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ABSTRACT To understand the functioning of the pulsating heat pipe (PHP), a liquid film formed by a unique
oscillating meniscus is studied under evaporation or condensation conditions within a 2D numerical approach
based on the lubrication approximation. The transient heat and mass transfer problem coupled with hydrody-
namics is solved within a Taylor bubble hydrodynamics problem. A simple expression for the film thickness
time evolution is obtained as a function of the meniscus velocity among other parameters. The time evolution
of the meniscus shape is calculated. Based on it, the heat and mass exchange at the gas-liquid interface is
evaluated. The contributions of both flat film and curved portion of the gas-liquid interface to the overall heat
transfer are analyzed. A criterion defining whether the film is flat or wedge-like, is proposed.

KEYWORDS: PHP, liquid film, oscillation, Taylor bubble

1. INTRODUCTION

The pulsating (or oscillating) heat pipe (PHP) is a long capillary tube bent into many branches and partially
filled with a two-phase, usually single component, working fluid [Akachi, 1993]. During PHP functioning,
a moving pattern of multiple vapor bubbles separated by liquid plugs forms spontaneously inside the tube.
Because of their simplicity and high performance, PHPs are often considered as highly promising. Their
industrial application is however limited because the functioning of PHPs is not completely understood.

During the last decade, researchers have extensively studied PHPs [Zhang and Faghri, 2008; Khandekar et al.,
2010]. The main flow pattern inside the PHP is the slug flow, i.e. the flow of the “Taylor bubbles” where the gas
is surrounded by thin liquid films. A major part of mass exchange occurs on their interface with the vapor like
in the conventional heat pipes. Since the mass exchange provides both a moving force for the oscillations and a
heat exchange, the films are extremely important for the PHP functioning. A special care should thus be taken
in order to predict correctly the film length and thickness. Their first description was provided by Zhang and
Faghri [2002], who introduced static wetting films, the thickness of which was controlled by the intermolecular
forces introduced via disjoining pressure. The films were thus nanometric like in conventional heat pipes. It is
however well known that the thickness of the Taylor bubble films is controlled by a hydrodynamic phenomenon,
depends on the meniscus velocity, and is usually micrometric [Bretherton, 1961]. The thickness scaling with
velocity is similar to the phenomenon of Landau and Levich [1942]. While the Landau-Levich films have
been extensively investigated in the isothermal and constant meniscus velocity situation, their studies for cases
where the phase change or transient effects are involved, are rare. Lagubeau [2006] observed successive events
of film deposition by the receding meniscus and film drying in such a way that the film length varied during the
meniscus oscillations. Das et al. [2010]; Nikolayev [2011, 2013] accounted for the varying film length in the
PHP modeling. The film thickness in their model was assumed however to be constant.
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Since the PHP films are not well understood we will begin their study here with a very simplified case where
the triple contact line effects are neglected. The objective of the present paper is to introduce a theory of
hydrodynamically controlled films, calculate their spatial and temporal thickness variation during meniscus
oscillations and study the impact of the varying film on the overall heat transfer at either permanent evaporation
or permanent condensation.

2. PROBLEM FORMULATION

A gas bubble moves with a velocity ~U in a capillary tube filled with an incompressible Newtonian liquid. The
bubble has a length much larger than the tube radius so that a unique meniscus may be studied. The reference
of the meniscus will be considered hereafter in which the tube walls move with the velocity −~U . The gas is the
pure liquid vapor. The effect of gravity is neglected and the gas-liquid interface is thus symmetric (Fig. 1). Both
the liquid-vapor and liquid-solid interfaces are assumed to be isothermal. The background argument is that the
temperature of the liquid-vapor interface is generally equal to the saturation temperature Ts corresponding to
the given vapor pressure. On the other hand, the internal wall of the tube is isothermal due to its high thermal
conductivity. The wall temperature is Tw = Ts −∆T , where ∆T is the wall subcooling.

The following assumptions are made in the present work. The interface is cut into two parts depending on the
h/R value (where h = h(x) is the liquid layer thickness, cf. Fig. 1): the film region at x < xc and the remaining
part of the interface at x > xc. While the film behavior is controlled by the viscous stresses, they are relatively
unimportant in the determination of the macroscopic meniscus shape that is controlled mainly by the surface
tension. For this reason, a contribution of the viscous and inertial effects on the interface shape is neglected so
that the apparent meniscus curvature is spatially constant and this region is called a capillary static region. On
one hand, xc should be close enough to xm, the abscissa of bubble tip, so that the curvature already does not
vary at xc and the evaporation is negligible there. On the other hand, the film slope should be small enough so
that we can apply the lubrication approximation [Oron et al., 1997]. Within such an approximation, h(xc)/R
is small so that the film curvature in the azimuthal direction is neglected and the film may be considered to be
two dimensional.

