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Chapter 1
Introduction

1.1 Josephson effect and mesoscopic physics

Experiments on the Josephson effect were initiated in 1963 by the obser-
vation by Anderson and Rowell [1] of "an anomalous dc tunneling current
at or near zero voltage in very thin oxide barriers between superconduct-
ing Sn and Pb", thus confirming the striking predictions that Josephson
had made in 1962 [2]. Various kinds of superconducting weak links were
subsequently explored, but Josephson tunnel junctions, in which the cou-
pling between electrodes proceeds through a large number of electronic
channels with very small transmissions, have played a central role in the
field since then. This is mainly due to the very simple form that the
Josephson Hamiltonian adopts in this case, namely HJ = −EJ cos γ,
where EJ is the Josephson energy proportional to the tunnel conduc-
tance, and γ the phase difference between the superconducting order
parameters of both electrodes. The supercurrent-phase relation is given
by the first Josephson relation I = I0 sin γ where I0 = EJ/ϕ0 is the
critical current with ϕ0 = ~/2e, and the phase evolves according to the
second Josephson relation V = ϕ0γ̇.

The Josephson junction is thus a simple system with a single degree
of freedom, and Josephson junctions physics developed in many direc-
tions to investigate a wide range of physical problems [3]. An important
example, thoroughly exploited in this thesis, is the switching out of the
zero-voltage state of a current-biased Josephson junction. After switch-
ing, the voltage is finite, the phase evolves continuously, and the average
supercurrent nearly vanishes. Depending on the parameters, this switch-
ing precisely implements either the celebrated Kramers problem of the
thermally activated escape of a particle out of a metastable state trapped
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in a potential well [4], or the problem of Macroscopic Quantum Tunneling
(MQT) [5].

Josephson junctions also provided a novel electrical element, based on
which many new devices have been implemented [3]. In the SIS mixer, the
non-linearity of the current-voltage characteristic is exploited to mix the
signal collected by an antenna with a local oscillator to produce a signal
at a lower frequency where detection is performed. Another Josephson
device widely used for applications is the famous dc-SQUID that consists
of the parallel combination of two junctions forming a superconducting
loop that can enclose a magnetic flux. The Hamiltonian and hence all the
properties of the device are periodically modulated by the flux, with a
period given by the flux quantum Φ0 = h/2e, which makes the dc-SQUID
the most sensitive flux sensor [6]. Recently, the use of the dc-SQUID was
further extended to microwave amplification by feeding the incoming
signal through a microwave coil microfabricated above the SQUID loop
[7, 8].

This thesis goes along this line of exploiting Josephson junctions for
making a new device. In the first part, I describe a new generation of de-
tectors that I have developed for analyzing the fluctuations of the current
flowing through a mesoscopic conductor, a question that has generated
recently a great interest in the mesoscopic physics community. Indeed,
Levitov and Lesovik [9], followed by many others, have demonstrated that
the asymmetry of the current distribution around its mean gives access
to information present neither in the average value of the current, nor in
its quadratic fluctuations. For example, in the simple case of a metallic
diffusive wire, the diffusion time enters the frequency dependence of this
asymmetry, which is related to the third moment of the fluctuations [10].
Our detector exploits the exponential dependence of the switching rate
of a Josephson junction on the bias current for detecting current fluctu-
ations added to it. Elaborating on a previous experiment developed in
the Quantronics group, we have demonstrated in a model case that our
detection scheme allows to access the asymmetry of current fluctuations,
and that recent theories [11, 12] account quantitatively for the data.

The second part of this thesis also makes use of Josephson junctions as
a tool to tackle a fundamental problem in mesoscopic superconductivity.
Beyond the Josephson tunnel junction, there exists an even more elemen-
tary weak-link structure, namely the short single channel contact with
arbitrary transmission. This very simple structure, which can be thought
of as the building block of all short weak-links, can be fully analyzed
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using the concept of Andreev reflection initially developed for describing
normal-superconducting interfaces [13]. The coupling between the elec-
trodes generates a set of two level systems, called the "Andreev bound
states" pairs, which carry the supercurrent [14, 15, 16]. These doublets
have been proposed recently as possible new Qubits [17].

The predictions of this theory can be tested using superconducting
atomic contacts, which are simple systems with a small number of chan-
nels whose transmission can be varied and measured [18, 19]. In partic-
ular, the predictions for the supercurrent in the ground state have been
successfully tested very recently by the Quantronics group, through the
measurement of the switching current of a SQUID-like device consisting
of an atomic contact in parallel with a regular Josephson junction [20].
However, the structure of the Andreev doublets has never been directly
probed. During my thesis, I have designed and run new experiments
aiming at characterizing the expected doublets of Andreev states, and
obtained preliminary results.

The two parts of my thesis, together with the results, are now intro-
duced in more details.

1.2 Detecting asymmetric noise with a Josephson
junction

Noise is the signal...

The current flowing through a conductor always fluctuates around its
mean value. While some of these fluctuations can simply originate on
experimental artifacts or uncontrolled parameters, and can be in princi-
ple avoided by careful and proper design, there are fluctuations that arise
from fundamental and unavoidable causes: the thermal fluctuations of the
populations of the electronic states in the conductor or the randomness
introduced by scattering processes of the charge carriers within the con-
ductor. These fluctuations constitute an important source of information
about the microscopic mechanisms behind charge transport.

Noise conveys useful information...

Working on vacuum diodes, Schottky determined in 1918 a link between
the current fluctuations and the charge of the carriers. When charge
transfer proceeds through independent and rare non-overlapping events,
the spectral density at low frequency of the current noise reduces to:
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SD2 = 2qIN

where q is the "effective charge" transferred at each event, and IN the
mean current flowing through the conductor. This noise, reminiscent of
the one of the rain on a roof, results from the discreteness of charge
carriers and has been coined shot noise. Shot noise has been widely ex-
ploited to characterize transport mechanisms [21]. Let us mention here
the evidence for fractional charges q = e/3 at 1/3 Landau level filling of
a two-dimensional electron gas [22, 23], the confirmation of shots with
q = 2e in Andreev reflection at a normal-superconducting contact [24],
and the observation of large shots q = ne due to Multiple Andreev reflec-
tions in superconducting atomic contacts [25]. In all these experiments,
the noise was probed through its spectrum, which corresponds to the
second-order correlation function of the fluctuations.

Meanwhile, a theoretical breakthrough arose when Levitov and Leso-
vik introduced in mesoscopic physics the concept of Full Counting Statis-
tics [9, 26], giving access to higher order correlators of the noise. In this
framework, one considers the fluctuation of the number N of electrons
having passed across a conductor during a probing time τp. The random
variable N is governed by a probability distribution P (N, τp), which pro-
vides a full description of current fluctuations. The second moment of
N is equivalent to the second-order correlator of the current noise, i.e.
to the noise spectrum. The third moment of N , equivalent to measuring
〈δI3
N〉, characterizes the asymmetry of the current fluctuations.

. . . but few experiments have measured noise asymmetry

Experimentally, accessing directly the probability distribution P of the
current fluctuations remains an unsolved challenge. One can however
access the moments of order p of the current fluctuations 〈δIpN〉, but
measuring high order moments is very challenging because no measurable
physical quantity has been found to directly determine a given moment.

The first experimental determination of a third moment was achieved
for a tunnel junction by Reulet [27] who obtained 〈δI3

N〉 using microwave
mixers operated at room temperature in a bandwidth large enough to
obtain a measurable signal. These experiments represent a real tour de
force, requiring very long averaging times and precise calibration of the
microwave circuit. It soon became clear that an on-chip detector, close to
the sample (as compared to the wavelength of the signals), would provide
a better approach to measure the noise asymmetry. In 2004, Tobiska
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and Nazarov precisely proposed to use a Josephson Junction as such an
on-chip detector to access the full counting statistics of the noise [28].
The first experimental realization of such a detector was implemented by
Pekola by adding the shot noise generated by a tunnel junction to the
bias current of the junction [29].

This thesis pursues the experimental effort initiated in the Quantron-
ics group for implementing such a scheme.

A new noise detector

Switching of a Josephson junction . . .

The current-voltage characteristic of a Josephson junction measured at
low temperature (kBT ≪ EJ) is shown in Fig. 1.1(a). Because of fluctu-
ations of the bias current, switching out of the zero voltage state is ob-
served at a current slightly smaller than the critical current I0 at which
the barrier height for switching out of the zero-voltage state vanishes.
The escape process is characterized by the lifetime τesc, or conversely by
the escape rate Γ = 1

τesc
, which, in the thermal regime, is essentially de-

termined by the ratio of the barrier height to the temperature associated
to the fluctuations and the dissipation. Switching is hysteretic, which
makes the junction a real "sample-and-hold" detector and allows easy
detection of switching by measuring the voltage across the junction. The
exponential sensitivity of the escape rate Γ on the bias current makes a
Josephson junction a sensitive current detector. It is also a fast detector
since its response time is determined by the fast phase dynamics in the
zero voltage state.

. . . can detect noise asymmetry

Although the main effect of an added noise on the escape rate is to in-
crease the effective temperature of the escape process Teff ∝ − lnΓ , it
was demonstrated theoretically that noise asymmetry also affects switch-
ing [11, 28, 30, 31, 32, 33, 34]. The second moment of the shot noise
increases the switching rate, with a small correction due to the third
moment. Experimentally, this smaller effect is accessed by inverting the
sign of the current flowing through the noise source, thus inverting the
contribution of the added noise to the bias current of the detector. The
rate is measured in both cases (Γ+ and Γ−), and the rate asymmetry
RΓ = Γ+

Γ−
, insensitive to even moments of the noise, is a measure of

the third moment. The first experiment performed in the group during
the thesis of Benjamin Huard [35, 36] confirmed the effect of the second
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Fig. 1.1. Detector of asymmetric noise based on the switching of a current biased Josephson
junction. The setup (b) consists of a Josephson junction (I(V ) characteristics in (a)) biased
by a dc current to which a non-Gaussian asymmetric current noise is added. The variations
of the escape temperature of the junction with the mean noise current is shown for different
temperatures in (c). The asymmetry of the rate when the noise adds or subtracts to the dc
current is shown in (d), where solid lines are predictions. This rate asymmetry measures the
noise asymmetry.

moment and detected a rate asymmetry, but the data could not be quan-
titatively understood, probably due to spurious experimental artifacts.
Another experiment [37] also demonstrated the sensitivity of switching to
the third moment, and confirmed, by measuring the rate asymmetry for
different noise sources, that a macroscopic resistor produces a symmetric
noise. However, a proper comparison with theory could not be achieved
neither.

A quantitative noise asymmetry detector

During this thesis, we have developed a new generation of experiments for
measuring the rate asymmetry and achieving a quantitative comparison
with theory in the simple case of the noise produced by a tunnel junction.
This benchmark experiment confirms the possibility to use a Josephson
junction as a quantitative detector for the asymmetric part of the noise.
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The setup used in this experiment is represented in Fig. 1.1(b). The
plasma frequency of the detector is designed to ensure that no quantum
correction or quantum tunneling effects enter in the description of the
escape rate. The noise produced by the tunnel junction is added through
an on-chip RC filter to the dc bias of the Josephson junction detector.
The noisy tunnel junction is voltage-biased, and its current IN can be
inverted.

The dominant effect of the second-moment of the noise on the escape
temperature determined from the switching rate is shown in Fig. 1.1(c).
The observed increase agrees with predictions without adjustable param-
eters. The third moment of the noise, accessed through the rate asym-
metry, was measured at a fixed value of the rate and a given bias current
for each effective temperature, as shown in Fig. 1.1(d). Although the ex-
isting published theory does not apply in principle to our setup, in which
the noise transmission from source to detector and the dissipation expe-
rienced by the detector vary with frequency, we found that, apart from
a scaling factor, the measured rate asymmetry is adequately described
by the predictions [38]. Recently, Urban and Grabert [12] have been able
to extend this theory by treating frequency dependent circuits, and have
obtained a quantitative agreement with our data. This important the-
oretical progress demonstrates that the third moment of current noise
can be quantitatively extracted from rate asymmetry measurements of a
Josephson junction.

Conclusions & perspectives

The experiment described in the first part of this thesis demonstrates
that a Josephson junction can be used to measure the third moment of
current fluctuations. This on-chip detector strategy is versatile and effi-
cient, as it does not require tedious microwave calibrations of the whole
circuit including components and cables at room temperature, and can be
applied to samples presenting arbitrary impedances. However, our exper-
iment also shows that frequency effects are important. Achieving a better
control of the transfer function from the noise source to the detector, so as
to be able to describe the rate asymmetry by the frequency-independent
theory, is a necessary step to consider this detector as a generic "Third-
moment-meter". With this in hand, the next step would be to investigate
interesting physical systems like quantum point contacts, for which the
third moment is predicted to vary as

∑
τn(1 − τn)(1 − 2τn) [39] where

{τn} are the transmissions of the channels, or the regime of multiple
Andreev reflections in superconducting atomic point contacts in which
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charge transfer involves a large number of electrons, and where the noise
asymmetry can change sign as a function of the channel transmissions
[40].

It is however important to note that Josephson junction detectors,
initially proposed to extract the Full Counting Statistics of the current
noise from the variations of the switching rate at different bias currents,
face experimental difficulties that prevent from accessing moments be-
yond the third one, at least for a simple Josephson junction [11]. Note
however that particular ranges of detection parameters facilitating such
measurements have been proposed, but the requirements seem hardly
achievable [41].

1.3 Towards Andreev states spectroscopy

Andreev bound states...

The second part of this thesis deals with the general picture of the Joseph-
son effect that arose during the last years of the 20th century within the
framework of mesoscopic superconductivity, and which allows to treat on
the same footing all the different possible weak links (tunnel junctions,
point contacts, bridges of normal metal or of exotic materials like car-
bon nanotubes,. . .). Within this framework, the elementary Josephson
weak link is a single conduction channel with arbitrary transmission τ
connecting two superconducting electrodes. The central ideas are that
any weak link can be decomposed into a set of such channels, and that
within each channel the supercurrent is carried through a set of localized
quasiparticle states which come in pairs, the "Andreev bound states".

