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Abstract

To understand the oscillations in the real, multi-branch pulsating heat pipe (PHP), the start-up conditions of the single branch PHP
with no adiabatic section are studied theoretically and numerically. The single branch PHP is a capillary open from one end, which
is connected to a reservoir at constant pressure. A gas bubble is confined between the sealed end of the capillary and the liquid.
The gas is the vapor of the liquid. The gas end of the capillary is maintained at a constant temperature larger than that of the liquid
end. Under certain conditions, self-sustained oscillations of the meniscus may exist in such a system. The conditions of oscillation
development (i.e. of the PHP startup) are obtained via the stability analysis of an earlier proposed theoretical model. The linear
instability is absent in such a system. The instability of a marginal state described by piece-wise linear equations is analyzed with
the analytical averaging method. The instability boundary is presented in terms of dimensionless groups, the physical significance
of which is discussed. It is found that the model describes correctly the known experimental facts. Some predictions concerning
the instability threshold are formulated.
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Nomenclature

C variable defined by Eq. A.5
c specific heat [J/(kg·K)]
Ca capillary number
D variable defined by Eq. A.4
d tube diameter [m]
F force [N]
hlv latent heat [J/kg]
k heat conductivity [W/(m·K)]
L length [m]
m mass [kg]
p pressure [Pa]
qsens sensible heat power [W]
R vapor gas constant [J/(kg·K)]
r dimensionless velocity amplitude
S tube cross-section area [m2]
T temperature [K]
t time [s]
U heat transfer coefficient [W/(K·m2)]
v meniscus velocity [m/s]
x meniscus position [m]

Greek symbols

α, β, ε coefficients defined by Eq. 22
δ thickness [m]
γ adiabatic index
κ, ξ, ϕ, ψ dimensionless phases
µ liquid shear viscosity [Pa·s]
ν liquid kinematic viscosity [m2/s]
ρ liquid density [kg/m3]
σ surface tension [N/m]
τ characteristic time scale [s]

Subscripts and superscripts
c condenser
d dry part of evaporator
e evaporator
f friction,film
g gas
i either e or c
l liquid
m meniscus
r reservoir
sat saturation
t total
V at constant volume
0 at t = 0

1. Introduction

Cooling of devices like microprocessors or engines of trans-
portation vehicles is extremely important for their functioning.
In most cases it is vital for their reliability and energy efficiency.
A growth of their power during the last decades stimulates re-
search of new heat transfer solutions. The passive heat transfer
devices called heat pipes are used more and more widely as
thermal links connecting the heat sources to colder radiators.
The conventional heat pipe is a sealed tube partially filled with
a fluid. The fluid is vaporized in the portion (or section) of the
tube called evaporator and recondensed back in the condenser
(i.e. cold) section. The energy is thus stored in the evapora-
tor as the latent heat and released in the condenser. There are
several kinds of heat pipes that differ mainly by the mechanism
of liquid transport (gravitational convection, capillary suction,
etc.) from the condenser to evaporator.

The pulsating (or oscillating) heat pipe (PHP) is a long cap-
illary tube bent into many branches and partially filled with a
two-phase, usually single component, working fluid [1]. The
tube is of simple circular cross-section. The branches meander
between the hot and cold areas thus forming multiple evapora-
tor and condenser sections. During PHP functioning, a pattern
of multiple vapor bubbles separated by liquid plugs forms spon-
taneously inside the tube. Unlike the other types of the heat
pipes, the functioning of PHP is intrinsically non-stationary.
The evaporation/condensation triggers self-sustained oscillations
of the bubble-plug structure. These oscillations are very impor-
tant because they lead to a generally substantially lower thermal
resistance in comparison with other types of heat pipes. In ad-
dition to the latent heat mechanism, the heat is transferred in
PHP via the sensible heat transfer when the colder liquid plugs

come in contact with the condenser or hotter liquid plugs sweep
the evaporator.

Because of their simplicity and high performance, PHPs are
often considered as highly promising. Their industrial applica-
tion is however limited because the functioning of PHPs is not
completely understood. The reliability of heat pipes is how-
ever a critical issue because a sudden halt of functioning (halt
of oscillations in case of PHP) can lead to the meltdown of the
cooled industrial device.

During the last decade, researchers have extensively stud-
ied PHPs [2, 3]. A large number of hydrodynamic and micro-
scopic phenomena are involved in their functioning [4]. The
main flow pattern inside the PHP is the slug flow, i.e. the flow
of the “Taylor bubbles” where the gas is surrounded by the thin
liquid film deposed on the internal tube walls by the receding
menisci. For isothermal systems (with no heating or cooling),
the film is continuous within a bubble. Its thickness depends
on the meniscus velocity and is usually micrometric [5, 6]. The
physics of the film formation (and its thickness scaling) is sim-
ilar to the Landau-Levich phenomenon [7]. While the Taylor
bubbles are being extensively investigated in the isothermal sit-
uation, their experimental studies for the cases where the phase
change is involved are rare. In the single known to me exper-
imental study, Lagubeau [8] observed the successive events of
the film deposition by the receding meniscus and the film dry-
out in such a way that the film length varied during the meniscus
oscillations.