“One sided model” is adopted in which the vapor pressure pV is assumed to be spatially homogeneous. This
hypothesis is justified by the smallness of both density and viscosity of the vapor with respect to those of the
liquid. The vapor is assumed to be insulating and the heat flux to the vapor domain can be neglected. This leads
to the interfacial energy balance

LJ = qint, (1)

where J is the interfacial mass flux due to condensation/evaporation (J > 0 at condensation) and the interfacial
heat flux qint from the liquid side is positive when directed toward the liquid (along the normal ~n, cf. Fig. 1).

The temperature distribution in the liquid film is assumed to be stationary (i.e., linear in y). This approximation
is valid when the liquid film thickness is smaller than the thermal diffusion characteristic length. The heat flux
inside the liquid is then independent of y so that

qint = kL
Tint − Tw

h
. (2)

The combination of Eqs. (1) and (2) results in

J =
kL∆T

hL
. (3)
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FIG. 1 : Problem geometry
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2.1 Conservation of mass

Since liquid is incompressible, the liquid mass conservation means its volume conservation. The volume flux
Φ (per unit length in the azimuthal direction) flowing through the film at a given position x is

Φ =

∫ h(x)

0
vxdy, (4)

where vx is the x component of the liquid velocity. The volume conservation states that the sum of Φ = Φ(x)
and of the volume flux due to condensation equals the total volume flux ΦL at the right end of the tube. This
equality is expressed by the following relation valid at any x ≤ xc,

Φ(x) +

∫ xm

x
vn(x′)dx′ = ΦL. (5)

Here vn represents a projection of the interfacial liquid velocity to the vector ~n normal to the interface and
directed toward the liquid.

At x→ −∞ (far from the moving meniscus), the liquid film is immobile with respect to the wall because there
is no pressure gradient inside it, vx = −U and Φ(−∞) = −Uh(−∞). One obtains from (5) that

ΦL =

∫ xm

−∞
vn(x′)dx′ − Uh(−∞) (6)

is independent of x > xm. By using (6) in (5) one finally obtains the mass conservation law in the direction
parallel to the wall,

Φ(x) = −Uh(−∞) +

∫ x

−∞
vn(x)dx. (7)

The latter expression can be rewritten as
vn = ∂Φ/∂x. (8)

The mass conservation at the gas-liquid interface implies that [Nikolayev, 2010]

J = (vn − vint)ρL (9)

where
vint = −∂h/∂t (10)

is the interface velocity projection to ~n in the lubrication (small interface slope) approximation.

2.2 Governing equations

The no-slip condition imposed at the tube wall and no-tangential stress boundary condition at the free interface
reads

vx = −U at y = 0, (11)

∂vx/∂y = 0 at y = h(x). (12)

The Stokes equations in lubrication approximation [Nikolayev, 2010] with these boundary conditions result in
the following expression obtained with the definition (4)

Φ = −h
3

3µ

∂pL
∂x
− Uh, (13)

where pL is the liquid pressure. Within the lubrication approximation and in the absence of gravity it is constant
across the liquid film. The normal stress boundary condition in the lubrication approximation is

∆p ≡ pV − pL = σ
∂2h

∂x2
, (14)
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where the vapor pressure pV is independent of x as mentioned above.

By substituting Eqs. (3, 9, 10) and (13-14) into Eq. (8) one arrives to the following expression for the evolution
of the film thickness

∂h

∂t
+

∂

∂x

(
σ

3µ
h3∂

3h

∂x3
− Uh

)
=
kL∆T

hLρL
. (15)

The difficulty of solution of the governing equations (14, 15) is that their solution does not exist for arbitrary
boundary conditions which should thus be chosen carefully from the analysis of their form.

Let us use the following conversion to the dimensionless variables: x = h0Ca
1/3
0 λ, h = h0Ca

2/3
0 h̃, t =

h0µσ
−1Ca

−2/3
0 τ , U = U0Ũ (where the reference values U0 > 0 and h0 will be both defined later on). The

dimensionless governing equation reads

∂h̃

∂τ
+

∂

∂λ

(
h̃3

3

∂3h̃

∂λ3
− Ũ h̃

)
=
N

h̃
. (16)

Two dimensionless groups are introduced here: the capillary number Ca0 = µU0/σ and the evaporation-
condensation number

N =
kL∆Tµ

LρLσh0Ca2
0

.