...in a short single channel superconducting contact

An important simplification occurs when the channel is shorter than the
superconducting coherence length because in this case the solution of
the Bogolubov-De Gennes equation [42] consists of just a single pair of
Andreev bound states. These states are described as resonant electron-
hole quasiparticle states spreading slightly in both electrodes around the
weak-link, with energies:

E± (δ, τ) = ±∆
√√√√1− τ sin2

(
δ

2

)

where ∆ is the superconducting gap, and δ is the superconducting phase
difference between the order parameters of both reservoirs. The variations
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of these energies with δ at different channel transmissions are shown in
Fig. 1.2(a).

VJ
(b)(a)

I
� � IB

I0� ��� � �� VB�
(d)(c)

Fig. 1.2. (a) Energies of Andreev states versus the phase difference for a superconducting
short single channel for transmissions 0.7 and 0.97. (b) Schematics of the Atomic SQUID
circuit used for measuring the supercurrent through a superconducting atomic contact. (c)
The variations of the switching current of the Atomic SQUID with the flux through its
loop perfectly reflect the current-phase relation calculated from the independently measured
transmissions of the contact. (d) Scanning electron micrograph of an Atomic SQUID circuit
designed to perform the spectroscopy of the Andreev levels. A coplanar transmission line
(at the bottom)) allows microwave flux excitation of the Atomic SQUID; the long thin wires
(top region) are inductors that isolate the Atomic SQUID from the external circuit at high
frequencies.

A potential qubit ?

The Andreev states in a short single channel Josephson structure con-
stitute a two-level system that has been proposed as the basis for a new
qubit by including it in a superconducting loop [17]. What is particularly
interesting and novel is that, in contrast with all other superconducting
qubits based on Josephson junction circuits [43], an "Andreev qubit" is
a microscopic two level system like spin qubits in semiconducting quan-
tum dots. There are several essential steps that have to be accomplished
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before being able to attempt any quantum manipulation of an Andreev
doublet. First, it is necessary to characterize the states and to be able
to measure the current they carry. Second, it is necessary to perform
the spectroscopy of the doublet. And finally, the relaxation time of the
excited state, and the dephasing time of a quantum superposition of the
two states, have to be measured, understood and controlled if possible.

Supercurrent in atomic contacts

The measurement of the current-phase relation of superconducting atomic
contacts was recently performed in the Quantronics group [20] using a
new circuit with a SQUID-like geometry, as shown in Fig. 1.2(b). This
circuit consists of an atomic contact in parallel with a Josephson junction
and has been nicknamed the "Atomic SQUID". First, the I(V ) charac-
teristics of the contact is obtained by subtracting from the I(V ) of the
Atomic SQUID that of the junction (obtained after completely break-
ing the atomic contact). The channel transmissions, accurately deter-
mined from this I(V ), are then used to calculate the expected current-
phase relation of the contact. Secondly, the switching current of the
Atomic SQUID is measured as a function of the flux through the loop
[20, 36, 44, 45]. If the critical current of the junction is large, and the
phase across the Josephson junction is subject to small fluctuations, this
Atomic SQUID geometry allows an almost perfect phase bias of the con-
tact. As shown in Fig. 1.2(c), the measured variations of the switching
current are perfectly described by theory, if one considers simply the
current-phase relation of the lower Andreev state of each channel.

New experiments to probe the Andreev doublet

During my thesis we carried out several experiments on Atomic SQUIDs
with the aim of performing the microwave spectroscopy of the Andreev
levels of the atomic contact. Although for the moment we have not
reached this goal, several important technical locks have been overcome,
and preliminary results have been obtained.

A spectroscopy experiment requires:

1. A well characterized atomic contact;
2. A phase-biasing circuit under control;
3. The controlled injection of an external excitation matching the An-

dreev frequency νA(δ), which must lie in an experimentally accessible
range;

4. A long enough relaxation time of the upper state in order to detect
its population within the time scale of the measurement.
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As mentioned above, we have already shown that the Atomic SQUID
setup can fulfill the first two criteria. However, the last two require further
developments.

Because we access the state of the Atomic SQUID through switching
experiments, the phase across the atomic contact is in fact a dynamical
variable with both thermal and quantum fluctuations. Depending on the
actual design and parameters of the global circuit, there can be significant
departures from an ideal phase-bias situation, and important modifica-
tions of the Andreev frequency as calculated for an isolated contact.

Bias current microwave excitation of an Atomic SQUID in the classical
regime

We first attempted to excite the atomic contact during the measurement
of its supercurrent-phase relation by adding a small microwave current
to the dc bias-current of the Atomic SQUID, for a sample in the classical
regime. Indeed, if a transition occurs from the lower to the upper Andreev
state, which carries an opposite supercurrent, the switching current of the
Atomic SQUID would be significantly modified. Although we have found
that applying microwaves does affect switching of the Atomic SQUID, we
could not relate the observed changes to the expected Andreev transition
frequency. Furthermore, we found that the SQUID shunt capacitance,
which was intentionally fabricated in order to be in the classical escape
regime, prevented us from injecting large enough microwave currents in
the atomic contact. Finally, the dissipation might have been too large to
induce a sufficient population of the upper Andreev state.

Flux microwave excitation of an Atomic SQUID in the quantum regime

In order to both solve this coupling problem and control the lifetime
of the excited state, we have designed and operated a new circuit (see
Fig. 1.2(d)). For the former goal, the microwave excitation is performed
via an on-chip coplanar antenna which couples to the flux threading
the SQUID loop. For the latter, the low capacitance Atomic SQUID is
isolated by nanofabricated inductors from the low impedance connect-
ing lines. In order to test this on-chip electromagnetic environment, we
have performed a preliminary experiment with a two-junctions symmet-
ric SQUID. The plasma resonance of the SQUID could be observed using
the flux excitation line, and the ensemble of the results validates the pa-
rameters of the new design.

An important consequence of these changes is that in this new circuit
the phase across the junction is a quantum variable with sizable quan-
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tum fluctuations, and switching is dominated at low temperatures by
MQT. Moreover, the coupled quantum dynamics of the contact and the
junction could lead, depending on the actual parameters, to very signif-
icant departures of the Andreev frequency from the value expected for
the isolated contact.

Conclusions & perspectives

In the experiments described in the second part of this thesis we used
a Josephson junction to probe the supercurrent of well-characterized
atomic contacts. If the contribution of the Andreev ground state of each
channel to the supercurrent is by now perfectly identified, the role of the
excited states remains elusive. We have identified both practical and fun-
damental issues that have prevented us from performing the spectroscopy
of Andreev doublets, and new experiments are under way.

If the spectroscopy is achieved, one could then envision to create,
using well controlled microwaves pulses, coherent superpositions of the
two Andreev states in one or several channels of an atomic contact. It is
however important to note that, even if the coherence time is found to
be long enough, controlling the possible coupling between the different
channels would present a formidable challenge.



Part I

Detecting noise asymmetry using a
Josephson junction





Chapter 2
Escape of a Josephson junction out

of the metastable state

In this chapter, we review some results on the escape rate of a Joseph-
son out of its zero-voltage state. Having defined in a first section the
dynamics of the junction in the tilted washboard potential, we present the
expressions for the rate in both the thermal activation regime and the
Macroscopic Quantum Tunneling regime. The case of thermal activation
is extended in the final section, where a non-Gaussian noise is added to
the bias current of the junction. We compare recent theoretical predictions
for the escape rate in this regime.

2.1 The Josephson junction in an electromagnetic
environment

2.1.1 The Josephson junction

A Josephson junction [2] consists of two superconducting electrodes sepa-
rated by a thin insulating layer (see [3] for a review of Josephson junction
physics). It can be modeled as shown in Fig. 2.1 by a pure Josephson el-
ement in parallel with a capacitance CJ . The Josephson element allows
the tunneling of Cooper pairs with the characteristic Josephson energy
EJ = ϕ0I0, where I0 is the critical current of the junction and ϕ0 = ~/2e
the reduced flux quantum. The critical current corresponds to the max-
imal possible supercurrent. The presence of the capacitor introduces an-
other energy scale, the charging energy EC = e2

2CJ
of the capacitor, where

e is the elementary charge. In this thesis, one only considers Josephson
junctions in the regime EJ ≫ EC in which charging effects are negligible.
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The phase difference γ between the phase of the order parameters in the
two superconducting electrodes is the relevant variable in this limit, and
the Hamiltonian for the Josephson junction reduces to:

HJ = −EJ cos γ. (2.1)

The phase difference γ is linked to the voltage drop V across the junction
by the Josephson relation:

ϕ0γ̇ = V. (2.2)

Since the number of charges having tunneled through the junction is
the conjugated variable of the phase difference [46], the current operator
is obtained as:

Î =
1

ϕ0

∂HJ
∂γ

. (2.3)

Hence, in a classical description of an electromagnetic circuit, the current
through a phase-biased Josephson junction is:

I = I0 sin γ. (2.4)

Let us now consider the case where the phase difference γ is not fixed,
but is oscillating with a small amplitude around 〈γ〉. Using the Josephson
relations (Eq. (2.2) and (2.4)), the voltage across the junction is related
to the derivative of the current flowing through it by:

V ≃ ϕ0

I0 cos 〈γ〉
dI

dt
, (2.5)

which corresponds to the response of an inductor having an effective
inductance

LJ =
LJ0

cos 〈γ〉 . (2.6)

We defined here the Josephson inductance at zero bias

LJ0 =
ϕ0

I0

. (2.7)

A pure Josephson junction in this regime can thus be thought in electrical
engineering terms as a non-linear inductor.

2.1.2 The RCSJ Model

Practically, the junction is always embedded in an electrical circuit, there-
fore connected to an electromagnetic environment described by its ad-
mittance Y (ω) that controls the dynamical properties of the junction.
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Fig. 2.1. Top: The Josephson junction is obtained at the overlap of two superconducting
electrodes separated by a thin insulating layer. It is described by the parallel combination of a
pure Josephson element and a capacitor. This association is usually represented by a crossed
box symbol. Bottom: Schematic representation of the I(V ) characteristics of a current-
biased Josephson junction within the RCSJ model, at zero temperature. The supercurrent
branch is observed at zero voltage, up to the critical current I0. For 0 ≤ V ≤ 2∆

e
, the

dc current is zero. Above 2∆
e

, the Josephson junction behaves like a normal metal tunnel
junction of resistance RJ , related to the critical current by the Ambegaokar-Baratoff relation
[47] (see Appendix B.6).

The simplest model for the electromagnetic environment has been pro-
posed by Stewart and McCumber [48, 49] (see Fig. 2.2). In this model,
the pure Josephson element of critical current I0 is shunted by a capaci-
tance CJ and a resistance R. It has thus been coined the Resistively and
Capacitively Shunted Junction model (RCSJ). Using this RCSJ model
is the key to describe the I(V ) characteristics of a Josephson junction,
and specifically the supercurrent branch at zero voltage represented in
Fig. 2.1. The switching out of the supercurrent branch to a dissipative
state at finite voltage is the subject of this chapter.

Equations of the circuit

The equations describing the behavior of the circuit shown in Fig. 2.2
are obtained from Kirchoff’s laws and Josephson relations:
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Fig. 2.2. Left: Electrical model for a current-biased Josephson junction embedded in an
electromagnetic environment Y (ω), biased by a current IB . Right: The RCSJ model con-
siders a pure Josephson element shunted by a capacitance CJ and a resistance R. To the
resistance R at temperature T are associated current fluctuations δI, represented here as a
noise source in parallel.

{ 1
ϕ0
V = γ̇

CJϕ
2
0γ̈ +

ϕ2
0

R
γ̇ + EJ [sin γ − s] = ϕ0δI

(2.8)

where s = IB
I0

is the reduced bias current. The Johnson-Nyquist current
fluctuations δI originate from thermal fluctuations of the energy states
populations in the resistor, and are introduced as a noise source in parallel
with the resistance. The correlation function of the current fluctuations
is obtained from the fluctuation-dissipation theorem as:

〈δI(t)δI(t′)〉 =
2kBT

R
δ(t′ − t), (2.9)

where T is the temperature of the resistor. The equilibrium position of
the phase difference γ is found for 〈γ〉 = arcsin s when s < 1. Using
Eq. (2.6), the effective inductance of the biased junction is thus:

LJ(s) =
LJ0√
1− s2

. (2.10)

Mechanical analogy: a particle in a tilted washboard potential

Electrical equations (2.8) are completely similar to the mechanical equa-
tions of motion of a fictitious massive particle evolving in a titled wash-
board potential U(x, s) = −EJ [cosx+ sx] (see Fig. 2.3). The phase
difference γ is equivalent to the position x of the particle, the voltage
1
ϕ0
V is equivalent to its velocity v, the mass of the particle corresponds

to m = CJϕ
2
0, and the damping term is written as χ = 1

RCJ
. The fluctu-

ating force acting on the particle ξ(t) = ϕ0δI(t) is characterized by:
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〈ξ(t)ξ(t′)〉 =
2mχ

β
δ(t′ − t). (2.11)

This term ξ(t) can also be seen as a fluctuation of the tilt of the potential.
This analogy is summarized in Table 2.1.

Element Mechanical Electrical

position x γ
velocity v V/ϕ0

mass m CJϕ
2
0

damping χ (RCJ)−1

potential U(x, s) = −EJ [cosx+ sx] −EJ [cos γ + sγ]
noise ξ ϕ0δI

correlation 〈ξ(t)ξ(t′)〉 = 2mχ
β
δ(t′ − t) 〈δI(t)δI(t′)〉 = 2kBT

R
δ(t′ − t)

Table 2.1. Correspondence between the RCSJ model for a Josephson junction and the
dynamics of a fictitious particle in a tilted washboard potential.

Using the notations ẋ = ∂tx and U ′(x) = ∂xU , the equivalent equa-
tions are:

{
v = ẋ
mẍ+mχẋ+ U ′(x) = ξ(t).