There are several modeling approaches available in the lit-
erature. Shafii et al. [9] pioneered the modeling approaches for
multi-branch PHPs with a one-dimensional (1D) model. The
gas-liquid menisci were flat and the evaporation-condensation
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Figure 1: Single branch PHP within the lumped meniscus approximation. The
total tube length Lt = Le + Lc + Lr includes an effective length Lr representing
an amount of the liquid in the reservoir that takes part in the oscillating motion;
Le and Lc are the lengths of the respective tube sections.

mass exchange was accounted for by the temperature difference
terms ∝ (Twall − T ) where T is the vapor temperature and Twall

was either Te or Tc depending on the bubble location. The tem-
peratures of the evaporator Te and condenser Tc were fixed. The
film existence was neglected. The vapor was assumed to obey
the ideal gas equation of state. Periodical (nearly sinusoidal)
oscillations appeared after a transient. Contrary to experimen-
tal observations, their amplitude was small with respect to the
sizes of the condenser or the evaporator.

It is well known from the analysis of conventional heat pipes
that most of evaporation in the evaporator occurs through the
liquid films. To account for this effect, the above model was
extended later by the same group to the 3D axisymmetric case
with the static liquid films with spatially varying thickness [10].
The mass exchange was however modeled similarly to the pre-
vious case and the model showed a similar behavior. Dobson
[11] introduced a lumped meniscus geometry (Fig. 1) which al-
lowed him the variable film account within a 1D model. The
liquid film was assumed to always cover the inner walls of the
tube (i.e. to be continuous) in the condenser when a part of the
bubble was located inside it. The film was allowed to dry out
partially or completely in the evaporator. Apart from the film
introduction, the model was similar to its predecessors. Single
branch PHP (Fig. 1) was considered. It is a straight capillary
with a sealed end, which is heated (evaporator). The gas bub-
ble is confined between the sealed end and a liquid plug. The
condenser end of the capillary is connected to a large reservoir
filled partially with the liquid at constant pressure pr.

Das et al. [12] performed the instability analysis with the
model of Shafii et al. [9] applied to the single branch PHP and
have concluded that the model was not adequate. The regime
of self-sustained oscillations during which the meniscus pen-
etrated into both the condenser and evaporator have not been
found. The instability (i.e the oscillatory growth of a small ini-
tial perturbation) occurred only when the meniscus was located
in the condenser, without its penetration into the evaporator.
To provide an adequate description, Das et al. [12] have intro-
duced the “film evaporation-condensation”(FEC) model. It is a
1D model using the lumped meniscus geometry. The heat/mass
exchange is described by the terms ∝ (Twall − Tsat), where Tsat

is calculated for the current gas pressure p. The FEC model
describes large amplitude oscillations during which the menis-
cus sweeps both the condenser and the evaporator. The FEC
model agrees quantitatively with the experimental results [12]

on the single branch PHP. Recently, the FEC model has been
validated against the data obtained with another experimental
set-up [13]. It described most features observed experimen-
tally (like the intermittency of oscillations observed by both
Das et al. [12] and Rao et al. [13]). The FEC model was ap-
plied with success to the single branch PHP functioning with
cryogenic fluids [14] and was shown to reproduce correctly the
dependence on the PHP inclination angle. It was applied also
to simulate the multi-branch PHP [15, 16]. These simulations
were shown to reproduce at least qualitatively the main exper-
imentally observed features of the multi-branch PHP function-
ing.

While the FEC model is successful in the numerical de-
scription of the PHP, the simulations cannot give an understand-
ing of the startup criteria for the oscillations or explain the ori-
gin of the instability that causes them. The aim of this work is to
analyze the instability for the simplest case of the single branch
PHP with no adiabatic section (Fig. 1). Due to simplicity of the
FEC model, an analytical approach is possible.

The article is structured as follows. The model [12] is sum-
marized in sec. 2. The equilibrium state for such a system is
identified in sec. 3. The dimensionless groups of parameters
that rule out the oscillation startup are discussed in sec. 5. The
stability of the equilibrium state with respect to small pertur-
bations is studied in sec. 6. The equilibrium state turns out to
be marginal, and the conventional linear analysis of its stability
is thus impossible. The latter is performed with the time aver-
aging method (called sometimes Krylov-Bogoliubov method).
The results are summarized in sec. 7.

2. Film evaporation-condensation model

The lumped meniscus geometry (Fig. 1) is an approxima-
tion of the curved meniscus to reduce the dimensionality of the
model. The film thickness is assumed to be constant while the
film length in the evaporator may vary in the agreement with
the above cited experiments. Such a choice can also be justi-
fied by the strong rate of evaporation in the vicinity of the triple
vapor-liquid-solid contact line [17] and the capillary forces that
both tend to reduce the film length and lead to the partial drying
of the evaporator [18]. As a film thickness guess, one may use
a the data fit [6] obtained for the isothermal case. According to
it, the film thickness is

δ f = d
0.67Ca2/3

1 + 3.35Ca2/3 (1)

where d is the tube diameter. The numerator of Eq. (1) coin-
cides with the Bretherton [5] formula. The capillary number
Ca = µvRMS /σ may be based on the root mean square menis-
cus velocity vRMS . In what follows, δ f will be considered a
parameter.

