r

i and

X
Nl,i+1
i = X l

i+1 are given by the boundary conditions (29), so
that there are Nl,i unknown temperatures per plug. The finite

volume method [25] is used and eq. (28) is integrated over
each element. This results in the following discrete analog
of equation (28) written for k = 1 . . .Nl,i,

∂Tl,i

∂t

∣∣∣∣k = 2D
∆xk

i

(
T k+1

l,i −T k
l,i

∆xk+1
i +∆xk

i
+

T k
l,i−T k−1

l,i

∆xk
i +∆xk−1

i

)

+D
4Nu
d2

(
Twall−T k

l,i

)
. (38)

3.2 Data structure
The code is object oriented and is written with C++.

All variables are dynamically allocated. The code can thus
deal with a PHP with arbitrary PHP geometry and time vary-
ing number of plugs, bubbles, and liquid films. The code
makes use of the Microsoft Foundation Class (MFC) library
to take advantage of the serialization (saving and restoring
to/from data files) of the objects of the unknown in advance
size. Each vapor bubble or liquid plug is implemented as a
C++ object and encapsulates a number of scalar and vector
“member” variables proper to each of them. The i-th bub-
ble scalar members include Ti,mi,Pi,X l

i ,X
r
i ,Ne,i,Qlat

c,i ,Q
lat
e,i , a

unique bubble identification number, and a pointer to the
neighboring (from the right) liquid plug. The pointer is sim-
ply a computer memory address where the target object is
located. The pointer may have null value to indicate the plug
absence, which is useful to simulate the last bubble in the
unlooped PHP. In the present article, only the closed loop
PHP is considered so that each bubble has a plug. The vec-
tor member variables of the bubble include the liquid film
lengths and edge coordinates. They are allocated dynami-
cally and so that their length Ne,i may vary. The scalar plug
variables include Vi,ml,i,Nl,i,Qsens

c,i ,Qsens
e,i , and a pointer to its

(left neighbor) bubble. The vector members of a plug are
~∆xi, ~Xi, and ~Tl,i.

 

bubble+plug 

i+1 
 

bubble+plug 

i 
 

bubble+plug 

i-1 

Fig. 3. Computer representation of the instantaneous state of the
PHP as a doubly connected list. Each its node (an oval) contains the
state of a bubble-plug pair and two pointers (circles) to the previous
and to the next nodes.

In the remaining part of this section, the term PHP is
used to denote the instantaneous state of all its bubbles and
plugs. PHP is implemented as a doubly connected list (Fig.
3). The doubly connected list is an array, the i-th node of
which contains the data (of a bubble and its plug) and the
pointers to both previous and next nodes. Note that in this
case i is an identifier of the node rather than its sequen-
tial number. The previous and the next nodes are denoted
as i− 1 and i+ 1 respectively just for the sake of illustra-
tion. The double connectivity allows fast access to these vari-



ables. Unlike the conventional (e.g. FORTRAN) arrays, such
data structures can contain objects of different and variable
length. This is convenient for several reasons. One of them
is that the objects corresponding to plugs may contain the
vectors of different and time-variable sizes Nl,i. The lists are
convenient for another reason. Unlike the standard arrays,
the list nodes are not necessarily written continuously into
the computer memory. Therefore, it is very easy to suppress
or, on the contrary, add a node somewhere in the middle of
the PHP (which corresponds to the bubble recondensation or
nucleation, respectively) without modifying the whole PHP
in the computer memory. It is easy to understand from Fig.
3. Consider the suppression of the i-th node. It consists in
redirection of the upper in Fig. 3 pointer of the node i+1 to
the node i− 1 and of the lower pointer of the node i− 1 to
the node i+1. The variables of the plug i−1 are changed to
account for the plug coalescence as described in sec. 2.5 and
their numerical meshes used for liquid temperature calcula-
tion are merged. The i-th node can then be deallocated (i.e.
the memory occupied by it is liberated). These changes do
not concern other nodes so they are not modified at all. The
standard array implementation would require the change of
indices and a complete rewriting of the whole PHP into the
computer memory, which would slow down the execution
because the corresponding amount of information is quite
large. For the closed loop PHP, the list is looped, i.e. a
pointer belonging to the last node points to the first node and
vice-versa.