(2.12)

In the following, the dynamics of the phase difference is often described
with the equivalent mechanical model.

2.1.3 Dynamics of the fictitious particle

Switching out of the zero-voltage state

In order to get some insight of the dynamics of the particle, let us first
consider a case without any fluctuations (i.e. at zero temperature in this
classical model). Two states are possible for the particle (see Fig. 2.3):

• For s < 1, the potential U presents local minima, and the particle
is trapped in one of them. Its position is fixed and the velocity is
zero on average. This corresponds to the dc Josephson effect or the
supercurrent branch, where the phase is constant. The current is given
by Eq. (2.4).

• For s ≥ 1 the local minima disappear and the particle runs down the
potential. This corresponds to a running state with a finite voltage.

Switching between those two states is thus observed exactly at s = 1.
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Fig. 2.3. Tilted washboard potential associated to the dynamics of the phase in absence
of fluctuations (zero temperature in this classical model). For s ≤ 1, the potential presents
wells in which the particle is trapped. For s ≥ 1, the wells disappear and the particle gets
into to a running state.

However, in a practical experiment, the fluctuations are always present.
Due to the current fluctuation δI, the state of the particle trapped in one
of the wells is metastable. The particle oscillates in the well, and it has a
finite probability to escape out of this well. The particle then undergoes
a trajectory that extends over several wells and depends on the damping
(see Fig. 2.4):

• If it has a sufficient kinetic energy, the particle is able to overcome
the successive barriers, and it reaches a running state. There is then a
finite voltage across the junction. The switching is thus again observed,
but for a reduced bias current ssw < 1.

• If the particle does no gain a sufficient energy from one well to the
next one due to large losses, it can be retrapped in one of the fol-
lowing wells, then escape again, and slowly evolve down the potential
with this succession of escape and retrapping. This situation corre-
sponds to the phase diffusion regime. The voltage across the junction
thus evolves gradually from zero to an extremely small value, with
no sudden change. Since experimentally the dynamics of the junction
is monitored through the voltage across it, the measurement of the
escape of the junction out of the zero-voltage state gets very delicate
when approaching this regime.
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ESCAPE OUT OF 
A SINGLE WELL RUNNING STATE :

PHASE DIFFUSION / RETRAPPING

Fig. 2.4. Dynamics of the particle in presence of fluctuations (finite temperature in this
classical model). The particle can overcome the barrier and escape out of the single well.
The dynamics of the particle depends on the damping. If the damping is small, the particle
gains enough energy to reach a running state, leading to a finite voltage. Otherwise, the
particle enters a diffusion regime, escaping from one well to be retrapped in a following one,
with a very small average velocity.

In the following, we describe all the different parts of the dynamics
of the junction separately. We first present the response of the junction
when subjected to a small periodic drive, and show the importance of
the environment, which determines the dynamics. We then describe the
escape out of a single well in presence of thermal fluctuations. The escape
is a Poisson process described by a lifetime τesc of the metastable state or
an escape rate Γ = 1

τesc
. We show here how the escape of a particle out of

single well can be used to characterize the properties of the fluctuations
that triggered the escape. In particular, predictions for the behavior of
the escape rate when the noise to which the junction is submitted is
asymmetric are discussed.

Parameters of the dynamics

In order to describe the escape dynamics, we introduce here the relevant
concepts of barrier height, plasma frequency and quality factor.

Barrier height In most of the aspects of theory, only the barrier height
∆U(s) enters, and not the complete potential U(γ, s). It is given by:

∆U(s) = EJ
[
2
√

1− s2 − s(π − 2 arcsin(s))
]
, (2.13)
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which is well approximated for s close to 1 (see Fig. 2.5(a)) by:

∆Uapprox(s) =
4
√

2

3
EJ(1− s)3/2. (2.14)
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Fig. 2.5. Left: Tilted washboard potential in which the fictitious particle evolves (shown
here for s = 0.7). In the region of the well, the potential can be approximated by a cubic
potential (see Appendix B.1). Right: Barrier height from Eq. (2.13) as a function of the
reduced bias current (solid line) and approximated expression of Eq. (2.14) (dashed line)

Frequency-response at small amplitudes - Plasma frequency When sub-
mitted to the noise arising from the environment, the phase undergoes
oscillations around the local potential minimum. The characteristic fre-
quency of the oscillations is the plasma angular frequency ωp(s), deter-
mined by the curvature of the potential at the minimum:

ωp(s) =

√
1

CJϕ0

√
∂2U(γ, s)

∂γ2

)

γwell

= ωp0
(
1− s2

)1/4
, (2.15)

where

ωp0 =

√
I0

ϕ0CJ
=

1√
LJ0CJ

(2.16)

is the bare plasma angular frequency.
The small oscillations of the phase difference around the minimum

value can be approximated by a monochromatic behavior. Under a small
current excitation δsω = δIω/I0 at angular frequency ω, Eq. (2.8) yields
the phase response γω:

γω =
1

jωLJYtot(ω)
sω. (2.17)

where Ytot is the total admittance of the circuit seen from the bias line.
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In the RCSJ model One has

Ytot(ω) =
1

R
+

1

jωLJ
+ jCJω. (2.18)

which corresponds to a second order filter. The characteristic frequency
of the circuit is simply ωp(s) with a quality factor Q(s) = RCJωp(s) for
the resonance. One defines also the quality factor at zero bias

Q0 = RCJωp0. (2.19)

Using these two parameters, Eq. (2.8) reduces to:

γ̈ +
ωp0
Q0

γ̇ + ω2
p0 [sin γ − s] = ω2

p0

δI

I0

. (2.20)

For an arbitrary admittance For a junction shunted by an arbitrary
admittance, the resonances of the circuit correspond to the complex poles
of 1
jωLJYtot(ω)

, hence the complex zeros of Ytot(ω), denoted {ωs}. The cor-

responding resonant frequencies are found as the real part of the complex
solutions Re(ωs), and the plasma frequency is the largest one. The quality
factor of each resonant mode is found as:

Qfactor =
Re (ωs)

2 Im (ωs)
. (2.21)

This expression simplifies by defining an effective capacitor shunting the
junction by:

CJ = lim
ω→∞

Ytot(ω)

jω
(2.22)

and an effective admittance Y (ω) that excludes the Josephson element
and the effective capacitor by:

Y (ω) = Ytot(ω)− 1

jωLJ
− jCJω. (2.23)

In this case, the dissipation is described by Re (Y (ωp)), and the quality
factor of the mode at ωp reduces to:

Qfactor =
1

Re (Y (ωp))
CJωp. (2.24)
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2.2 Escape rate out of the zero-voltage state

The escape out of a single well is simply described in two limits (see
Fig. 2.6):

• When the thermal fluctuations have a characteristic energy much
higher than the energy related to the plasma frequency, kBT ≫ ~ωp,
the junction can be treated as a non-linear, classical oscillator. In this
regime, the escape is due to thermal fluctuations of the bias current
that drive the particle over the barrier [50]. This regime is called the
thermal activation regime.

• When the temperature is smaller than the crossover temperature TCO
[5] with

TCO =
~ωp

2πkB
, (2.25)

the energy levels of the anharmonic oscillator formed by the pure
Josephson element and the capacitance in parallel are clearly sepa-
rated. Due to quantum fluctuations arising from the environment, the
escape of the particle is dominated by quantum tunneling from the
ground state through the barrier (for a review, see [51]). Because the
phase is a macroscopic variable, this limit was coined the regime of
Macroscopic Quantum Tunneling (MQT).

Thermal 
activation�

p

MQT

Fig. 2.6. Due to fluctuations in the environment, the particle can escape from the well. De-
pending on the amplitude of the thermal fluctuations, this escape can be thermally activated
(left), or occur through quantum tunneling of the phase (right) (see text for details). The
plasma frequency ωp/2π is the frequency of the small oscillations.

In the following, we shortly review these two escape regimes, while
the crossover between the two regimes is not detailed here [5]. In the two
cases, the escape rate Γ is written as an Arrhenius activation law:
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Γ = Ae−B. (2.26)

where the terms A and B both depend on the regime.

2.2.1 Thermal activation

Transition State Theory

In the case of thermal activation, a simple but already accurate expression
of the escape rate is obtained with the Transition State Theory (TST)
(see [50] for a review). This theory assumes that Boltzmann equilibrium
is achieved for the particle everywhere in the well (no matter how). This
approximation yields the simple results:

• A is the plasma frequency:

A =
ωp(s)

2π
. (2.27)

• B is the ratio between the barrier height and the characteristic energy
of the current fluctuations kBT :

B =
∆U(s)

kBT
. (2.28)

The escape rate out of a single well is thus:

ΓTST =
ωp(s)

2π
e
−∆U(s)
kBT . (2.29)

Effect of the environment on the prefactor of the escape rate

The TST, which neglects in particular the possibility of recrossings of
the barrier due to friction, only gives an upper bound for the rate. The
exact value of the rate is of the form:

Γ = λ (B,Q(s)) ωp(s)
2π

e−B. (2.30)

where λ (B,Q(s)) is a prefactor taking into account dissipation through
the quality factor. One should note here that the effect of the environment
in the thermal activation regime is entirely taken into account by the
prefactor. The prefactor λ was first calculated by Kramers in two limiting
regimes [4, 50, 52, 53]:



26 2 Escape of a Josephson junction out of the metastable state

• In the underdamped regime (Q0 ≫ B), the quality factor is extremely
large and the particle looses only very little energy at each oscillation
in the well. The energy of the particle becomes a slow variable, while
the position and velocity are fast variables. This limit is thus coined
energy diffusion. The escape of particles is a source of depletion of the
high energy trajectories (close to the barrier top), while the coupling
to the heat bath does not allow to repopulate them fast enough. This
gives rise to a rate slightly lower than predicted by the TST. In this
limit the prefactor is:

λ(B,Q(s)) = κ1(B,Q(s)) =
36

5

B

Q(s)
. (2.31)

• In the overdamped regime (Q0 ≪ B), the particle slowly evolves by
Brownian motion from the bottom of the well to the top, and has
an energy following almost a Boltzmann equilibrium in the well. This
limit is thus coined spatial diffusion. In this case, when the particle
has crossed the top of the barrier, there is a finite probability that it
comes back in the well instead of running down the potential, thus
giving rise to a rate lower than predicted by the TST. In this limit,
the prefactor is:

λ(Q(s)) = κ2(Q(s)) =
1

2Q(s)
(
√

1 + 4Q2(s)− 1). (2.32)

However, those two limits do not correspond to the relevant experi-
mental regime, which is typically Q0 ≃ B. A complete expression of the
escape rate in the thermal activation regime was derived by E. Pollak, P.
Hanggi, H. Grabert and V. Mel’nikov [54, 55, 56], then confirmed in the
range of intermediate quality factor by numerical simulations [57]. The
exact prefactor in this case is:

λ = κ2 exp





1

2π

∫ +∞

−∞

dy

1 + y2
ln


1− e−

∆E(1+y2)
4kBT





 (2.33)

where

∆E = κ1κ2

(
1 +

1

4Q2

)2(
1 +

60

Q

√
1 +

1

4Q2
κ−8

2

[
ψ1(κ−2

2 )− κ2
2 −

κ4
2

2
− κ6

2

6

])

(2.34)

is a quantity that, in the limitQ0 →∞, approaches the energy loss during
one oscillation of a particle having an initial energy equal to the barrier
height. ψ1 is the trigamma function (double derivative of the logarithm of
the gamma function), and κ1 and κ2 are given by Eqs. (2.31) and (2.32).
In practice, a simple interpolation formula between the two limits:
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Fig. 2.7. Prefactor λ of the thermally activated escape rate calculated for a reduced barrier
height B = 15. Solid line: Exact result of Eq. (2.33). Dashed line: Kramers’ low (green)
and high (orange) damping limits (Eqs. (2.31) and (2.32)). Dashed-dotted line: Simple
interpolation between Kramers’ limits given by Eq. (2.35).

λint =
(

1

κ2

+
1

κ1

)−1

(2.35)

approaches very well the complete expression,as can be seen in Fig. 2.7.
The calculation performed in the thermal activation regime relies

heavily on the separation between the mean escape time and the re-
laxation time of the particle in the well. The theory is valid only when
the mean escape time is much longer that all other time scale in the sys-
tem, hence when the barrier is large enough compared to the amplitude
of the fluctuations, so that B ≫ 1. In order for the rate to represent less
than 1% of the plasma frequency, corresponding in average to an escape
event once every 100 oscillations, this yields a validity range B > 5.

Phase diffusion / Retrapping regime

After having escaped out of a well, the particle gains kinetic energy while
running down the potential. This energy gain is higher when the tilt
of the potential is larger. On the other hand, some energy is lost due
to the work WQ of the friction force, which increases with the velocity
of the particle. The balance between the two energies determines the
separation between running state and phase diffusion regimes [58, 56].
From the determination of the losses, a transition appears at a threshold
in reduced bias current sc given by:
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sc =
4

πQ0

. (2.36)

At s > sc, the particle gains on average a sufficient energy to overcome
all the successive barriers. At s < sc, the particle is always retrapped
after having escaped out of a single well.

However, this crude average vision is slightly improved by applying
the fluctuation-dissipation theorem along the trajectory of a particle from
one well to the next one. It appears that during this jump, the energy

of the particle spreads over a width δE =
√

2kBTWQ [56]. Due to this

spreading, retrapping affects the escape rate even for values of s slightly
larger than the threshold sc.