It is assumed that in the absence of the evaporation/condensation,
the film edge is pinned and does not move. The length of the
dry part of evaporator Ld

e (Fig. 1) thus obeys the equation

L̇d
e =

{
v if Ld

e ≥ x, v < 0,
ṁ f

e /(ρπdδ f ) otherwise,
(2)
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where ṁ f
e is the film evaporation rate in the evaporator and

v = ẋ. (3)

The first line of Eq. (2) corresponds to the meniscus advancing
over the dry evaporator (where Ld

e = x) and the second corre-
sponds to the effect of evaporation. In principle, Ld

e ≤ x so that
the condition Ld

e > x may seem to be unnecessary. It is however
useful when the solution of Eq. (2) becomes slightly larger than
x in a numerical calculation (because of the finiteness of the
time step) or in the approximate analytical approach considered
below.

The vapor mass exchange is assumed to be limited by the
heat conduction in the film [10]. This leads to the following
heat balance equations at the film-gas interface in evaporator
(i = e) or condenser (i = c):

hlvṁ f
i = UπdL f

i [Ti − Tsat(p)]. (4)

Within a factor . 1 accounting for the spatial variation of the
film thickness, U ∼ kl/δ f . Eq. (4) means that the heat flux that
comes from the liquid side of the film is spent to vaporize the
liquid. The residual heat flux to the vapor is neglected with
respect to the liquid heat flux.

The liquid film is continuous in the condenser. The film
length is thus equal to the length of the bubble in it (Fig. 1),

L f
c =


0, if x ≤ Le,
x − Le, if Le < x ≤ Le + Lc,
Lc, otherwise.

(5)

The film length in the evaporator is defined with Ld
e

L f
e =


x − Ld

e , if Ld
e < x < Le,

0, if x ≤ Ld
e ,

Le − Ld
e , if x ≥ Le.

(6)

Note that the governing differential equation is written for
Ld

e ; L f
e is defined through Ld

e . This is different from the origi-
nal model [12], where the equation was written for L f

e ; Ld
e was

defined with L f
e . While both approaches are equivalent, such

a change is necessary to make the amplitude of oscillations of
main variable smaller than its average value (which is neces-
sary for the averaging method used below). The latter criterion
usually holds for Ld

e and breaks down for L f
e .

A thermal boundary layer is allowed to exist in the vapor, so
that the temperature T of its bulk may be different from Tsat(p).
This is possible due to the smallness of heat diffusion in the gas.
The gas obeys the ideal gas equation

p =
mRT
S x

. (7)

Although much weaker than at the film interface, evapora-
tion and condensation might occur at the remaining meniscus
part (other than the film) and may be of some importance if the
film is evaporated completely. The heat balance on the menis-
cus depends on whether the meniscus situates inside the evapo-
rator (i = e) or the condenser (i = c):

hlvṁm
i = UmπdLm

i [Ti − Tsat(p)]. (8)

The lengths that enter the above equations are defined so as to
account for the exact location of the meniscus,

Lm
e =

{
Lm, if x < Le,
0, otherwise,

Lm
c =

{
Lm, if Le < x ≤ Le + Lc,
0, otherwise,

where Lm is a length of the portion of the meniscus on which the
mass exchange occurs (cf. Fig. 1) and Um is the corresponding
heat exchange coefficient. The vapor mass variation includes
several contributions described above,

ṁ = ṁ f
e + ṁ f

c + ṁm
e + ṁm

c . (9)

Since the terms ṁm
i are generally much smaller than the cor-

responding film-related quantities, their influence on the insta-
bility criterion will be neglected; the meniscus evaporation is
however important for the determination of equilibrium states.

The vapor heat balance [19] reads

mcV Ṫ = ṁRT + qsens − pS v. (10)

The sensible heat exchange of the tube with the vapor in the
evaporator is accounted for by the term

qsens = UgπdLd
e (Te − T ). (11)

The heat exchange coefficient Ug is proportional to the vapor
heat conductivity kg. Because of its smallness, the sensible heat
exchange with the gas is much weaker than the exchange by
evaporation/condensation. Its impact on the oscillations will be
discussed below. The momentum equation for the liquid plug
reads

d(vml)
dt

= (p − pr)S − F f , (12)

where

ml = ρ(Lt − x)S (13)

is the liquid mass. The friction force F f accounts for the liquid
single phase contribution and is proportional to v2 [12]. For this
reason it does not influence the linear stability conditions and
will be omitted hereafter. It is likely that the viscous friction
appearing because of the presence of the liquid films is propor-
tional to v. Since the film contribution to F f is not yet identified
(to my best knowledge), it will be neglected.