The PHP states at different time moments are recorded
as another list. As previously, the standard array cannot be
used because the memory amount required for each PHP
state may be different and is unknown in advance. This “PHP
list” needs to be only simply connected, which means that
each node contains the PHP and a (single) pointer to the next
node. This pointer allows the sequential access to the PHP
states, e.g. for plotting. The PHP list may also be saved to a
data file of a specific .php format that can than be read by
the postprocessing utility described below.

3.3 General algorithm

PHP initialization 

t→t+Δt 

Numerical solution of the 
differential equations; 
various events are 
detected 

If detected, process the 
event (plug coalescence, 
film creation/destruction, 
etc.) 

PHP saving if requested 

Fig. 4. General scheme of the C++ program.

The set of ordinary differential equations consists of eqs.
(1, 2, 14, 15, 21, 24, 20, 38), which totals to ∑

M
i (2Ne,i +

Nl,i + 5) equations. Unlike previous works [16, 17, 22],
they are written in the conventional differential form so that
their numerical integration can be performed with any nu-
merical method (and not only explicit Euler method used
in [16, 17, 22]). The 4th order Runge-Kutta method (Fig.
4) is used here. It is renowned for its numerical stability and
is thus better than the explicit method that can cause oscil-
lations of numerical origin. The evaluation of the right-hand
sides of the equations may lead to a detection of an event that
changes the number of equations (see sec. 2.5). If detected,
the event is processed as discussed in sec. 3.2. The number
of equations and the equations themselves are updated and
the time step is recalculated.

3.4 Data postprocessing
The number of PHP variables is large and changes in

time. The data analysis is impossible without clear under-
standing of the position of each meniscus and film edge with
respect to the PHP sections at each time moment. In the
absence of a suitable commercial software, a specific data
postprocessing “PHP Viewer” utility had to be developed.
PHP Viewer possesses a conventional Microsoft Windows
graphic user interface (Fig. 5). The name of the .php file
is displayed close to the application name at the top of the
screen above the menu. Some auxiliary information (the se-
quential number of the PHP record and the corresponding
time) is shown in the status bar at the bottom of the screen.
The evaporator (left) and condenser (right) locations are rep-
resented with rectangles, the width of which is to scale with
respect to the PHP (see Fig. 1). The condenser and evap-
orator temperatures are displayed above them. The time of
the current record is shown in between. The topology of the
PHP bends is shown schematically with black connectors.
The tube diameter is not to scale. The liquid temperature in
the plugs is represented with a color. There are menu items
usual for any video player. They allow controlling the ani-
mation speed and the navigation inside the data file (stepping
record by record, jumping to a record with a given number,
etc.).

4 Results and discussion
The simulation runs were performed for the numerical

parameters shown in Tab. 1. The initial temperature of the
fluid was chosen to be homogeneous and equal to 0.5(Te +
Tc). The equidistant bubbles are distributed along the PHP.
The menisci are initially at rest.

It is well known [6] that there are many different regimes
of PHP functioning. The present modelling shows some of
them, in particular the regime of chaotic oscillations (Fig. 6).
Its early stage is illustrated in Fig. 6a. Since the number of
bubbles can only be reduced during the PHP evolution, their
large number (usually 9) is chosen initially. Fig. 6a shows
that the positions of some menisci join each other at t < 0.2
s. This corresponds to the bubble recondensation that occurs
inside the condenser. The bubbles keep disappearing until
only one per evaporator remains. The liquid gathers in the



Tl scale bar 

vapor bubble 

liquid films inside bubbles 

Fig. 5. (Color online) The screen of the PHP Viewer version 1.6 in
the liquid temperature visualization mode. The liquid films partially
cover the internal tube walls inside the vapor bubbles. The tempera-
ture is indicated with coloring of the liquid plugs.