The escape rate out of a single well predicted theoretically can thus
only be probed experimentally by the switching out of the zero-voltage
state when the reduced bias current is larger than the threshold sc. The
quality factor of a junction in which switching can be measured is thus
bounded by:

Q0 >
4

π
. (2.37)

Resonant activation

When an external microwave current IRF cosωexct is added to the bias
of the Josephson junction, the escape of the particle is enhanced. The
resonant activation phenomenon [59], which occurs at frequencies smaller
than the plasma frequency, peaks at ωexc ≃ ωp. Experimentally, this
enhancement is accessed through the ratio between the escape rate Γexc

measured with an excitation and the escape rate Γ0 obtained in the same
conditions without microwaves. This increase in rate has been calculated
in [60], but the result involves a large number of parameters and has to be
evaluated numerically. An approximate expression for this enhancement
within the RCSJ model, valid when the excitation is close to the plasma
frequency, is given in [61] by:

ln
(
Γexc

Γ0

)
= cfitQ0I

2
RF

∆U

CJω2
p (kBT )2f(Q0,

ωexc

ωp0
− 1) (2.38)

where cfit ≃ 5 depends on Q0 (see [61]) and the resonant activation
response function f(Q0, x) is given by:

f(Q0, x)

Q0

=





e9x

q+

(
1− 2x+ 2

q+

)
+ e2Q0x−e9x

q−

(
1 + 2

q−

)
+ 2xe9x

q−
if x ≤ 0

e−2Q0x

(
1
q+

+ 2
q2+

)
if x ≥ 0

(2.39)
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with q+ = 9+2Q0 and q− = 9−2Q0. In Fig. 2.8, the function f(Q0, x) is
drawn for three values of Q0. This function presents a maximum located
in the range ωexc

ωp0
∈ [0.95 − 1], slightly below the plasma frequency. For

excitation frequencies above the plasma frequency, the function drops
sharply to zero. Note that the width of this curve is not simply given by
1/Q0.

0.2 0.4 0.6 0.8 1 1.2
0

x

fH
Q

0
,x
L

Q0 = 30

Q0 = 10

Q0 = 4

Fig. 2.8. Resonant activation response function f(Q0, x) in presence of an harmonic exci-
tation on the bias current of the particle for three values of the quality factor Q0.

2.2.2 Macroscopic Quantum Tunneling

We now turn to the MQT regime, where escape arises from tunneling
across the barrier from the different energy levels.

Escape rate at zero temperature in the large quality factor limit

In this quantum tunneling regime, the escape rate at zero temperature
and in the large Q0 limit is obtained using the Wentzel-Kramers-Brillouin
(WKB) approximation (see for example [62]):

Γq = Aqe
−Bq (2.40)

where

Bq =
36

5

∆U(s)

~ωp(s)
(2.41)

and
Aq =

ωp
2π

√
120πBq. (2.42)
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One can define an effective temperature by analogy with the thermal
regime, by writing Bq = ∆U(s)

kBTq
, which yields Tq = 5

36
~ωp
kB

. However, this

effective temperature now slightly depends on the reduced bias currents
through the the plasma frequency (see [51] for a review on the experi-
mental side).

Around the crossover temperature, the rate crosses from this MQT
regime to a thermal activated regime. At T & 2TCO, the quantum cor-
rections to the escape rate are very small, and the thermal activation
regime is recovered (for the complete description of the crossover, see
[5]).

Effect of the environment

When the junction and the capacitance CJ is connected to an arbitrary
admittance Y (ω) as defined from Eq. (2.23), the response of the junction
to quantum fluctuations is modified, resulting in a change of the escape
rate at zero temperature. Moreover, when this environment is at a finite
temperature, even if this temperature is much smaller than the crossover
temperature, the thermal current fluctuations arising from Y (ω) affect
the escape rate. The two effects were derived in [51, 63, 64]. In the fol-
lowing, we develop these derivations for two reasons:

1. The method presented in [64] was extended in [65] to treat the effect
of an asymmetric noise on the escape rate of a junction in an hybrid
thermal activation-MQT regime.

2. In Chapter 6, we present an experiment where the escape rate of a
Josephson junction in a MQT regime was measured in presence of an
environment at temperature T . This environment presented a single
low-frequency mode, and we will restrain the discussion on the effect
of this mode on the escape rate, following the Appendix B of [64].

Escape rate at zero temperature

From tunneling theory In presence of Y (ω) at zero temperature, the
escape rate was obtained in [51, 63] through a perturbation theory ap-
proach using the tunneling theory from [66]. Neglecting the effect of the
environment on the prefactor, the escape rate in presence of this admit-
tance could be casted into the form:

Γ eq = Aqe
−Beq (2.43)

where Beq = Bq +∆Bq. The correction ∆Bq is obtained from the convo-
lution of two functions:
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∆Bq
Beq

=

∞∫

0

F (t)G(
ωpt

2π
)dt. (2.44)

The function G is given by

G(x) =
45

π4CJ

∞∑

n=1

n

(n+ x)4 =
45

π4CJ
[ζ(3, x)− xζ(4, x)] (2.45)

(where ζ(n, x) are the generalized Riemann functions). G(ωpt
2π

) is a mono-

tonic decaying function with a characteristic time τt = 2π
ωp

. The function

F (t) is the step response function of the environment:

F (t) =
∫ +∞

−∞

Y (ω)

jω
ejωtdω. (2.46)

The correction ∆Bq will thus be significant only if the environment has
a response within the time τt. In the case of an Ohmic environment R,
where the response is instantaneous, this yields a first order correction
∆Bq
Bq
≃ 0.87
Q0

, which was observed in [67]. For an environment presenting a

low-frequency mode with a slow temporal response, the integral is dom-
inated by the response at t = 0. In this limit, the correction is given as a
function of the characteristic inductance of the environment Le defined
from the expression

L−1
e = lim

ω→∞
jωY (ω). (2.47)

In the perturbation approach where ∆Bq ≪ Bq, the correction is ob-
tained from the ratio of the Josephson inductance LJ over Le:

Beq ≃ Bq

(
1 +

5

2

LJ
Le

)
. (2.48)

This expression is valid only if the inductance of the environment is large
compared to the Josephson inductance Le ≫ LJ .

Simple derivation for a low-frequency mode When the environment
consists of a low-frequency resonant circuit with a characteristic pulsa-
tion ωe ≪ ωp and a quality factor Qe ≫ 1, a simple derivation of the
last expression was given by J. Martinis and H. Grabert in the Appendix
B of [64]. Considering that the quantum fluctuations inducing tunneling
are around the plasma frequency, thus much higher than ωe, the response
of the external resonant circuit is taken into account only by the induc-
tance Le defined above. The effect of the environment is understood as a
modification of the equations of the circuit changing the potential U(γ, s)
into:
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U e(γ, s) = U(γ, s) +
(γ − γ0)

2

2Le
(2.49)

which yields

∆U e = ∆U
(

1 +
3LJ
Le

)
(2.50)

and

ωep = ωp

(
1 +

LJ
2Le

)
. (2.51)

In the limit LJ
Le
≪ 1, the ratio of the two terms coincides with Eq. (2.48).

Influence of finite temperature and cross-over temperature

In [64], Martinis and Grabert proposed also a simple derivation of the
escape rate in the MQT regime when Y (ω) is at a temperature T much
lower than the crossover temperatures TCO. In this limit, the spectrum of
the thermal fluctuations associated with Y (ω) extends up to ∼ kBT/~≪
ωp, hence the fluctuations are slow at the scale of the junction dynamics,
and the particle follows adiabatically the changes of the potential; it is
meaningful to define an escape rate for each realization of the noise.
The mean escape rate at finite temperature is obtained by the temporal
averaging of the instantaneous rates.

The derivation starts by considering the escape rate at zero tempera-
ture

Γ eq = Aqe
−Beq . (2.52)

The argument of the exponential has no reason a priori to be exactly
equal to Bq, as was demonstrated in the previous paragraph, and we
consider here the most general case. In the following, we neglect the
dependence of the prefactor Aeq on the bias current. The thermal current
fluctuations δI due to Y (ω) add to the bias current IB of the junction.
Each realization of δI corresponds to a different barrier height, therefore
a different Beq :

Beq(IB + δI) = Beq +
∂Beq
∂I

δI. (2.53)

The instantaneous rate corresponding to this fluctuation is then:

Γ eq (IB + δI) = Γ eq (I)e−
∂Beq
∂I
δI . (2.54)

The mean rate at a finite temperature T obtained by temporal averaging
is:

Γ eq (T ) = Γ eq (T = 0)e
1
2

(
∂Beq
∂I

)2

〈δI2〉
. (2.55)
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where 〈. . .〉 denotes the time averaging, which corresponds also to an
averaging over the realizations of the noise. In this last expression, we
used the fact that δI presents Gaussian fluctuations with zero mean value.

The noise term 〈δI2〉 depends on the environment. It is related by the
fluctuation-dissipation theorem to the real part of the admittance Y (ω)
(see [64]). In the case where the environment is a low frequency resonant
circuit with an inductance Le ≫ LJ , one obtains [64]

Γ eq (T ) = Γq exp

{
−Bq

LJ
Le

[
5

2
− 15

kBT

~ωp

]}
(2.56)

where it is recalled that Γq represents the escape rate for infinite quality
factor and zero temperature. In this exponent of the above expression,
the first term is the zero temperature correction due to the modification
of the dissipation by the environment, while the second one arises from
thermal fluctuations in the environment.

2.3 Escape driven by an asymmetric noise

The goal of this section is to explain how the escape out of the zero-
voltage state of a Josephson junction can be used to probe noise, and
in particular the asymmetry of its probability distribution. So far, we
only considered thermal fluctuations arising from macroscopic resistors,
therefore Gaussian noise. In the following, we introduce predictions for
the escape rate when the noise does not arise only from thermal fluctu-
ations, but also from a specific noise source, producing for example shot
noise which is not Gaussian [21]. Predictions have been derived for a
noise presenting a finite second and third moment [11, 31, 32, 33, 65, 68],
and neglecting higher order moments.1

The electrical setup considered in this part is shown in Fig. 2.9. A
Josephson junction is biased by a current IB flowing through a resistor
RB. To this resistor is associated a current source in parallel, produc-
ing Gaussian current fluctuations δIB. In addition, a non-Gaussian noise
source with impedance RN is present. To this noise source is associated
a current fluctuation δIN . The equation describing this circuit is similar
to Eq. (2.8):

CJϕ0γ̈ +
ϕ0

R
γ̇ + EJ [sin γ − s] = δIB + δIN . (2.57)

In all cases, the effect of the asymmetry of noise has been assumed to
be weak. In Ref. [31, 32], the effect of noise on the prefactor was found

1 Predictions concerning higher moments of noise like in [34, 69], or other effects of noise
on Josephson junctions like in [70] and [71] are not discussed here.
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Fig. 2.9. Electrical setup considered in the theories addressing the effect of an asymmetric
noise on the escape rate of a JJ out of the zero-voltage state. The junction is biased by a
current IB through a resistor RB , which is a source of thermal noise δIB . A noise source of
impedance RN produces additional, non-Gaussian fluctuations δIN .

to be negligible, and most theoretical works only address the change in
the exponent of the escape rate. Hence, the prediction for the thermal
escape rate driven by an asymmetric noise is of the form:

Γ = Ae−[B2(Teff)+B3] (2.58)

where

B2(Teff) =
∆U

kBTeff

(2.59)

represents the combined effect of the second moment of the asymmetric
noise and the background thermal noise. The effective temperature thus
accounts for the total power of current fluctuations applied on the bias
of the Josephson junction. The noise asymmetry is expected to lead to a
small corrective term |B3| ≪ B2(Teff) in the exponent. Predictions for Teff

and B3 derived using different techniques are presented in the following.
Before presenting the predictions, we briefly define the frequency scales
of the problem, and the statistical properties of the noise δIN .

2.3.1 Frequency scales

The frequency scales of the problem are defined here from the smallest
to the largest (see also Fig. 2.10):

• The escape rate: typically, escape rates probed experimentally are in
the sub-MHz range, corresponding to a measurement time of 1 µs or
more.
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• The plasma frequency: the plasma frequency considered in the follow-
ing experiment is around 1 GHz.

• The thermal noise cut-off frequency: At the relevant temperature of
the experiment, which is of the order or 100mK (from 20mK to 500mK,
thermal noise extends to frequencies of the order of kBT

h
≃ 2GHz [21]).

• The superconducting gap: In the experiments described in this thesis,
all superconductors are aluminum for which the frequency correspond-
ing to the superconducting gap is ∆

h
≃ 50 GHz.

• Non-Gaussian noise cut-off frequency: In the experimental case of a
tunnel junction biased at a voltage VN , the maximal frequency of the
shot noise is eVN

h
[21]. For VN ≃ 400 µV, which is the lowest voltage

probed in the experiment presented in the following, it corresponds to
frequencies higher than 100GHz. At the scale of the plasma frequency,
non-Gaussian noise thus appears completely frequency-independent.

2

�� �f

100
�

NeV GHz

2Bk T GHz

0 1
2

��p GHz

1
1�

P

MHz
50

�
GHz

Fig. 2.10. Frequency scales corresponding to the values of the experiment described in the
following chapter [38], where the effect of an asymmetric noise on the escape rate of a JJ out
of the zero-voltage state is measured.

2.3.2 Noise statistical properties

In the framework of Full Counting Statistics (FCS), the properties of
the current fluctuations are treated through the probability distribution
function. Experimentally, this distribution is accessed its the moments or
through its cumulants which are two ways to represent the same infor-
mation (see [72] for details). However, moments and cumulants are equal
up to the third order, as is recalled in Appendix B.3, and since this thesis
only deals with moments up to the third one, it is not necessary here to
make a distinction between moments and cumulants. In the following,
we deal only with the moments.

Second-order correlation function

The second order correlation function or correlator is defined as:



36 2 Escape of a Josephson junction out of the metastable state

〈δIN(t)δIN(t′)〉 . (2.60)

If the noise δIN(t) is assumed to be white, as is the case in the following
predictions, this corresponds to:

〈δIN(t)δIN(t′)〉 = S2δ (t′ − t) , (2.61)

where S2 is the second moment, often called the variance. This second
moment corresponds to the mean power of the current fluctu-
ations, the width of the probability distribution.