It is important to note that the parameters need to be chosen
in such a way that

Tc < Tsat(pr) < Te (14)

to allow for the mass exchange both in condenser and evapora-
tor.

Five governing ordinary differential equations (2, 3, 9, 10,
12) of the model are now defined. They need to be solved to
find the temporal evolution of the PHP.
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3. Equilibrium states

First one needs to identify the equilibrium states, the sta-
bility of which will be analyzed next. They can be found by
putting to zero the time derivatives. One deduces from Eqs. (3,
4, 11, 12) the respective conditions

v̄ = 0, L̄ f
e = 0, T̄ = Te, p̄ = pr (15)

that should hold for any equilibrium state. The equilibrium val-
ues are denoted here by the bar.

The occurrence of equilibrium states depends on the tube
section to which the meniscus belongs. It is evident that two
cases where the meniscus belongs to the condenser and the
evaporator are not symmetrical: in either case there is a part
of the bubble that belongs to the evaporator. One mentions that
under the conditions (14, 15), no equilibrium is possible when
the meniscus is located in the condenser, i.e. at x̄ > Le. Indeed,
according to Eqs. (4, 5), the condensation always takes place in
this case. The gas volume decreases and the meniscus displaces
toward the evaporator. Similarly, when the meniscus is located
in the evaporator, the equilibrium is impossible because of the
(weak) evaporation from the meniscus, cf. Eq. (8). The evap-
oration causes a displacement of the meniscus toward the con-
denser. It appears that a unique equilibrium state corresponds
to the meniscus location exactly at the boundary between the
evaporator and the condenser (x̄ = L̄d

e = Le). This feature is in
the complete coherence with the experiment and the common
sense. However, it is completely ignored in the “superheated
vapor model” [9]. Indeed, Das et al. [12] have shown that the
equilibrium is achieved within this model when the meniscus
situates anywhere inside condenser or evaporator.

4. Characteristic time scale

The characteristic time scale τ is related to the eigenfre-
quency of oscillations in the absence of mass transfer and en-
ergy dissipation. τ can be found by considering small devia-
tions (denoted by ∆) from equilibrium, e.g. x = x̄ + ∆x. By
linearizing Eq. (7), one obtains

∆p
p̄

=
∆m
m̄

+
∆T
T̄
−

∆x
x̄
, (16)

where ∆m = 0 needs to be put because of the constraint of the
absence of mass transfer. From (7, 15) one gets

m̄ =
prS Le

RTe
. (17)

From the set containing Eq. (3) and equations

m̄cV∆Ṫ = −p̄S v, (18)
m̄lv̇ = ∆pS , (19)

one deduces the eigenfrequency ω = 1/τ,

τ =

√
ρx̄(Lt − x̄)

prγ
, (20)

where γ = (cV + R)/cV > 1 is the adiabatic index. Its pres-
ence points out to the effect of the adiabatic heating/cooling of
the vapor during its compression/expansion, respectively. If the
gas was assumed isothermal, only Eqs. (3,19) would need to be
solved together. The resulting expression [8] for τ would differ
from Eq. (20) by the absence of the factor γ.

5. Linearization

The scale τ can now be used to make the time dimension-
less. x̄ is used to make the lengths dimensionless. The velocity
scale is thus x̄/τ. The equilibrium values (15) are used to make
the remaining deviations dimensionless. The tilde signifies the
respective dimensionless deviation, e.g. x̃ = ∆x/x̄. The indexes
of L̃d

e will be dropped hereafter for simplicity. The reduced,
dimensionless, and linearized governing equations may be de-
fined as follows. Eqs. (3, 10) read

˙̃x = ṽ, (21a)
˙̃T = (γ − 1)( ˙̃m − ṽ) − εT̃ . (21b)

By using Eq. (16) in Eq. (12), one obtains

γ ˙̃v = T̃ − x̃ + m̃. (21c)

Eqs. (2, 9) read, respectively,

˙̃L =

{
ṽ, if L̃ ≥ x̃, ṽ < 0,
˙̃m|αc→0/β, otherwise, (21d)

˙̃m = β


0, if x̃ ≤ L̃,
αe(x̃ − L̃), if L̃ < x̃ < 0,
−αeL̃ − αc x̃, if x̃ ≥ 0,

(21e)

where the negligibly small contributions of the meniscus evap-
oration/condensation are dropped as discussed above. Apart
from the adiabatic index γ, there are four dimensionless num-
bers that affect the stability of the system. The first of them

ε =
UgπdLeτ

m̄cV
(22a)

is the ratio of τ and the time scale that corresponds to the heat
exchange of the tube with the gas. Two following numbers
characterize the film condensation in the condenser and film
evaporation in the evaporator, respectively:

αc =
Uτ[Tsat(pr) − Tc]

ρδ f hlv
, (22b)

αe =
Uτ[Te − Tsat(pr)]

ρδ f hlv
. (22c)

They are the ratios of τ and the respective time scales. The last
number

β =
πdδ f Leρ

m̄
. (22d)

is the ratio of the film mass and the gas bubble mass provided
they are of the same length. Note that since m̄ ∝ Le (cf. Eq.
(16)), neither of these parameters depends explicitly on Le. The
Le dependence of αi occurs only through τ.