PHP parameters

Fluid water

Np 5

d 5 mm

Le 10 cm

Lc 10 cm

La 5 cm

Constants

γ 0.47

Lm 0.2 mm

Um/U 0.3

∆t 10−4 s

Table 1. Parameters used for the numerical simulation.

condenser under the action of gravity (cf. Fig. 1a). The film
that remains in the evaporator does not, however, evaporate
instantly (see the upper dotted line in Fig. 6a). This may
cause an instability of the system, i.e. the development of
oscillations. Their amplitude grows during a short transient
before attaining the developed oscillation regime. The am-
plitude in this regime depends on the parameters (see below)
and may be large. During large oscillations, the menisci pen-
etrate both into the condenser and the evaporator. The films
persist in the evaporator; the film length oscillates (see the
dotted lines). The liquid volume change is almost invisible
so that both ends of each liquid plug oscillate synchronously.
A portion of the x axis corresponding to three plugs is shown
in Fig. 6. They seem to oscillate quite independently. Even
the amplitude of their oscillations may be different: compare
the lower and upper plugs in Fig. 6b. The long-time PHP
evolution (Fig. 6b) shows that the oscillations are indeed
chaotic: no periodic repetition can be mentioned. This is a
dynamic chaos well known to occur in the complex systems.

The regimes of oscillations are convenient to be pre-
sented at the heat transfer curve (Fig. 7). The oscillation exist
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Fig. 6. (Color online) Examples of the chaotic oscillation regime
within the linear PHP representation schematized in Fig. 1c. Evapo-
rator (E) and condenser (C) sections are shown with the background
bars; adiabatic sections are in between. PHP is shown partially with
evolution of only several menisci. (a) Short time evolution. The bub-
ble recondensation occurs at an early stage. The evolution of only
two film edges is shown by dotted lines. (b) Long time evolution for
Te = 45◦ C, Tc = 25◦ C, φ = 0.55, δ f = 40 µm.

when the temperature difference ∆T = Te−Tc falls within an
certain interval. Within this interval, one may distinguish the
chaotic regime discussed above and the intermittent regime.
The latter is characterized by a sequence of intervals during
which the system oscillates strongly and the periods of weak
motion. Generally the amplitude is very small near the lower
oscillation threshold. Below the threshold, the oscillations
decline to an equilibrium state where the vapor exists only
in the evaporator and adiabatic sections and the condenser
sections are completely filled by the liquid. The pressure
inside the bubbles becomes equal to the saturation pressure
corresponding to Te, i.e. Te = Tsat(Pi) for every i. This state
is attained via condensation/evaporation, during which the
mass of the vapor in each bubble relaxes to that required by
the vapor equation of state. The films in evaporator may ex-
ist but their lengths do not vary any more (cf. Eq. (3), the
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Fig. 7. (Color online) Heat transfer curve and PHP regimes for Tc =
25◦ C, φ = 0.55, δ f = 40 µm.

r.h.s. of which vanishes). At lower volume fractions, the
liquid plugs do not fill completely the condenser sections so
that the above equilibrium state cannot be attained: the heat
exchange always exists. The stability of such a configuration
is yet to be studied.

When ∆T is larger than the upper oscillation threshold,
the initial perturbation eventually declines. However the sce-
nario is different from the low ∆T case. During the initial
transient, the oscillations develop. Their amplitude becomes
large like in the chaotic regime; the bubbles are compressed
strongly between the plugs which have different inertia and
thus move with different velocities. At some point one of
the bubbles is compressed so strongly that it recondenses.
This leads to a creation of a liquid plug with yet larger iner-
tia, which causes the bubble recondensation in chain that in
most cases ends up in a creation of a single plug and a single
bubble and the motion stops.

It is likely that the introduction of boiling will cause an
instability of the final equilibrium state of the bubble recon-
densation regime. Indeed, in the final single bubble state the
liquid situates necessarily in the evaporator and the boiling
should occur and cause a restart of the oscillations.

The oscillation regime depends strongly on the chosen
value of the film thickness δ f . The influence of δ f was stud-
ied for the following set of the fixed parameters: Te = 35◦ C,
Tc = 25◦ C, φ= 0.55. It turns out that the δ f decrease leads to
the same sequence of regimes as ∆T growth. At δ f > 90 µm
the self sustained oscillations are nonexistent. The δ f de-
crease leads to an appearance of the intermittent oscillations.
Their amplitude grows as δ f decreases until the bubble re-
condensation appears and causes the oscillation disruption at
δ f ≈ 5 µm. This shows the importance of the δ f choice.