2.3 Flat or wedge shaped film?

There is an interesting conclusion that may be deduced from Eq. (16). The variables are normalized there in
a unique way that makes the velocity amplitude disappear from the equation. One may thus reasonably state
that the time trel = h0µσ

−1Ca
−2/3
0 used for this purpose is the characteristic time of relaxation of a film

deformation. On the other hand, by comparing the first and the last terms of Eq. (15), it becomes evident
that the time tec = h2

0Ca
4/3
0 LρL/(kL|∆T |) characterizes the evaporation/condensation rate; |N | = trel/tec.

For this reason, the number |N | may be used to characterize the film shape during the meniscus receding. At
|N | > 1, the film is expected to be wedge-shaped like Chauris et al. [2013] assumed it, because the earlier
deposed film portions have already smaller thickness than the newly deposed film. At |N | � 1, trel � tec and
the fast film shape relaxation leads to the flat film.

3. BOUNDARY CONDITIONS

3.1 Stationary receding

In the isothermal (∆T = 0, N = 0) case, there are stationary solutions of Eq. (16). Let us consider the
stationary receding solution h̃ = h̃r(λ) first, which is a classical Landau and Levich problem. By choosing the
meniscus receding velocity Ur = U0, one obtains Ũ = 1; no more parameters remain in the equation. The film
thickness at infinity [Landau and Levich, 1942; Bretherton, 1961]

hr(x→ −∞) ≡ h∞ = h0Ca
2/3
r , (17)

where Car = µUr/σ, may be used to introduce yet unknown h0. The first boundary condition in the dimen-
sionless form thus reads

h̃|λ→−∞ = 1. (18)

At λ→ −∞, Φ→ −Uh, ∂3h̃/∂λ3 → 0, and Eq. (16) can be integrated once resulting in the equation

h̃3∂
3h̃

∂λ3
= 3(h̃− 1). (19)
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FIG. 2 : Stationary film profiles for the receding (h̃r(λ), blue solid line) and advancing (h̃a(λ̄)) menisci obtained with
shooting. For the latter, the shapes calculated for Caa/Car = 1 (black dashed line) and 0.25 (red dotted line) are
presented. The crosses show the respective shooting results obtained with the zero initial conditions for the derivatives.
The circles show h̃r(λ) calculated with FDM.

Landau and Levich [1942] and Bretherton [1961] found that its asymptotics at λ→ −∞ reads

h̃r = 1 + ε exp
(

31/3λ
)
, (20)

where ε is a constant. At λ → ∞ the solution of Eq. (19) approaches a constant curvature curve (a parabola
in the lubrication approximation), i.e. the meniscus in the capillary static region. The curvature matching
condition (one neglects here the film thickness with respect to R)

R−1 = α/h0, (21)

where α = ∂2h̃r/∂λ
2|λ→∞, defines h0.

One can calculate α numerically by fixing initial conditions at some λ = λ0. Since ε does not influence the
solution (its change leads simply to a shift of the h̃r(λ) curve along the λ axis), one can choose λ0 = 0 so that
one obtains the boundary condition

h̃(λ = 0) = 1 + ε. (22)

Other two initial conditions may be obtained from (20) by its differentiation. The Eq. (19) numerical solution
results in α = 1.3375± 10−4. According to Eq. (21), h0 = αR. The solution h̃ = h̃r(λ) is shown in Fig. 2.

Since the film thickness is neglected in the meniscus curvature estimation (R−1), there is a small correction
[Aussillous and Quéré, 2000] to Eq. (17). The resulting formula describes well the experimental data [Tibiriçá
et al., 2010; Han and Shikazono, 2009]. This formula derived initially for the Stokes flow (zero Reynolds
number), works well [Kreutzer et al., 2005] for moderate Reynolds numbers < 100 characteristic of the PHP
flow.

It is important to mention that the existence of the film considered here depends on the wetting properties of the
capillary. For small contact angles (wetting case), the films always appear because when the receding motion
begins, the triple contact line is easily pinned at surface defects and the film forms immediately. For large
contact angles (less wettable surface), the contact line is not pinned at cleaned surfaces; the film appears only
for Ca & 10−2, i.e. above the dynamic wetting transition [Delon et al., 2008]. This means that for good PHP
functioning one wants to use the well wettable tubes.