The stability of the set of Eqs. (21) may be analyzed now.
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Figure 2: Comparison of the solutions of the PWL and averaged equations
calculated for ε = 0.1, γ = 1.1, β = 0.5, and r0 = 0.05. The evaporator
corresponds to x̃ < 0 and condenser to x̃ > 0. (a) Below instability threshold;
αe = 0.02, αc = 0.02. (b) Above instability threshold; αe = 0.1, αc = 0.1.

6. Stability analysis

Eqs. (21) are not linear (they are piecewise linear, PWL)
and thus the stability of the system cannot be obtained with
the classical linear stability analysis. The averaging method
[20] applied usually to the nonlinear systems can be used. It
consists in the identification of slowly varying (in comparison
with the oscillation frequency) variables and the averaging over
the remaining “fast” variables.

The numerical solutions of the rigorous PWL Eqs. (21) can
now be compared to the solutions given by the averaging method
presented in Appendix A, see Fig. 2. The initial conditions

m̃ = 0, ṽ = r0, T̃ = 0, x̃ = 0, L̃ = 0, (23)

where r0 � 1, are used.
Fig. 2 shows that the meniscus oscillates around an aver-

age position defined by the reduced vapor mass. The average
position given by the PWL equations fluctuates but its fluctua-
tions are small, which provides the justification for the averag-
ing approximation. The film edge L̃ shows a similar behavior.
The averaged description of the film length is however worse
because its initial strong variation is smoothed. A better agree-
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Figure 3: Instability boundary calculated with the averaging approximation.

ment may probably be attained in the next order of approxima-
tion where both the mean value and the average amplitude of
the film edge position are introduced as slow variables (only
the first of them was considered here). The growth rate of the
amplitude of oscillations is underestimated by the averaging ap-
proximation (Fig. 2b). The approximation quality declines with
the increase of growth rate.

Depending on the system parameters, the oscillations may
decline (Fig. 2a) to the equilibrium state or, on the contrary,
grow (Fig. 2b). The latter situation corresponds to the instabil-
ity. A priori, the averaging approximation should be suitable
for the instability threshold determination because the oscilla-
tion amplitude (which is one of the slow variables) does not
vary when the parameters correspond to the threshold. To find
the instability criterion, one needs to analyze the behavior of
the oscillation amplitude at large times, see Appendix B.

Eqs. (B.5) define the instability threshold within the aver-
aging approximation. The threshold may be expressed as a de-
pendence of the dimensionless group (γ − 1)ε/β on αc and αe.
This function is shown in Fig. 3. The system is unstable for the
parameters that correspond to the points below the surface and
stable for the points above the surface.

Several general conclusions can be made from this result.
First, both condensation and evaporation are necessary for os-
cillations. Indeed, if either αc or αe are zero, no instability is
possible. The increase of αc or αe favors the instability. If the
system is characterized by a point located above the surface in
Fig. 3 (i.e. in the stable region), an appropriate increase of αc

and αe (achieved e.g. by increasing the temperature difference
Te − Tc) brings the system to the instability. This agrees with
the experiment where a threshold value of the above temper-
ature difference is one of few well established features of the
PHP startup [2, 12].

Another consequence of Fig. 3 is that the heat exchange
of the dry evaporator walls with the gas (characterized by ε)
is the energy dissipation and hinders the oscillations. Indeed,
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Figure 4: Instability boundary for the particular case αc = αe ≡ α: comparison
of the PWL and averaging approximation results. The averaging approximation
curve corresponds to the section of the surface of Fig. 3 by the plane αc = αe.

an increase of ε may bring the system above the surface in
Fig. 3, where the system is stable. This feature can be easily
understood. Since the heat exchange between the dry evap-
orator walls and the gas does not contribute to the evapora-
tion/condensation mass exchange (which is the moving force
of oscillations), the corresponding energy is lost, which means
that ε characterizes the energy dissipation. Since ε ∼ Ug ∼ kg,
the oscillation threshold in terms of Te −Tc should be lower for
the fluids with lower kg. This means that, in general, the fluids
with low gas heat conductivity are advantageous for the PHP.

The impact of the film thickness on the stability is more
sophisticated. On one hand, an increase of δ f leads to the de-
crease of αc and αe and thus hinders the instability. On the
other, it leads to the increase of β which favors the instability.
This means that in general there is a range of δ f , for which the
oscillations develop. Beyond this range the system is stable.

The rigorous instability threshold can be found by solving
numerically Eqs. (21), comparing the velocity amplitude at long
times with r0, and finding the set of parameters where they co-
incide. From the comparison with the averaging approximation
results (Fig. 4), one may deduce that the instability threshold is
well approximated by the averaging approach for small αe, αc.
This is easy to interpret when recalling that these parameters
are the ratios of τ (that defines the oscillation period) and the
respective characteristic times. The averaging method assumes
that the system variables change weakly on the time scale τ.
This assumption breaks down when either αe, αc or ε becomes
comparable with unity. From numerical solution of the PWL
equations it can be found that in general the averaging approxi-
mation underestimates the growth rate (cf. Fig. 2b). This means
that the actual PWL ε threshold is higher than that predicted by
the averaging approximation.