Considering in the frequency space the fluctuation δIN(ω) at angular
frequency ω defined by:

δIN(ω) =
∫ +∞

−∞
δIN(t)e−jωtdt, (2.62)

one defines the second-order spectral density of the fluctuations as

SD2 (ω) = 〈δIN(ω)δIN(−ω)〉 (2.63)

which is related to the correlation function by the Wiener-Khintchine
theorem:

SD2 (ω) =
∫ +∞

−∞
〈δIN(0)δIN(τ)〉 e−jωτdτ. (2.64)

For a white noise (therefore a frequency independent spectral density),
this simplifies to SD2 (ω) = S2. The second-order correlation function and
the second moment are equal for a white noise.

Third-order correlation function

Similarly, one defines the third order correlator:

〈δIN(t)δIN(t′)δIN(t′′)〉 . (2.65)

For a white noise, this simplifies to:

〈δIN(t)δIN(t′)δIN(t′′)〉 = S3δ (t′ − t) δ (t′′ − t′) . (2.66)

where S3 is the third moment. This third moment is related to the
asymmetry of the probability function around its mean value.

The third-order spectral density is:

SD3 (ω1, ω2) = 〈δIN(ω1)δIN(ω2 − ω1)δIN(−ω2)〉 . (2.67)

which is related to the third-order correlation function by:

SD3 (ω1, ω2) =
∫∫ +∞

−∞
〈δIN(0)δIN(τ1)δIN(τ1 + τ2)〉 e−jω1τ1e−jω2τ2dτ1dτ2.

(2.68)
which simplifies to SD3 (ω1, ω2) = S3 for a white noise.
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2.3.3 Escape rate in presence of an asymmetric noise

We now turn to the theoretical predictions for the effect of an asymmetric
noise on the escape rate out of a single well.

The first prediction, obtained by J.T. Peltonen et al. [65] considers
the adiabatic response of the junction to the noise. Therefore, it only
deals with the effect of noise at frequencies much smaller than the plasma
frequency. In our experiments, this corresponds to only a small fraction of
the noise spectrum, as shown in Fig. 2.10. The damping in the junction
dynamics, which appears in the following to be of central importance,
does not enter in this approach.

The second prediction was obtained by E. Sukhorukov and A. Jordan
[33] with a stochastic path integral formalism, in the two limits of low and
high damping limits only, which were unfortunately out of the relevant
experimental range.

The third prediction, obtained by J. Ankerhold [31, 32, 35] is based
on a Fokker-Planck equation approach to calculate the escape rate. The
resolution of the Fokker-Planck equation relies on the fact that escape
is only a small perturbation to the Boltzmann equilibrium in the well.
As was already discussed by Kramers, this assumption might not be
appropriate for very large values of the quality factor.

The last prediction that we present, obtained by H. Grabert [11], relies
on the calculation of the action along the escape trajectory using also a
path integral formalism. Its validity range spans over the complete range
of quality factor, and recovers the two limits of E. Sukhorukov and A.
Jordan [33] calculated with a similar method.

All the predictions are compared at the end of the chapter.

Escape rate from an adiabatic model

In Ref. [65], the effect of δIN on the escape rate is determined assuming
an adiabatic response of the junction dynamics. This derivation is very
similar to the one presented in Sec. 2.2.2 and in [64]. The Gaussian noise
is due to a resistor at finite temperature T . For a fluctuation δIN , the
rate is expanded into:

Γ (IB + δIN) ≃ Γ (IB) +
∂Γ

∂IB
δIN +

1

2

∂2Γ

∂I2
B

δI2
N +

1

6

∂3Γ

∂I3
B

δI3
N

≃ Γ (IB)
(

1−B′δIN +
1

2

(
B
′2 −B′′

)
δI2
N

+
1

6

(
−B′′′ + 3B

′

B
′′ −B′3

)
δI3
N

)
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where, in the thermal activation regime where B ∝ (1− IB/I0)
3/2,





B
′
= ∂B/∂IB ≃ −3B/ (2 (1− s) I0)

B
′′

= ∂2B/∂I2
B ≃ 3B/

(
4 (1− s)2 I2

0

)

B
′′′

= ∂3B/∂I3
B ≃ −3B/

(
8 (1− s)3 I3

0

)
.

(2.69)

In practice, B ≫ 1 and the modification of the escape rate (which is
obtained by averaging over the realization of the noise) reduces to two
leading terms:

〈Γ 〉 = Γ (IB) exp
{

1

2
B
′2
〈
δI2
N

〉
− 1

6
B
′3
〈
δI3
N

〉}
≡ A exp {− [B2 +B3]} ,

(2.70)
where the brackets denote the average over the probability distribution
(the correcting factor has been exponentiated). The two terms account
for the effects of the second2 and third moment: B2 = B − 1

2
B
′2 〈δI2

N〉
and B3 = 1

6
B
′3 〈δI3

N〉 .
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IBHtL=XIB\+∆INHtL

∆IN>0®G+

∆IN<0®G-

Fig. 2.11. In the adiabatic model, the effect of the noise at frequencies lower than rωp/2π
with r ≪ 1 is calculated by averaging the rates for each realization of the instantaneous
current, therefore for each barrier height.

At that moment, it is important to stress the differences with the
derivation of Ref. [64] performed in the MQT regime where kBT ≪ ~ωp,
and considering only thermal fluctuations. In the MQT regime and in
presence of only a thermal noise, the cut-off frequency of the thermal
noise, kBT, is much smaller than the plasma frequency, and the assump-
tion of adiabatic response is valid. In contrast, in the thermal activation
regime and in presence of an asymmetric noise δIN , the noise spectrum

2 This result was first obtained in [64].
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extends to frequencies much larger than the plasma frequency. For this
reason, the authors of Ref. [65] introduce a cut-off frequency rωp

2π
with

r ≪ 1 on the noise (all the noise above this frequency is neglected, a
possible experimental realization being with a filtering). The results here
only describe the effect of the very low frequency part of the noise. The
integrated average noise is then 〈δI2

N〉 = rS2
ωp
2π
, and an effective temper-

ature Teff is obtained from B2 ≡ ∆U/kBTeff:

Teff ≃ T +
3

23/2π
√

1− s
r~ωp
eI0

S2

kB
. (2.71)

where we used the fact that, for typical parameters, the second term
is very small compared to the first one. This result is reminiscent to a
conclusion of Ref. [61], where the effect of a white noise irradiating a
junction translates in an increased effective temperature. However, the
result here does not depend on dissipation, and the effective temperature
presented here can only be slightly different from the base temperature
with reasonable parameters, which indicates that the model only grasps
part of the effect. Experimentally, the effective temperature can be very
large, and the authors of Ref. [65] introduce another model, based on
resonant transitions in the MQT regime, to better describe the changes
of Teff, and recover the result of Ref. [61]:

Teff = T +
1

2
R
S2

kB
. (2.72)

However, it is only in the adiabatic model that the effect of S3 was

considered in [65], the low frequency cut-off yielding 〈δI3
N〉 = S3

(
rωp(s)

2π

)2
,

and from [37]:

B3 = −
(
ϕ0

kBT

)3

S3ω
2
p0 jAd(s) (2.73)

with

jAd(s) = r2 23/2

3π2

√
1 + s(1− s)2 ≃ 0.13 r2(1− s)2 (2.74)

(the exact s-dependence is slightly different from [37] because we took
into account the dependence of the plasma frequency). As is shown in
what follows, the theoretical results obtained by other authors can all be
cast in a form similar to Eq. (2.74), but with different expressions for the
function j(s).

Overall this prediction has to be considered very carefully. One has to
remember that it is valid only when the noise is filtered over rωp

2π
with

r ≪ 1. In [37], it has been used with r = 1 to compare with experiments,
which relies on the questionable assumption that the effect of the low
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frequency part of the noise grasps a large part of the complete effect. We
show in the end that when comparing with the other predictions, it is
clear that this prediction allows only to grasp the qualitative behavior of
B3 but does not give a proper description of the effect.

Escape rate from a stochastic path integral formalism

A first derivation of the escape rate for an asymmetric noise taking into
account the complete noise spectrum, and in particular the effect at the
plasma frequency, was proposed in [33]. Using a stochastic path inte-
gral formalism, the authors derived the same expression for the effective
temperature as in Eq. (2.72), and a corrective term B3 due to the third
moment in the limits of low and high damping written again

B3 = −
(
ϕ0

kBT

)3

S3ω
2
p0 jSPI(Q0, s) (2.75)

with

jSPI(Q0, s) ≃
{

0.79 (1− s)2 when Q0 ≫ 1
8
√

2
45
Q2

0(1− s)5/2 when Q0 ≪ 1.
. (2.76)

An extension of this theory was performed in [34] taking into account
all the moments of noise. It appears however that in the relevant exper-
imental regime and for a Poisson noise (as used so far experimentally),
moments higher than the third one have no significant impact.

Two further predictions addressed the situation of intermediate quality
factors, which is the experimentally relevant range.

Escape rate from a Fokker-Planck approach

The method described in [31, 32, 35] to determine the escape rate of
a junction submitted to an asymmetric noise closely follows the initial
determination performed by Kramers for the Gaussian case in the limit
of large damping (Q0 ≪ B). The dynamics of the phase and of the
velocity v = 1

ϕ0
V is described in terms of the probability density func-

tion P (γ, v, t). Starting from the Langevin equation (2.57), one derives a
Fokker-Planck equation (FPE) for P (γ, v, t).3

3 This derivation is done using a Kramers-Moyal expansion. The principle is to link the time
derivative ∂tP (γ, v, t) with the spatial derivatives ∂nγ ∂

m
v P (γ, v, t). Since the phase and the

velocity are given at each time by the random force, they are also random variables as a
function of time. One thus defines the moments of these variables, which are the coefficients
appearing in the FPE.
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For a Gaussian noise In absence of any asymmetric noise, the FPE reads:

∂P (γ, v, t)

∂t
= L0

FPP (γ, v, t) (2.77)

with

L0
FP = −v ∂

∂γ
+ ωp0

∂

∂v

[
v

Q0

+ ωp0
U ′

EJ

]
+

ω3
p0

Q0EJ
kBT

∂2

∂v2
. (2.78)

and v = 1
ϕ0
V . A trivial solution of this equation is the equilibrium Boltz-

mann distribution Peq(γ, v) = 1
Z
e−βH(γ,v), whereH(γ, v) = 1

2
mv2+U(γ, s)

is the Hamiltonian corresponding to the Langevin equation (2.57) and
Z is the partition function. In this limit, the escape rate is obtained by
finding the average flux of particle at the barrier top

Γ =
〈v δ(γ − γb)〉flux

Nwell

(2.79)

where Nwell corresponds to the statistical population of the well. The
average flux is calculated from an out-of-equilibrium solution Pflux(γ, v)
of the equation (see [50] for a description of this calculation). To find
such a solution, Kramers’ ansatz is: Pflux(γ, v) = Peq(γ, v)ζ(γ, v) where
ζ(γ, v) represents the correction to the equilibrium, accounting both for
the complete equilibrium deep in the well and the depopulation around
the barrier top due to the escape.

With an asymmetric noise Since a translation of the Langevin equation
(2.57) into a FPE would lead only to formal terms, the author of [31, 32]
derives an effective Fokker-Planck equation describing the motion under
an asymmetric noise. This is performed under the assumption that:

• The non-Gaussian character of the noise is weak
• Fluctuations are fast compared to the dynamics of the system, the

noise appears almost white.

This allows to derive an effective FPE operator:

Leff = L0
FP +

ω3
p0

Q0EJ

1

2
RS2

∂2

∂v2
− ω6

p0S3

6

∂3

∂v3
. (2.80)

where the effect of the shot noise is accounted for by two terms. The first
term, due to the second moment of the noise, contains a derivative at the
second order. This term is valid whatever is the power of the asymmetric
noise compared to the thermal noise. The presence of the noise third
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moment is accounted for by the second term, which contains a derivative
at the third order. This term is valid only in a perturbation approach.

The prefactor of ∂
2

∂v2 is
ω3
p0

Q0EJ

[
kBT + 1

2
RS2

]
in the effective FPE. By

analogy with Eq. (2.78), the overall effect of the second moment is again
captured with an effective temperature given by Eq. (2.72). This calcula-
tion shows, as Refs. [33, 61], that such an expression for the temperature
is valid even if the power of the asymmetric noise is much larger than
the power of the thermal noise. Teff can thus be much larger than T .

Resolution The effective FPE is solved by considering the ansatz:

Pflux = Peqζe
−G, (2.81)

where ζ still accounts for the out-of-equilibrium situation, andG accounts
for the effect of the third moment. In this ansatz, the function G was
expressed as the product of an arbitrary function of γ and a polynomial
function of v up to the third order. A perturbation solution Pflux of the

effective Fokker-Planck was then found by using the ratio S3/S
3/2
2 as a

small parameter, which allowed to express the escape rate for an arbitrary
quality factor. In a first step [31, 32], the application of an effective FPE
yielded a result at any Q0 but only for a cubic approximation of the
potential valid for 1− s≪ 1:

jFP1(Q0, s) =
8
√

2

9

Q2
0(1− s)

5
2

5 +Q2
0

√
1− s2

(2.82)

which leads to the limits:

jFP1(Q0, s) ≃
{

0.89 (1− s)2 when Q0 ≫ 1
8
√

2
45
Q2

0(1− s)5/2 when Q0 ≪ 1.
(2.83)

This calculation was further improved by K. Glaum and J. Anker-
hold using a polynomial function of v of order four and a better cubic
approximation for the potential (denoted the bilocal approximation, see
Appendix B.1) [73]. This modification, expected to provide only a small
improvement, yielded a similar result for low quality factors, but changed
significantly the result for large quality factors, probably pointing to some
limitation of the theory in this range.4 The result was expressed in the
form:

jFP2(Q0, s) =
1

48
αBI(s)

(
x̃BIb (s)

)3
WFP2


 1

Q0

√
αBI(s)


 (2.84)

4 This is not completely a surprise since the resolution is based on the assumption of quasi-
equilibrium that is probably not completely valid for large quality factors.
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where5

WFP2 [y] =
8

15 (1 + 2̺2)
3F2

(
6

5
, 3, 1;

6̺2 + 8

5
, 6; 1

)
(2.85)

and 3F2 is the hypergeometric function.