3.2 Stationary advancing

Let the meniscus change the direction and advance with a constant velocity U = −Ua < 0 over the already
pre-formed film of the thickness given by Eq. (17). By introducing λ̄ = Ca

1/3
a x/h∞, where Caa = µUa/σ,
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one obtains the equation for h̃ = h̃a(λ̄)

h̃3∂
3h̃

∂λ̄3
= 3(1− h̃). (23)

Like in the previous case, the curvature saturates at λ̄→∞ and the curvature matching results in [Maleki et al.,
2011]

∂2h̃a/∂λ̄
2|λ̄→∞ = α(Car/Caa)

2/3. (24)

The asymptotics at λ̄→ −∞ is [Bretherton, 1961]

h̃a = 1 + ε̄ exp[31/3(λ̄− λ̄0)/2] cos[35/6(λ̄− λ̄0)/2], (25)

where ε̄, λ̄0 are constants. While λ̄0 reflects the invariance of the solution with respect to the translation along
the λ̄ axis (and may be chosen arbitrarily but large enough to provide the asymptotics validity), ε̄ depends on
the curvature of the h̃a(λ̄) curve at λ̄ → ∞. It is determined by numerical shooting to the condition (24). The
initial conditions may be obtained from (25) by its differentiation. According to Eq. (25), the film thickness
exhibits undulations (Fig. 2), the (dimensional) period of which is ' 6.73RCa

−1/3
a Ca

2/3
r . It was shown by

Maleki et al. [2011] that such a theory agrees with experiments for the flat film geometry. For the Taylor bubble
geometry, these undulations were evidenced by Lips et al. [2010] among others.

3.3 Insensitivity to the boundary conditions

It was shown above that the boundary conditions are found from the asymptotic solutions. It would be difficult
however to find the asymptotics in the transient case. It turns out that it is possible to use the boundary condi-
tions common for both receding and advancing situations in the form (22) together with the zero values for both
the first and the second derivatives of h̃ at λ = 0 with no loss of accuracy (Fig. 2). The difference between the
receding and advancing cases is that the value of ε is arbitrary (but small) for receding and should be adjusted
to provide the curvature (24) for advancing. Such an insensitivity to the form of the boundary conditions is
explained by the stability of solutions: in spite of the weak initial deviation, the numerical algorithm does not
deviate from them. Such a feature permits the use of the zero initial conditions in the transient case for arbitrary
velocity.

The shooting can only be used for the stationary case. In the transient case, a finite difference numerical
method (FDM) needs to be applied to solve Eq. (16) (see Fig. 2 for the hr FDM result). In this case we used
the following boundary conditions at λ = 0: h̃ = 1 and ∂2h̃/∂λ2 = 0. Both the curvature

∂2h̃/∂λ2|λ=λc = α (26)

and the height h̃c need to be specified at λ = λc. Without any loss of generality we chose λc = 80, h̃c = 20.

3.4 Phase change case

Let us assume that at t = 0, the stationary Landau-Levich profile discussed in the section 3.1 is established
and a nonzero value of ∆T is imposed at t = 0, i.e. h̃(τ = 0, λ) = h̃r(λ). The phase change starts. It is
evident that, similarly to the stationary case, there is no flow at λ = 0 with respect to the wall when the phase
change occurs; the interface evolution is entirely due to the phase change. The interface remains thus flat and
its evolution may be obtained directly from Eq. (16) by putting to zero the spatial derivatives,

h̃(τ, λ = 0) =
√

2Nτ + 1. (27)

For the phase change case, Eq. (27) replaces the condition h̃(λ = 0) = 1. The matching condition (26) remains
the same as in the isothermal case.
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FIG. 3 : Meniscus shape variation over one period of oscillations for N = −9.8 · 10−4 corresponding to ∆T = −5◦

(evaporation case).

4. HEAT FLUX CALCULATION

The heat exchange rate may be calculated as

Q ' 2πR

∫ xc

xc−L
qint(x)dx, (28)

where the contribution of the capillary static region is neglected. One can see that Q depends on the liquid
film length L. Far from the meniscus, the film thickness saturates at h(x → −∞) given by Eq. (27), and
qint → kL∆T/h(x → −∞). To reveal the effect of the meniscus curvature, one can subtract this (“flat film”)
part

Qf = 2πRLkL∆T/h(x→ −∞) (29)

from Q = Qm +Qf . The remaining (“meniscus”) part

Qm = 2πRkL∆T

∫ xc

xc−L

[
1

h(x)
− 1

h(x→ −∞)

]
dx. (30)

is independent of L when it is large enough. Note that this division to the flat film and meniscus parts cor-
responds exactly to the analogous division performed in the PHP film evaporation-condensation model [Das
et al., 2010; Nikolayev, 2011, 2013].