The threshold for the general PWL case cannot be presented
as a surface in a 3D space like that of Fig. 3. The threshold ε
value depends in general separately on all four remaining di-
mensionless parameters. This is evident from Fig. 4 where the
threshold value of (γ − 1)ε/β is shown to depend on both β
and γ when αe, αc become large enough. The usefulness of the

averaging approximation is however evident. It gives a lower
bound for the instability threshold in a 3D space of the system
parameters. Its application can be illustrated on an example of
the experimental data presented in Fig. 2a of [12]. From the
graph one gets the maximum meniscus velocity of 1 m/s which
corresponds to vRMS = 0.7 m/s from which δ f = 60 µm is ob-
tained with Eq. (1). Note that this value falls within the range
50 − 100 µm obtained by Das et al. [12] by fitting their exper-
imental data to the FEC model. The coefficients αc = 0.07,
αe = 0.04, β = 30, ε = 0.47 can now be calculated and result
in (γ − 1)ε/β = 10−3. A comparison with Figs. 3,4 shows that
the latter value places the model system inside the instability
region, in agreement with the experiment, cf. Fig. 2a of Das
et al. [12] where the oscillations are indeed observed.

7. Conclusions

The main result of the above analysis is the criterion for in-
stability (i.e. the startup) of the simplest, single-branch PHP
without adiabatic section. It can serve to predict the start-up
thresholds of new single branch PHPs (because provides the
lower bound for the PHPs with adiabatic section) and for the-
oretical consideration of the full nonlinear problem (to delimit
the region where the oscillations occur). The origin of the self-
sustained oscillations is now evident. The evaporation in the
evaporator causes the gas pressure increase that propels the menis-
cus towards the condenser where the condensation causes the
pressure decrease and the meniscus returns back to the evapo-
rator. The averaging method is used to solve analytically the
piece-wise linear governing equations and to obtain an ana-
lytical instability criterion. The analytical analysis of the film
evaporation-condensation model was possible thanks to its sim-
plicity. Five dimensionless groups that rule out the oscillation
startup are identified; their physical significance is established.
The instability region is presented in terms of these groups.
Thanks to the averaging approach, the dimensionality of the
parametric space, in which the instability boundary is defined,
is reduced to 3D. The instability boundary can thus be presented
as a surface. The threshold dissipation value obtained from
the averaging approximation is the lower bound of its rigorous
value that may be obtained only numerically in 5D parametric
space.

The model describes correctly the known experimental fea-
tures of PHP startup: (i) both evaporation and condensation are
vital for the oscillation startup, which means that during the os-
cillation startup the meniscus needs to penetrate into both the
condenser and the evaporator, and (ii) the startup of oscilla-
tions is controlled by the temperature difference between the
evaporator and the condenser. The quantitative comparison is
more delicate because of the scarcity of the experimental data
for such a system: in spite of the importance of PHP startup
issue for applications, the features (i,ii) are about all we know;
more experimental data on the PHP startup (in particular, for
single branch PHP) are needed.

The above analysis predicts the independence of the startup
criterion of the evaporator length under the condition that the
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oscillation period is kept constant. It can be checked experi-
mentally. Indeed, one can imagine an experiment where both
the evaporator length and the liquid plug length are variable so
that the constant period constraint may be satisfied.

The theoretical analysis reveals the role of the heat exchange
between the gas and the dried out portion of the evaporator
walls, which turns out to be the source of energy dissipation
in the system. This means that the fluids with low gas heat con-
ductivity are to be chosen for use in the PHP.
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Appendix A. Application of the averaging method

Let us choose first a ground state that provides a periodical
solution. It can be defined by the equations

˙̃x = ṽ,
˙̃T = (1 − γ)ṽ,
γ ˙̃v = T̃ − x̃ + m̃,
˙̃m = 0

(A.1)

obtained from the set (21) by putting to zero αi and ε. The
dimensionless Eqs. (A.1) correspond to Eqs. (18-19), the so-
lutions of which are indeed periodical with the unit eigenfre-
quency,

ṽ = r sin κ, (A.2a)
x̃ = −r cos κ + C (A.2b)
T̃ = (γ − 1)r cos κ + D, (A.2c)
C = D + m̃, (A.2d)

where κ = t̃ + ϕ; r, ϕ,C,D, m̃ are arbitrary constants. There-
fore, ṽ, x̃, T̃ are the “fast” variables. One may now reduce the
initial set (21) with the method of variation of arbitrary con-
stants. Assume r, ϕ,C,D, m̃ to be t̃ functions and substitute the
expressions (A.2) back into the governing equations (21a-21c).
A straightforward reduction results in the equations

Ḋ = (1 − γ)εr cos κ −
ε

γ
D, (A.3a)