The heat transfer rate varies chaotically (Fig. 8a) during
the oscillations accordingly to the dynamics of the menisci.
During the developed oscillations, the equality (37) is sat-
isfied within few per cent. The sensible heat exchange part
may however be different in the condenser and in the evap-
orator (Fig. 8b). It is comprehensible since the condenser
is occupied by the liquid most of the time. Accordingly, a
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Fig. 8. (Color online) Examples of the PHP heat exchange rate evo-
lution in condenser and evaporator for the same parameters as Fig.
6b. (a) Total heat exchange. The time average 〈Q〉 is shown with a
horizontal line. (b) Part of the sensible heat exchange. The average
values are 0.18 for evaporator and 0.29 for condenser.

part of the sensible heat exchange in the condenser is larger
than in the evaporator. The part of the sensible heat exchange
increases with the amplitude of the oscillations because the
liquid sweeps more often hot and cold walls. The averaged
in time Q value is shown in Fig. 7 as a function of ∆T . One
can see that quite efficient heat exchange can be achieved
even without boiling that is likely to lead to the continua-
tion of the curve into the “bubble recondensation” region as
discussed above.

The temperature inside the liquid is inhomogeneous, see
Fig. 5b. One can see the thermal boundary layers that form
near the menisci inside the liquid plugs. They appear because
the pressure (and thus the gas-liquid interface temperature
Tsat ) changes quickly during the oscillations; Tsat is some-
times 40-50 K larger than Te. The analysis shows that the
vapor pressures can also attain high values. The vapor tem-
perature rises strongly due to this compression and can be
essentially higher than Te (Fig. 9). This has been already
observed in the single-bubble modelling [15]. During the
developed oscillations, the vapor is overheated: its tempera-



ture exceeds Tsat by 10-20 K on average. This shows that the
hypothesis [20,21] about the vapor at saturation temperature
is hardly consistent.

The thickness of the boundary layers is different in dif-
ferent liquid plugs. It is defined by the value

√
Dτ where τ

is an average period of the oscillations of a plug that grows
with its mass.
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Fig. 9. (Color online) Typical evolution of temperatures obtained for
a bubble from Fig. 6b. The evolution of the left and right ends of this
bubble correspond to the third and the second curves from the top of
Fig. 6b, respectively. The horizontal dashed lines correspond to Tc
and Te.

5 Conclusions
A new model for PHP with arbitrary number of branches

and arbitrary time-varying number of bubbles has been pre-
sented above. It is more complex than the previous models
and is capable of describing the chaotic self-sustained oscil-
lations of large amplitude. It is shown to reproduce correctly
some features of experimental models like intermittent oscil-
lation regime. Some analysis of the flow in the PHP and the
heat transfer has been performed. An oscillation threshold
occurs at small temperature difference. Another threshold,
that occurs at a large temperature difference would probably
be yet larger if the boiling were taken into consideration. The
boiling thus needs to be implemented.

More studies need to be performed even for the present
formulation of the model. In particular, the influence of the
initial conditions (initial values of M,Ti,X s

i , etc.) might be of
importance because the system is chaotic.

To perform more realistic modelling, more information
is required on the phenomena that occur during the PHP
functioning. In particular, it is a priori evident that a strong
viscous dissipation occurs in the liquid films and near the
contact lines (i.e. film edges). This effect leads to an ad-
ditional pressure drop across each meniscus. The available
in the literature information on this phenomenon is scarce.
The effect of the PHP bends on the pressure drop should be

accounted for. The film thickness is an important parame-
ter, which was imposed here to be constant and is taken to
be micrometric like in previous works [18, 19]. However it
depends on the plug velocity and possibly on the evapora-
tion/condensation rate and should thus vary with time. Third,
the vapor compression has not been yet assessed experimen-
tally. It is not clear if the liquid plug return force is caused
entirely by the evaporation/condensation effect (assumed in
the models where the vapor was always at saturation temper-
ature) or also by the vapor compression like in the present
approach.
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