5. RESULTS AND DISCUSSION

When the meniscus oscillates, so that xc = L0 sin(2πt/P ), the meniscus velocity is U = ẋc = U0 cos(2πt/P ),
where U0 = 2πL0/P is a reference value to be used for both the Ca0 calculation and the initial condition
(stationary receding profile for Ur = U0). Since the film appears when deposed by the receding meniscus,
L = 0 when the meniscus is at its far left position −L0. Without a contact line modeling, one cannot calculate
the velocity of its retraction as it was done e.g. by Nikolayev [2010]. We assume instead that, in the tube
reference, the film edge is immobile because of its pinning on a surface heterogeneity. The film length is then
xc + L0, i.e.

L = L0[1 + sin(2πt/P )]. (31)

The dimensionless velocity reads Ũ = cos(2πτ/P̃ ), where P̃ = Pσ(h0µ)−1Ca
2/3
0 .

Within such a problem statement, the meniscus dynamics is determined by only two dimensionless numbersN ,
P̃ . Ethanol at 1 bar, L0 = 5 mm, R = 1 mm, and P = 0.25 s was chosen for simulation, for which P̃ ' 125,
Ca0 ' 6.6 · 10−3. The film shape evolution is shown in Fig. 3. The film is wavy. Its thinnest point is located
close to the meniscus. Similar to the stationary advancing case considered above, the waves appear because of
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FIG. 4 : Heat exchange (a) at condensation for N = 3.9 · 10−3 corresponding to ∆T = 20◦ and (b) at evaporation for
the same parameters as Fig. 3.

a mismatch of the film thickness and the meniscus velocity. At evaporation, the film thins until it eventually
disrupts at a point of minimal thickness, for the case of Fig. 3, at λ ≈ 75. The simulation then ends.

The heat exchange rate time evolutions for condensation and evaporation are shown in Figs. 4. At evaporation,
the heat exchange is mainly defined (cf. Fig. 4b) by the flat film contribution Qf that may be easily found
with Eq. (27). At condensation, at the early times, the heat exchange is also defined by Qf . Later on, the film
thickness grows andQf decreases, cf. Fig. 4a. The contributionQm of the wavy thickness variation (where the
flux is larger at points where the thickness is smaller) becomes more important. Note that in the PHP, the time
during which the film is continuously located in the evaporator or in the condenser, may vary from a fraction to
several oscillation periods so that the above consideration does make sense.

The theory presented here is complicated and its implications for the PHPs need to be identified now. Some
results obtained here (film flatness for |N | � 1, film thickness evolution (27)) may be directly used in the
PHP simulation. An important question concerning the film length in the evaporator however remains open.
This article is a first approach to this important question. It was assumed here that the contact line (where
the film ends) is pinned and does not move at all. In the earlier models Das et al. [2010]; Nikolayev [2011,
2013], it was assumed that the film thickness does not change and the contact line receding dynamics is given
by the film mass decrease. The reality is somewhere in between. A rigorous description of the contact line
effects [Nikolayev, 2010] needs to be introduced into the present model to simulate a more realistic film length
dynamics.
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NOMENCLATURE

Ca capillary number
h interface height [m]
k heat conductivity [W/(m·K)]
L liquid film length [m]
P oscillation period [s]
p pressure [Pa]
Q heat exchange rate [W]
q heat flux [W/m2]

R tube radius [m]
T temperature [K]
t time [s]
U, v velocity [m/s]
x, y coordinates [m]
L latent heat [J/kg]

Greek symbols
λ dimensionless x
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µ liquid shear viscosity [Pa·s]
Φ volume liquid flux per tube perimeter [m2/s]
ρ liquid density [kg/m3]
σ surface tension [N/m]
τ dimensionless t

Subscripts and superscripts
0 reference value
a advancing

f film
int interface
L liquid
m meniscus
n component normal to the interface
r receding
s saturation
V vapor
w internal tube wall
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Maleki, M., Reyssat, M., Restagno, F., Quéré, D. and Clanet, C., “Landau-Levich menisci,” J. Colloid Interface Sci.,

354(1), pp. 359 – 363 (2011).
Nikolayev, V. S., “Dynamics of the triple contact line on a nonisothermal heater at partial wetting,” Phys. Fluids, 22(8), p.

082105 (2010).
Nikolayev, V. S., “A dynamic film model of the pulsating heat pipe,” J. Heat Transfer, 133(8), p. 081504 (2011).
Nikolayev, V. S., “Oscillatory instability of the gas-liquid meniscus in a capillary under the imposed temperature differ-

ence,” Int. J. Heat Mass Transfer, 64, pp. 313 – 321 (2013).
Oron, A., Davis, S. H. and Bankoff, S. G., “Long-scale evolution of thin liquid films,” Rev. Mod. Phys., 69(3), pp. 931–980

(1997).
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