Escape rate from a path integral approach

The calculation by H. Grabert in 2008 [11], based on a path integral
formalism like done in [33], yields predictions for all values of the quality
factor. In this formalism [74], the probability p(γb|γwell) for the particle
to go from the minimum of the well γ(t = 0) = γwell to the barrier top at
time t (γ(t) = γb) is given as a path integral, each path having an action
A:

p(γb|γwell) ∝
∫

exp
{
− 1

2kB
A
}
. (2.86)

All paths differ by the fluctuating force δI that lead to the barrier top.
The probability is dominated by the path having the minimal action.

For a thermal noise, this path is the time reversal trajectory of the
relaxation of a particle starting at the barrier top and relaxing down to
the bottom of the well. From the time evolution of this trajectory noted
γesc(t) and the associated fluctuating force, the action for this path is
given as:

A =
2

T
∆U (2.87)

which recovers the TST expression of the escape rate of Eq. (2.29) (the
prefactor of the escape rate can not be accessed with such a path integral
formalism).

The presence of an asymmetric noise slightly modifies the minimum
action path. In a perturbation approach, when the effect of the third
moment is much smaller than that of the second, the action is written as
a sum of two terms:

A = A2 + A3 (2.88)

where A2 and A3 respectively correspond to the contributions of the
second and third moment of the total noise (the sum of the thermal noise
and the asymmetric noise). The minimal action path in this situation is
first obtained by neglecting the effect of the third moment. In this case,
the term A2 is found to be:

5 αBI(s) and x̃BIb (s) are defined in Appendix B.1, as the terms defining the cubic approxi-
mation of the potential.
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A2 =
2

Teff

∆U (2.89)

where Teff is again given by Eq. (2.72). The main results of [11] is that
the correction A3 corresponding to the third moment of the asymmetric
noise can be calculated using the trajectory of minimal action obtained
without the third moment, which yields:

A3 = −2kB

(
ϕ0

kBTeff

)3

S3J (2.90)

where J is an integral over the trajectory γesc(t) corresponding to the
minimal action path:

J = −1

6

∫ +∞

−∞
γ̇3

esc(t)dt (2.91)

The integral depends on the complete dynamics of the particle in the
well, and thus on the reduced bias current and the quality factor. The
final result is of the form of Eq. (2.75) with6

jFullQ(Q0, s) =
2

3
(1− s)2W

[(
2

1− s

)1/4 1

Q0

]
(2.92)

where W [y] is a function tabulated in [11].7 Recently, Urban and Grabert
extended this formalism, used here for the RCSJ model, to the non-
Markovian case. This allows to predict Teff and B3 for an arbitrary circuit
and a colored noise. This development, which constitutes a milestone in
escape rate calculation, is thoroughly exploited in the comparison with
the experimental results of [38] presented in Chapter 4.

2.3.4 Summary

All predictions considering the complete noise spectrum agree on the
behavior of the effective temperature, given by:

Teff = T + 1
2
R S2

kB
(2.93)

and on the form of the corrective term B3:

6 Note that a minus sign is missing in Eqs.(78,92) of [11].
7 This functions has the two limits W [0] = 1.188... (that corresponds to the analytical

prediction obtained for Q0 ≫ 1) and W [y] ≈ 8
15

1
y2 for y ≫ 1 (that corresponds to the

analytical prediction obtained for Q0 ≪ 1), which corresponds to the results of Ref. [33].
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B3 = −S3ω
2
p0

(
ϕ0

kBTeff

)3
j(Q0, s). (2.94)

In this last part, we compare the predictions of the various approaches
through the terms j(Q0, s), which contains all the differences between
them. The result of the adiabatic model has a separate status, since it
gives a function jAd(s) (Eq. 2.74) which does not depend on the quality
factor, but on a cut-off parameter r ≪ 1.

The prediction jFullQ(Q0, s) presented by Grabert for the complete
range of quality factor in [11] in the limit 1− s≪ 1 recovers the asymp-
totes jSPI(Q0, s) calculated by Jordan and Sukhorukov, as can be seen in
Fig. 2.12. Since the typical experimental quality factor of the Josephson
junction is of the order of 10, it is clear from the figure that the pre-
dictions of [11] are necessary for the comparison with the experimental
cases.

As expected, the results of the FPE approach, given by Eqs. (2.82)
and (2.84), agree with the result of Grabert at low quality factor, but
disagree at large quality factors where the resolution of the FPE is less
reliable, as shown in Fig. 2.13.
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Q0

j HQ0, sL

H1 - sL2
s=0.99

Fig. 2.12. Solid line: Function jFullQ(Q0, s) obtained by Grabert in [11] for s = 0.99
normalized by (1− s)2. Dashed lines: limits of low and high quality factor obtained by
Sukhorukov & Jordan in [33]. Only the region in between those limits is easily accessed
experimentally.
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Fig. 2.13. Solid line: Grabert’s result valid for all quality factor jFullQ(Q0, s). Dashed
lines: Results of Ankerhold and Glaum jFP1(Q0, s) (top - orange) and jFP2(Q0, s) (bottom
- green) obtained using a Fokker-Planck Equation.

Altogether, the theory by H. Grabert [11] covers the whole
range of quality factors and coincides with the other predictions
in the limits where they apply. As a consequence, it is taken as
a reference in the following chapters.

To finish with, we present the different predictions for the parameters
of the two experiments that probed the thermal escape driven by an
asymmetric noise [38, 37]:

• In [37], the quality factor of the junction was Q0 = 2.5, and the escape
rate was measured in the range s ∈ [0.5− 0.9]. The measured rate
asymmetry was compared to prediction using jAd(s) with r = 1. In
Fig. 2.14, we compare this expression to the predictions obtained by
K. Glaum jFP2(Q0, s) and by H. Grabert jFullQ(Q0, s). It appears that
the adiabatic model used in [37] yields a result significantly different
from the other existing theories.

• In [38], the quality factor of the junction was estimated to be of the
order of 5 and the escape rate was measured in the same range of s as
the previous experiment. The calculation of H. Grabert was extended
at Q0 = 5 to arbitrary values of s [38, 75], yielding numerical results
that are well approximated by:

jFullQ5(s) = 0.81(1− s)2.14. (2.95)
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The various predictions are compared to this result in Fig. 2.15. The
deviation between jFullQ5(s) and jFullQ(5, s), which were calculated us-
ing the same method, confirms that a specific calculation far from the
simple limit 1 − s ≪ 1 was needed in order to achieve a comparison
with the experiment, which is performed in the range of s ∈ [0.5− 0.9].

0.5 0.6 0.7 0.8 0.9 1.
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0.4
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0.6

s

j HQ0, sL

H1 - sL2

Q0=2.5

Fig. 2.14. Predictions for j(Q0, s) at Q0 = 2.5, which corresponds to the experimental value
in [37]). Solid line: Predictions of H. Grabert jFullQ(2.5, s) (blue) and K. Glaum jFP2(2.5, s)
(green). Dashed line: Prediction jAd(s) from the adiabatic model presented in [65] used to
perform a comparison with the experiment in [37], with r=1.
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Fig. 2.15. Predictions for j(Q0, s) at Q0 = 5, which corresponds to the approximate experi-
mental value in [38]. Dashed line: Prediction of H. Grabert jFullQ5 (s) from [75] valid in the
range s ∈ [0.5− 0.9], and used in [38] to compare with the experiment. Solid lines: Predic-
tions of H. Grabert jFullQ(5, s) (blue), of K. Glaum jFP2(5, s) (green), and of J. Ankerhold
jFP1(5, s) (orange). The behavior in s far from 1− s≪ 1 is, as expected, not properly taken
into account by jFP1(5, s) in [31, 32].

2.4 Conclusion

Having described the dynamics of a Josephson junction when it is sub-
mitted to current fluctuations on its bias current in the RCSJ model,
we presented in this chapter the theoretical prediction for the thermal
escape driven by a white asymmetric noise for this model. The effect of
this noise on the escape rate of the junction out of its zero-voltage state
is twofold:

• The effect of the second moment of the noise is captured by an effective
temperature. This effective temperature is predicted to grow linearly
with the second moment of the noise, which reflects the mean power
of the fluctuations reaching the junction.

• The effect of the third moment has been calculated assuming that it
is much weaker than that of the second moment. It is accounted for
by a corrective term in the argument of the exponential in the escape
rate. The different theories agree in their range of validity, only the
one by Grabert [11] applying to the whole range of quality factors.



Chapter 3
Numerical simulation of the escape

In this chapter, we present numerical simulations, in order to probe the
theoretical predictions for the effect of an asymmetric noise on the escape
out of the zero voltage state of a Josephson junction. The escape rate has
been calculated by a step-by-step integration of the stochastic equations
of motion. Retrapping effects were not taken into account, therefore this
simulation only concerns the escape rate out of a single well, allowing for
direct comparison with theoretical predictions. The simulations presented
in this part extend the previous results obtained by X. Waintal in [35].

3.1 Simulation algorithm

3.1.1 Equations of motion

Dimensionless equation

The setup described by the present simulation is shown in Fig. 3.1. It cor-
responds to the RCSJ model where the resistor R is a source of Johnson-
Nyquist noise δIB, assumed to be white noise with Gaussian behavior.
An asymmetric noise with zero mean value δIN is added to the current
bias of the junction. The simulation is based on Eq. (2.57), rewritten in
dimensionless time units τ = ωp0t. The notation for the time derivative
is kept, so that derivatives are replaced according to:

γ̇ =
dγ

dt
⇒ γ̇ =

dγ

dτ
(3.1)

The equation of motion is:

γ̈ +
1

Q0

γ̇ + sin γ = s+ δsB + δsN (3.2)
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V

R
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�
IB

C

R

CJ I0

Fig. 3.1. Setup described by the numerical integration. To the resistor R is associated a
Johnson-Nyquist noise δIB with Gaussian character, shown as a parallel current source. An
asymmetric noise δIN with zero mean value is added to the bias current of the junction.

with δsB the Gaussian noise, and δsN the asymmetric noise.

Noise

Gaussian Noise The Gaussian term describes the thermal fluctuations
in the resistor. The second order correlation function of this Johnson-
Nyquist white noise is given by 〈δIB(t)δIB(t′)〉 = 2kBT

R
δ(t′ − t) where T

is the temperature of this resistor. From the Gaussian assumption, odd
order correlation functions are zero. Using δ(t) = ωp0δ(τ) and defining
the reduced temperature

θ =
kBT

ϕ0I0

, (3.3)

the dimensionless correlation function is:

〈δsB(0)δsB(τ)〉 =
2θ

Q0

δ(τ). (3.4)

Poisson Noise The asymmetric current accounts here for tunneling
events through a tunnel junction. The current in this case follows a Pois-
son process, and the corresponding noise is a Poisson noise. It can be
described in terms of a sum of charge spikes centered at times ti:

∑

ti

eδ(t− ti) (3.5)

corresponding to the successive tunneling events. This current has a mean
value 〈IN〉. Since noise terms are considered to have zero mean value in
the theory, the mean current is subtracted to obtain the noise term:
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δIN =
∑

ti

eδ(t− ti)− 〈IN〉 (3.6)

In dimensionless units, this noise is:

δsN =
∑

τi

e∗ [δ(τ − τi)− γN ] (3.7)

where

e∗ =
eωp0
I0

=

√
2EC
EJ

(3.8)

is a reduced charge and

γN =
〈IN〉
e∗I0

(3.9)

is the reduced tunneling rate. In the experiment, the detector junction is
in a regime EJ ≫ EC , so that e∗ is small. In all the simulations, we take

e∗ = 0.005 (3.10)

which is a typical experimental value. The second and third order corre-
lation functions of the Poisson noise (see Appendix B.3) in reduced units
are: {

〈δsN(0)δsN(τ)〉 = e2
∗γNδ(τ)

〈δsN(0)δsN(τ)δsN(τ ′)〉 = e3
∗γNδ(τ

′ − τ)δ(τ).
(3.11)

3.1.2 Discrete time equations of motion

Second-order algorithm

Rather than a simple Euler-type algorithm, we have used a second-order
algorithm first implemented in 1992 by S. Linkwitz et al. [76, 57], that
proved to be much more efficient. Due to the stochastic nature of the
equations, standard higher order methods like Runge-Kutta, based on the
continuity of the derivatives, are indeed not well suited. The derivation of
the algorithm follows the work presented in [57], where the second order
differential equation (3.2) is written as a pair of first order equations.
This leads to: {

γ̇ = v
v̇ = − 1

Q0
γ̇ + F (γ) + δsB + δsN .

(3.12)

with1 F (γ) = − sin γ+ s . The numerical integration consists in comput-
ing the time evolution of the variables γ and v using Eq. (3.12). Time is

1 The simulation has been performed using the exact potential while most of the theories
used an approximated cubic potential. It can be shown both for the simulation and for
the theory that this makes no difference for the simulated escape rate.
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sampled in steps of size dτ , and the problem is to calculate γ and v at
time τn+1 = (n + 1)dτ from their values at time τn = ndτ . In this aim,
Eqs. (3.12) are integrated between τn and τn+1, and the resulting time in-
tegrals are expanded in Taylor series. While integrating the first equation
(3.12.a), one encounters the integral

∫ τn+dτ
τn

v(τ ′)dτ ′ which is expanded at
second order into:

∫ τn+dτ

τn
v(τ ′)dτ ′ = vndτ +

1

2
v̇ndτ

2. (3.13)

Hence, the first discrete time equation is:

γn+1 − γn = vndτ +
1

2
v̇ndτ

2 (3.14)

where v̇n is given from (3.12.b) by

v̇n = − 1

Q0

vn + F (γn) +
1

dτ

∫

dτ
δsB +

1

dτ

∫

dτ
δsN . (3.15)

The instantaneous value of the noise were written as 1
dτ

∫
dτ δs. Note that

the integral of the noise over a time step has no dependence on the step
index but only on the step length, therefore

∫ τn+1
τn

δs has been simpli-
fied to

∫
dτ δs. For the second equation (3.12.b), the integral over F is

approximated using the values of γ at τn and τn+1 by:

∫ τn+1

τn
F (γ(τ ′))dτ ′ ≃ F (γn) + F (γn+1)

2
dτ. (3.16)

The set of discrete time equations of motion forming the second order
algorithm is thus:
{
γn+1 − γn = vndτ + 1

2
v̇ndτ

2

vn+1 − vn = − 1
Q0

[γn+1 − γn] + F (γn)+F (γn+1)
2

dτ +
∫
dτ δsB +

∫
dτ δsN .