ṙ = Ċ cos κ, (A.3b)
rϕ̇ = −Ċ sin κ, (A.3c)

which are still rigorous. One may check by solving numerically
Eqs. (21d, 21e, A.2d, A.3) that all the variables r, ϕ,C,D, L̃, m̃
exhibit small oscillations around slowly varying mean values
and are thus the “slow” variables. Their slow variation can be
(approximately) determined from equations obtained by aver-
aging Eqs. (21d, 21e, A.3) over the oscillation period (= 2π).
While averaging the right hand side of the equations, r, ϕ, C,

π

2π3π/2ππ/2

L~

v~

x~

0

0

π-ψ π+ψ

-r-rcosψ

π+ξπ-ξ

κ

κ

Figure A.5: Ground state solutions (A.2a) (solid line) and (A.2b) (dotted line)
of the nonlinear problem.

D, L̃, m̃ (but not Ċ, Ḋ, ˙̃m) are to be assumed constant over the
period.

From now on, under r, ϕ, C, D, L̃, m̃ we mean their averaged
counterparts. It is evident that the averaging of Eq. (A.3a) leads
to

Ḋ = −
ε

γ
D. (A.4)

This means that D ≡ 0 when D(t̃ = 0) = 0 (which may be
assumed without the loss of generality; nonzero D does not im-
pact the conditions of stability because it drops off the remain-
ing equations). Therefore,

C = m̃. (A.5)

Eq. (A.2b) shows that C is the average value of x̃ during a
period, while r is its amplitude (Fig. A.5). When x̃ < 0, the
meniscus is located in the evaporator and the value x̃ = 0 is the
boundary between the condenser and the evaporator. Several
cases can be distinguished depending on the relation between
|C| and r. Consider first the case |C| < r, where the menis-
cus penetrates into both condenser and evaporator during one
period (Fig. A.5). One may then introduce

cosψ = −
C
r
, (A.6)

where 0 ≤ ψ ≤ π. The condition x̃ > 0 (equivalent to cos κ <
C/r) is satisfied when π − ψ < κ < π + ψ, see Fig. A.5. The
derivative of ψ is

ψ̇ =
˙̃m

r sinψ
+

ṙ
r

cotψ. (A.7)

Since averaged L̃ is constant during a period, several cases
are possible depending on the relation between L̃, C and r. Con-
sider first the case where L̃ is larger than the minimal value of
x̃ over the period, i.e. −r(1 + cosψ) ≤ L̃ < 0, cf. Eqs. (A.2b,
A.6) and Fig. A.5. This case corresponds to a situation where
the condition L̃ = x̃ may be attained (i.e. the film disappears
during some part of the period). The above inequality can be
rewritten as −1 ≤ L̃/r + cosψ < cosψ. One may thus introduce
a new slowly varying variable ξ (such that 0 ≤ ξ ≤ π) via

L̃ = r(cos ξ − cosψ). (A.8)
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This definition means that L̃ = x̃ when κ = π − ξ or π + ξ, cf.
Fig. A.5. The derivative of ξ is

ξ̇ =
˙̃m

r sin ξ
−

˙̃L
r sin ξ

+
ṙ
r

cot ξ. (A.9)

The averaging of Eqs. (21d, 21e, A.3b) results in

˙̃L =
1

2π

(
1
β

∫ π+ξ

0

˙̃m|αc→0dκ +

∫ 2π

π+ξ

ṽdκ
)

(A.10a)

=
r

2π
[
2αe(sin ξ − sinψ + ψ cosψ − ξ cos ξ)

−(1 + cos ξ)
]
,

(A.10b)

˙̃m =
αeβ

2π

(∫ π−ψ

π−ξ

x̃dκ +

∫ π+ξ

π+ψ

x̃dκ − 2ξL̃
)

−
αcβ

2π

∫ π+ψ

π−ψ

x̃dκ
(A.10c)

=
βr
π

[αe(sin ξ − sinψ + ψ cosψ − ξ cos ξ)

+αc(ψ cosψ − sinψ)].
(A.10d)

ṙ =
1

2π

[∫ 2π

0
Ḋ cos κdκ − αcβ

∫ π+ψ

π−ψ

x̃ cos κdκ

+αeβ

(∫ π−ψ

π−ξ

x̃ cos κdκ

+

∫ π+ξ

π+ψ

x̃ cos κdκ − L̃
∫ π+ξ

π−ξ

cos κdκ
)] (A.10e)

= −
(γ − 1)εr

2
+
βr
2π

[αe(ψ − ξ − sinψ cosψ

+ sin ξ cos ξ) + αc(ψ − sinψ cosψ)].
(A.10f)

Similarly, one deduces that the averaging of Eq. (A.3c) re-
sults in ϕ̇ = 0. Note that ˙̃m and Ḋ given by Eqs. (21e, A.3a) need
to be injected into Eqs. (A.3b, A.3c) before averaging them. For
clarity, the same notation is kept for the averaged variables. To
distinguish the averaged and non-averaged values one notes that
in Eqs. (A.10), all variables are averaged except of those under
integrals. In what follows, all variables are averaged.