(3.17)
By dropping the term in dτ 2 in (3.12.a), one recovers the Euler-type
algorithm. It is however shown in the following that this second order
term allows to perform this very demanding simulation much faster.

Probability laws for discrete noise terms

Numerically, the integrals
∫
dτ δsB and

∫
dτ δsN are replaced by random

variables produced by random number generators, for which only the
probability law is specified.

• For the Gaussian noise, the correlation function of Eq. (3.4) yields on
average:
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〈(∫

dτ
δsB

)2
〉

=
∫

dτ

∫

dτ
〈δsB(t′)δsB(t)〉 dtdt′ = 2θ

Q0

dτ. (3.18)

The Gaussian part of the noise is therefore accounted for in the al-
gorithm by picking at each step a random variable X following a
Gaussian law with zero mean value, variance 1, and by setting the
noise integral to:

∫

dτ
δsB =

√
2θ

Q0

dτX. (3.19)

Note the scaling as
√
dτ .

• Integrating the asymmetric noise term expressed with Eq. (3.7) over
a time step dτ yields:

∫

dτ
δsN = e∗ [dN − γNdτ ] . (3.20)

We defined dN as a random variable corresponding to the number
of charges having passed through the barrier during dτ . In a Poisson
process, this variable is governed by a Poisson law of parameter 〈dN〉
such that P (dN = k) = e−〈dN〉 (〈dN〉)k

k!
, where 〈dN〉 = γNdτ is the mean

value of dN .2 The integral on the noise is therefore accounted for in
the simulation by picking at each step a random variable Y following
a Poisson law of parameter γNdτ and setting :

∫

dτ
δsN = e∗ [Y − γNdτ ] . (3.21)

The quality of the noise generator used in the simulations is crucial, since
the effect of the noise asymmetry is tiny. The random numbers used
in the simulations presented no erroneous moments and no correlations
over the time scale of the simulation, for both the Gaussian and Poisson
distributions. Details on the practical implementation are presented in
Appendix B.4.

3.2 Rate estimation

3.2.1 Evaluating escape rate from phase dynamics

Escape out of a single well

The escape rate of the superconducting phase difference out of a single
well can be obtained from the evolution of the variables γ and v. The

2 Another possibility to implement a Poisson process is to consider the time intervals τi+1−
τi between successive tunneling events, that are given by an exponential law. After a
tunneling event at τi, the following event is found at τi+1 = τi + ∆τ with a probability
P (τi+1 − τi = ∆τ) = γN∆τe

−γN∆τ . This method yields similar results [35].
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phase is initialized at the bottom of the well, with zero initial velocity.
The algorithm of Eq. (3.17) is iterated until a maximum simulation time
τp is reached. Due to the action of the noise, the phase starts to oscillate
in the well. During the simulation time, it can stay in the well or jump
over the barrier. This jump defines an escape event happening at a time
τesc. Theoretically, the escape is defined when the particle overcomes the
barrier top, but in practice, this escape is detected when the phase gets
larger than 4, a simple criterion ensuring the latter requirement with
enough precision and allowing to take recrossings into account.

Over a large number of runs N , escape happens only in a fraction Nesc

of the runs. P̂ = Nesc/N is thus an estimator of the probability P that
characterizes the escape process. This allows one to define the behavior
of the escape rate out of a single well, which is the aim of this simulation.
After the escape, the phase can be retrapped in a further well, leading
to phase diffusion at a small velocity, or run away if the velocity is large
enough [50]. The complete behavior depends on the amplitude of the
noise, the barrier height and the quality factor, as described in Chapter
2. These effects, which concern the behavior of the phase once it escaped
out of the well, are not addressed in this simulation.

Numerical estimation of the rate

Theoretically, the probability for the particle to escape between a time τ
and τ + dτ is given by: p(τ ≤ τesc < τ + dτ) = Γdτe−Γτ , where Γ is the
escape rate (see Appendix B.3). Hence, during a simulation time τp, the
cumulative probability to have escaped is:

P = P (τesc ≤ τp) =
∫ τp

0
Γe−Γτdτ = 1− e−Γτp . (3.22)

Numerically, the escape is characterized both by the escape times τesc

and the estimator P̂ evaluated from a large number of runs N . The great
advantage of numerical simulations, compared to experiments, is that the
escape times are easily recorded. There are thus two methods to estimate
the escape rate:

• It can be deduced from the escape probability only, as done experi-
mentally. The rate is then estimated using Eq. (3.22) by

Γ̂1 = − 1

τp
log(1− P̂ ). (3.23)

This estimation of the rate is however only meaningful when the esti-
mator P̂ is neither 0 nor 1, since no information is obtained when the
particle either always or never escapes. It can be shown (see Appendix
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B.3.6) that the relative error on the rate with this estimation method
depends on P as:

∆Γ̂1

Γ
×
√
N =

1

log(1− P )

P

1− P . (3.24)

As expected, the error on the estimated rate drastically increases when
P approaches 0 or 1, this method thus presents a strong limitation
since the simulation parameters have to be tuned for P to avoid these
limits.

• A second method is to use also the information on the escape times.
To cope with the situation where the particle does not escape, we
define the variable τi as:

τi =

{
τesc if the particle escapes
τp otherwise

(3.25)

so that when the particle does not escape, one considers that the
escape time is τp. The expected mean value of τi is obtained as:

〈τi〉 =
∫ τp

0
τescΓe

−Γτescdτesc + τp

∫ ∞

τp
p(τ)dτ, (3.26)

which yields:

〈τi〉 =
1

Γ
(1− e−Γτp). (3.27)

One defines τ̂ =
∑
τi as the estimator of 〈τi〉. The rate should thus be

calculated using τ̂ and solving Eq. (3.27) which can not be inverted

analytically. However, one can use P̂ as the estimated value of 1 −
e−Γτp . Therefore, a simple estimator of the rate is:

Γ̂3 =
P̂

τ̂
. (3.28)

The calculation of the error performed with this estimator, kindly
performed by L. Tournier [77], is reproduced in Appendix B.3.6. The
error is:

∆Γ̂3

Γ
×
√
N =

1√
P
. (3.29)

The error on the rate obtained for both methods is plotted in Fig. 3.2,
and compared with the predictions of Eq.(3.24) and (3.29). Overall, the
second method performs with a good precision on a wider range of P ,
since the error does not diverge as P approaches 1 but rather reaches
the minimum 1√

N
. Noting that as long as P ≥ 0.5 the error on the rate
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obtained with the second method is close to this minimum value, one
only ensures in the simulation that τp is large enough so that the particle
escapes with P ≥ 0.5, and the rate is obtained from Eq. (3.28). In the
most precise simulations on rate asymmetry, τp is set to a large enough
value to ensure that the particle always escapes, to have a minimum
error.
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Fig. 3.2. Symbols: Relative error for the rate estimation over 10000 trajectories. The
two methods to extract the rate are compared (circles for the first method and squares for
the second method). Solid lines: predicted relative error for both methods. Dashed line:
minimum relative error, reached only for P = 1 using the second method.

3.2.2 Simulation parameters

First, the behavior of the algorithm was probed by simple tests. The
quality of the simulation was tested through the thermalization of the
system, especially the energy equipartition. The impact of the time step
on the thermalization and the sensitivity to the initials conditions were
investigated to confirm the advantage of the second order algorithm over
the simple Euler-type method. In those tests, only a Gaussian noise was
used.

Thermalization

Having fixed a reduced temperature θ for the Gaussian noise, we monitor
the evolution of the potential energy EU = − cos(γ)− sγ and kinetic en-
ergy EK = 1

2
v2 when the particle oscillates at the bottom of the well (this

was performed for an unbiased junction). The evolution of the kinetic en-
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ergy3 EK , shown in Fig. 3.3(a), is computed using a time step dτ = 0.01
until it converges to an asymptotic value E∞K . For the second-order algo-
rithm, EK converges to the expected equilibrium value 1

2
θ, which is not

the case for the Euler-type algorithm.
Figure 3.3(b) shows the dependence of the asymptotic kinetic energy

E∞K on the time step. For the second-order algorithm, E∞K = 1
2
θ for

time steps up to dτ ≃ 0.2, which is not the case for the Euler-type
algorithm when dτ > 0.002. A systematic correction to the asymptotic
energy is expected because the energy is calculated at discrete time steps,
as discussed in [76, 78], but this correction is expected to be much smaller
at such a small time step. The disagreement observed here rather shows
the failure of the Euler-type algorithm, although it is difficult to explain
why this failure starts at such low threshold.

The improper convergence of the Euler-type algorithm is also visible
on the resulting value of the escape rate, shown in Fig. 3.4(a). The rate
becomes time-step-dependent for dτ > 0.005, while the rate calculated
with the second-order algorithm stays constant up to dτ ≃ 0.2.
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Fig. 3.3. Kinetic energy of the particle at s = 0, for Q0 = 5 and a temperature θ =
0.04. Left: Variation with time τ for the Euler-type (orange circles) and the second-order
(blue squares) algorithm for a time step dτ = 0.01. After a thermalization time, the energy
converges to an equilibrium value E∞K . For the Euler-type algorithm, this equilibrium is not
1
2
θ as expected from energy equipartition, but is 5% above. Right: Average kinetic energy

reached after a time τ = 5 × 107 as a function of the time step for the Euler-type (orange
circles) and the second-order algorithm (blue squares).

Sensitivity to the initial conditions

During the thermalization time shown in Fig. 3.3(a), the escape rate is
slightly dependent on the initial velocity. However, if the barrier is suf-
ficiently large, this thermalization time is small compared to the escape
time and does not affect the evaluation of the rate. This is the case in

3 A similar plot for the potential energy brings similar information.
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Fig. 3.4. Dependence on the simulation parameters for Q0 = 5, s = 0.76 and θ = 0.04.
Left: Escape rate as a function of the time step for the Euler-type (orange circles) and the
second-order (blue squares) algorithm. Dashed line corresponds to the predicted value (see
further in text). Right: Escape rate as a function of the initial velocity (dτ = 0.002 for the
Euler-type algorithm (orange circles), dτ = 0.02 for the second-order one (blue squares)).
The value vinitial = 0.2 corresponds to the thermal velocity set by the condition of energy
equipartition. The behavior presented here is similar for all values of Q0.

all the simulations, as can be seen in Fig 3.4(b) where the rate has been
calculated for various initial velocities vinitial. In the simulations, the par-
ticle was initialized for convenience at the bottom of the well with zero
velocity.

Conclusion on the algorithms

These simple tests indicate that the use of the second order
algorithm instead of the simplest one considerably reduces the
simulation time, since it stands time steps more than one order
of magnitude larger with a calculation time of each step only
25% longer. In the following, this algorithm was used with dτ =
0.02.

3.3 Results on the escape rate

With this reliable algorithm in hands, the behavior of the rate was probed
in two different situations. First, the rate was obtained in the well known
case of a Gaussian noise, where the results could be compared quantita-
tively to the exact existing theory. This allowed to confirm the reliability
of our simulations. Second, the escape rate was evaluated in the case
where the junction was submitted only to a Poisson noise or to a mix-
ture of both sorts of noise. The behavior of the rate in this regime was
then compared with the recent theoretical predictions detailed in the
previous chapter.
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3.3.1 Escape rate for Gaussian noise

Prediction for the rate driven by Gaussian noise

The escape rate for a Josephson junction submitted to Gaussian noise is
given in Eq. (2.30). In dimensionless units, this prediction is:

Γ = λ (B,Q(s))
(1− s2)1/4

2π
e−
∆U(s)
θ (3.30)

where λ (B,Q(s)) is the prefactor given in Eq. (2.33), B = ∆U(s)
θ

and

∆U(s) = 2
√

1− s2 − s(π − 2 arcsin(s)). (3.31)

This prediction, and in particular the expression of the prefactor, was
already tested numerically in [57, 76]. As a first step, we recovered these
results.

Rate as a function of θ and Q0

The rates were simulated for various temperatures and reduced bias
currents s in the range corresponding to a moderate barrier height
B = ∆U

θ
∈ [5− 9.5] (B2/3 ∈ [3− 4.5]). The lower bound was chosen

to keep a barrier sufficiently high compared to temperature. Only in this
regime could the results be compared with theory, which is valid only for
B ≥ 5. The higher bound was set to limit the simulation time. Since the
escape rate is predicted to behave as Γ = λωp

2π
e−B, a common method

to probe if the simulated rate does follow such a behavior is to consider,
instead of the rate, the function:

B2/3 =
(

log
[
λ
ωp
2π

]
− log [Γ ]

)2/3

. (3.32)

According to theory:

B =
∆U

θ
∝ 1

θ
(1− s)3/2 , (3.33)

where we have considered the dimensionless form of the approximated
expression of Eq. (2.14) for the barrier height. Hence, B2/3 is expected to
vary as (1− s), with a slope proportional to θ−2/3. The very good agree-
ment in Fig. 3.5(a) between the simulated B2/3 and the prediction gives
confidence in the correct thermalization of the particle. Using Eq. (3.32)
to calculate B2/3 however requires some self-consistency since the theo-
retical prefactor is also dependent on B.
A better and simpler way to check the agreement between simulation
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and prediction is to plot the ratio Γsim

Γtheo
of the simulated rate over the

prediction as shown in Fig. 3.5(b). The agreement is excellent consider-
ing the statistical accuracy of 1%. This confirms the correct behavior of
the simulations.
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Fig. 3.5. Escape rate activated by Gaussian noise for Q0 = 5 over N = 104 runs, yielding
a statistical error of 1%. Left: B2/3 plot for various θ (0.01, 0.02, 0.04, 0.07, 0.1, 0.16 from
right to left). Points are from simulation and solid lines are predictions using the barrier
height of Eq. (3.31). Right: Ratio between simulated rates and predicted rates for the same
temperatures. With N = 104, 95% of the points are expected to be within 1± 0.02.