The differential equations for ψ and ξ are obtained by the
substitution of Eqs. (A.10b, A.10d, A.10f) into Eqs. (A.7, A.9),
respectively. The resulting two equations form together with
Eq. (A.10f) a set of three ODE’s for three unknowns (ψ, ξ, r)
and can now be solved together. Their initial conditions ψ =

ξ = π/2, r = r0 and the equality ϕ = π/2 correspond to the
conditions (23). Note that the right hand sides of the equations
for both ψ̇ and ξ̇ depend only on ψ, ξ and are independent of r.
This feature will be used below during the stability analysis.

The obtained differential equations are valid until ξ attains
π, which may occur at some time moment t̃ = tξ when the os-
cillations are declining. From this moment on, the curves x̃(t̃),
L̃(t̃) do not intersect any more and the introduction of ξ (that
defines the point of intersection, cf. Fig. A.5) is not possible
any more. The averaged equations for t̃ > tξ can be obtained
from Eqs. (A.10a, A.10c, A.10e) where ξ is now replaced by π,

˙̃L = −
αer
π

[(π − ψ) cosψ + sinψ + πL̃/r], (A.11a)

˙̃m =
βr
π
{αc(ψ cosψ − sinψ) − αe[(π − ψ) cosψ

+ sinψ + πL̃/r]},
(A.11b)

ṙ = −
(γ − 1)εr

2
+
βr
2π

[αe(ψ − π − sinψ cosψ)

+αc(ψ − sinψ cosψ)].
(A.11c)

To close the set of equations, one needs again to use Eq. (A.7).
When the oscillations are declining, ψ may in some cases attain
zero or π at a time tψ > tξ. The equations that valid for t̃ > tψ can
be readily obtained from Eqs. (A.11) by putting ψ = 0 or ψ = π,
respectively. They are linear and can be solved analytically.
The solutions are however cumbersome and for this reason are
not written here.

Note that only Eqs. (A.10) need to be analyzed to study the
stability of the system. Those valid for t̃ > tξ describe only the
declining oscillations.

Appendix B. Instability boundary within averaging approx-
imation

One mentions at once that since both ψ(t̃) and ξ(t̃) func-
tions cannot evolve beyond the interval (0, π), they should either
come to saturation at t̃ → ∞ or exhibit an oscillatory behavior.
The second option is unlikely within the averaging approach
where these functions are slowly varying. Indeed, the numer-
ical calculations show that both ψ(t̃) and ξ(t̃) always saturate
when t̃ → ∞.

Let us first outline the procedure of finding the instability
threshold by analyzing the stability of the set of equations for
(ψ, ξ, r) resulting from Eqs. (A.7, A.9, A.10). One first obtains
the values ψ(t̃ → ∞) and ξ(t̃ → ∞) by imposing

ψ̇ = 0,
ξ̇ = 0.

(B.1)

As mentioned above, the right hand sides of the differential
equations for ψ and ξ depend only on ψ and ξ. Thus the condi-
tions (B.1) result in the closed set of two equations that can be
solved for ψ(t̃ → ∞) and ξ(t̃ → ∞). Next, the solutions should
be used in the equation

ṙ = 0 (B.2)

that defines the stability threshold at t̃ → ∞. Indeed, r is the
oscillation amplitude and the declining oscillations correspond
to ṙ < 0 while the instability condition is ṙ > 0.

We proceed now to the implementation of the outlined pro-
cedure. By using Eqs. (A.7, A.9) one can rewrite the conditions
(B.1) as

˙̃m + ṙ cosψ = 0,

˙̃m − ˙̃L + ṙ cos ξ = 0.
(B.3)
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With the account of Eq. (B.2), they reduce to

˙̃L = 0,
˙̃m = 0

(B.4)

where the values of the derivatives defined in Eqs. (A.10b, A.10d)
need to be substituted. After a rearrangement, the obtained
equations read

cos ξ = 2αc(sinψ − ψ cosψ) − 1,
αe(sin ξ − sinψ + ψ cosψ − ξ cos ξ)

= αc(sinψ − ψ cosψ).
(B.5a)

The parameter β drops out of Eqs. (B.5a) which can easily be
solved numerically thus defining the threshold values of ξ, ψ
as functions of αc and αe. Their solutions can be used in the
condition (B.2) equivalent to the equation

(γ − 1)ε
β

=
1
π

[αe(ψ − ξ − sinψ cosψ + sin ξ cos ξ)

+αc(ψ − sinψ cosψ)].
(B.5b)

Eq. (B.5b) defines the instability threshold. It expresses
(γ − 1)ε/β as a function of αc and αe.
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[12] S. P. Das, V. S. Nikolayev, F. Lefèvre, B. Pottier, S. Khandekar, J. Bon-
jour, Thermally induced two-phase oscillating flow inside a capillary
tube, Int. J. Heat Mass Transfer 53 (19-20) (2010) 3905 – 3913, doi:
10.1016/j.ijheatmasstransfer.2010.05.009.
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