The rates were also simulated for various quality factors with B = 10.
Dividing this rate by the value predicted from the Transition State The-
ory [50] (Eq. (2.29)) yields a determination of the prefactor. Figure 3.6
compares this estimation to the theoretical prediction. The very good
agreement confirms the quality of the simulation, and extends the vali-
dation of the theory over a wider range of parameters.

3.3.2 Escape rate for Poisson noise

Having confirmed the reliability of the simulation with a Gaussian noise,
we then introduced a Poisson noise source to probe its effect on the escape
rate. Comparison is carried out with the predictions from Ref. [11].

Prediction for the effect of Poisson noise on the escape rate

The effect of Poisson noise can be separated in two contributions, due
respectively to the second and third moment of the noise. The effect of
the second moment of noise is a large increase of the escape rate. In
analogy with the case of a Gaussian noise, the effect is characterized by
an effective temperature that represents the power of the noise, give by
Eq. (3.11). In reduced units, this temperature is:



3.3 Results on the escape rate 61

1. 10. 100.
0

0.2

0.4

0.6

0.8

1.

Q0

Λ

DU�Θ = 10

Fig. 3.6. Prefactor deduced from the simulations performed for various Q0 at s = 0.8 and
θ = 0.017 (such that B = 10). Solid line: prediction for the prefactor of the escape rate
λ (B,Q(s)) of Eq. (2.33) [55]. Dashed lines: Kramers limits κ1 and κ2 of low and high
damping described in Eqs. (2.32) and (2.31) [4].

θeff = θ +
1

2
Q0e

2
∗γN (3.34)

where θ is the temperature corresponding to the Gaussian noise. This
expression is valid whatever is the second moment of Poisson noise com-
pared to that of Gaussian noise; the effective temperature can in partic-
ular be much higher than θ.

The effect of the third moment is much smaller. Since the third mo-
ment is related to the asymmetry of the noise, the escape rate becomes
also asymmetric. It is dependent on the relative sign of the reduced bias
current and of the current giving rise to the noise δsN . Keeping the lat-
est constant, we considered the rates obtained for positive bias s (noted
Γ+), and for negative bias −s (noted Γ−). In theory (see Eq. (2.58)),
these escape rates are expected to behave as:

Γ+ ∝ exp {− [B2(θeff) +B3]} (3.35)

and
Γ− ∝ exp {− [B2(θeff)−B3]} . (3.36)

The term B2 = ∆U
θeff

corresponds to the effect of the second moment of

Poisson noise, in analogy with B = ∆U
θ

for Gaussian noise at a tem-
perature θ. The small corrective term B3 accounts for the asymmetry of
Poisson noise. It is assumed here that the prefactor is not affected by the
noise asymmetry, which only enters through B3. From Γ+ and Γ−, one
builds two quantities:
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• The geometric mean of the two rates, or mean rate, defined by

Γ =
√
Γ+Γ− ∝ exp[−B2(θeff)]. (3.37)

This effective mean rate is only sensitive to the second moment of noise
and is thus expected to behave exactly as the escape rate obtained in
the Gaussian case for a temperature θeff, therefore follow Eq. (3.30).

• The rate asymmetry, defined as:

RΓ =
Γ+

Γ−
= exp[2|B3|]. (3.38)

The departure from one of this quantity is a direct measurement of
the effect of the third moment of the noise. In theory, the corrective
term B3 of Eq. (2.94) is given in reduced units by:

B3 = −γN
(
e∗
θeff

)3

j(Q0, s) (3.39)

where j(Q0, s) corresponds in this chapter to the function jFullQ(Q0, s)
of Eq. (2.92), calculated by H. Grabert, that covers the full range of
quality factors.

In order to probe the behavior of the mean rate and the rate asym-
metry, Γ+ and Γ− were simulated with various sets of parameters (γN ,
Q0 and s) and N ≥ 105. The geometric mean rate was compared with
the Gaussian prediction, while the rate asymmetry was compared with
the prediction using the corrective term B3.

Rates as functions of γN

The rates were first measured as a function of the noise amplitude. In
the Gaussian case, this corresponds to changing the temperature. In the
case of a Poisson noise, the amplitude was modulated with γN .

Following the procedure already used in the Gaussian case, the mean
rates Γ calculated for Q0 = 5, which corresponds to the experimental
value of [38], were converted into B2/3 functions shown in Fig. 3.7(a).
These functions are compared to the theory for Gaussian noise using the
predicted effective temperature of Eq. (3.34). In Fig. 3.7(b), the mean
rates are divided by the predicted values: they appear to be about 1%
larger. This is only a slight discrepancy at Q0 = 5, but calculations at
larger values of Q0 give larger deviations, as discussed below.

The rate asymmetry is shown in Fig. 3.8, and compared with the
prediction of Eq. (2.95) for Q0 = 5. From this figure, it appears that the
theoretical prediction is larger than the simulation results by 20%, but
the s-dependence is correct.
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Fig. 3.7. Mean rate activated by a Poisson noise for Q0 = 5 in absence of extra Gaussian
noise (θ = 0). Left: B2/3 plot for various values of γN corresponding to θeff =0.01, 0.02,
0.04, 0.07, 0.1 and 0.16 from right to left. Points are the simulation and solid lines are the
predictions for the Gaussian case using the expected effective temperature. Right: Ratio
between the mean rates and the predicted values, for the same data.

0.5 0.6 0.7 0.8
0

0.02

0.04

0.06

0.08

0.1

0.12

s

R
G

-
1

Fig. 3.8. Rate asymmetry for various effective temperatures, for Q0 = 5, computed for the
s range corresponding to B ∈ [5− 8] (with θ = 0.01 and values of γN corresponding to
θeff = 0.02, 0.03, 0.05, 0.08). Solid line: predictions using the result from Eq. (2.95) that was
calculated for Q0 = 5 in the complete range of s. Dashed line: Same predictions scaled
down by 20% to fit the simulation data.

Rates as functions of Q0

Another set of simulations was performed to probe the dependence of
the escape rate on Q0. This is similar to the evaluation of the prefactor
performed for the Gaussian case. For each value of Q0, the rates were
simulated after having chosen the parameters in two steps:

• γN was fixed to yield a given effective temperature;
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• with this temperature, s is picked to yield a given value of B2, while
keeping s ≥ 0.99 to be in the limit where Grabert’s simplest results
of Eq. (2.92) are valid [11].

Hence, the ratio γNe
3
∗

θ3eff
appearing in the theory is set with the first step,

while j(Q0, s) is set with the second. Figure 3.9 represents the mean rate
Γ divided by the prediction from the Transition State Theory as a func-
tion of the quality factor (see Eq. (2.29)). One thus expects to recover the
prefactor prediction already checked in the Gaussian case, as was shown
in Fig. 3.6. However, a slight disagreement is found in the range of inter-
mediate quality factors. A tentative explanation is that this deviation is
due to an effect of the asymmetry of the Poisson noise on the prefactor
of the escape rate, an effect which is either not addressed by theory [11],
or neglected [31, 32].
A similar deviation can be observed on the rate asymmetry, shown in
Fig. 3.10. It should be noted however that, apart from this deviation, the
qualitative behavior of the rate asymmetry, especially the position of the
turnover, is perfectly described by theory.
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Fig. 3.9. Mean rate Γ divided by the prediction from TST (taken at the expected θeff) [50]
for a Poisson noise source. γN is chosen to yield θeff = 0.00016, with θ = 0.00012, s = 0.992
so that B2 ≃ 9. Solid line: Prediction for the prefactor in the Gaussian case. Dashed line:
TST prediction and Kramers’ low and high damping limits.

Rates as functions of s

The last set of simulations was performed to probe the variation of the
escape rate with the reduced bias current s, for various values of Q0.
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Fig. 3.10. Rate asymmetry. γN is chosen to yield θeff = 0.00016, with θ = 0.00012, s = 0.992
so that B2 ≃ 9. Solid line: theoretical prediction. A discrepancy between simulations and
theory is found for intermediate values of Q0. Dashed lines: low-damping and high-damping
limits of Eq. (2.76) calculated in [33].

Once Q0, γN , and θeff were fixed, only s was varied, staying in the range
s ≥ 0.99. In Fig. 3.11, we plot the ratio between the mean rate Γ and
the predicted rate for the Gaussian case. According to theory, this term
should be equal to 1 at all values of Q0 and s.
Only for low quality factors do the predicted effective temperature agrees
with the simulations. Moreover, the deviation increases when s is reduced
(i.e. when B is increased). Such a behavior is attributed again to a pos-
sible modification of the prefactor that appears at low damping, which
is not considered by theory.
For Q0 = 2 where the effective temperature is properly predicted, the
rate asymmetry is compared with theory in Fig. 3.12. The good agree-
ment between theory and simulation in this range of s (and B2) gives
confidence in the validity of the prediction on the s-dependence, at least
for s close to 1.

Conclusion on the effect of Poisson noise

In a nutshell, the simulations show that the effect of Poisson noise on the
escape rate is well accounted for by theory in the limit of high damping.
However, for quality factors larger than 2, both the simulated effective
temperature and the simulated rate asymmetry slightly deviate from the
prediction, even if the qualitative behavior is very well predicted. A ten-
tative explanation is that the third moment of noise not only affects the
exponential part of the rate, but also the prefactor, an effect not taken
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Fig. 3.11. Mean rate obtained for a Poisson noise source for Q0=2, 10, 30 and 60 (dark
blue circle, orange squares, green triangles, and red diamonds). The mean rate is divided by
the prediction for the Gaussian case, so that all points should be on the dashed line, equals
to 1. While the simulated rate equals as expected the predicted one for low Q0, a sizeable
deviation is found for larger values of Q0. For each value of Q0, γN and θ are fixed to have
θeff = 0.000165 (with γN=1.5, 0.25, 0.2, and 0.2 for increasing quality factors). The range in
s corresponds to B2 ∈ [5− 12].
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Fig. 3.12. Symbols: Rate asymmetry for Q0 = 2. γN=1.5 and θ is fixed to have
θeff = 0.000165. Solid lines: theoretical prediction (the slight jump in the line is due to
a discontinuity between the two limits of Eq. (2.92)).
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into account by the theory. It does not come as a surprise that the dis-
crepancy appears in this turnover region Q0 ≃ B, where the dynamics
crosses over between spatial-diffusion and energy-diffusion [55, 56]. For
a set of parameters that corresponds to the experiments presented in
the next chapter, where the quality factor is estimated around Q0 = 5,
theory appears to overestimate the rate asymmetry obtained with the
simulations by 20%. An extension of the theory tackling the effect of
asymmetric noise on the prefactor might resolve this discrepancy.

3.4 Effect of a low-frequency cutoff

In the experiment, the dc part of the noise is cut by an RC filter [35, 38]
to ensure that the Poisson noise added to the bias current of the junction
has zero mean value. To probe the effect of this cut-off on the rate asym-
metry, we simulated the dynamics of the circuit shown in Fig. 3.13. In
this circuit, both the Poisson noise δIN and the Johnson-Nyquist noise
δIB2 are filtered. Only the components of the noise at large enough fre-
quencies reach the Josephson junction, while the low frequency part flows
through the resistor R2. Beware that two resistors are present, each of
them producing a Johnson-Nyquist noise. For simplicity, we consider in
this section that they have different resistances but are at the same tem-
perature.

CJ

R
IB

V

I0

�
IB1

�
IN

q
C2

q

R2

�
IB2

Fig. 3.13. Setup used to describe the low-frequency cutoff present in the experiment pre-
sented in the following chapter. The capacitor C2 and the resistor R2 play the role of a
high-pass filter for the current fluctuations δIB2 and δIN , while the noise δIB1 is unaffected.
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3.4.1 Algorithm

Equations of motion for the RC-filtering circuit

The equations of motion for this circuit of Fig. 3.13 are:




V = ϕ0γ̇
V = − q

C2
+R2(δIB2 + δIN − q̇)

CJ V̇ + V
R

+ I0 sin γ − q̇ = IB + δIB1.
(3.40)

They can be converted into three first-order differential equations for the
three variables {V, γ, q}, where q is the charge on the coupling capacitor
C2. The dimensionless equations are:





γ̇ = v
q̇∗ = − 1

Q2
γ̇ − c

Q2
q∗ + δsB2 + δsN

v̇ = − 1
Q0
γ̇ − sin γ + s+ q̇∗ + δsB1

(3.41)

with Q2 = R2CJω0, c = CJ
C2

and q∗ = ω0

I0
q.

RC-Algorithm

In the following, q∗ is noted q for convenience. With the method pre-
sented in the first section, a Taylor expansion at second order of the time
integrals appearing in the discrete time equations yields:




γn+1 − γn = vndτ + 1
2
v̇ndτ

2

qn+1 − qn = − c
Q2

[
qndτ + 1

2
q̇ndτ

2
]
− 1
Q2

[γn+1 − γn] +
∫
dτ δsB2 +

∫
dτ δsN

vn+1 − vn = − 1
Q0

[γn+1 − γn] + F (γn)+F (γn+1)
2

dτ + [qn+1 − qn] +
∫
dτ δsB1

(3.42)
with {

q̇n = − 1
Q2
vn − c

Q2
qn + 1

dτ

∫
dτ δsB2 + 1

dτ

∫
dτ δsN

v̇ = − 1
Q0
vn + F (γn) + q̇n + δsB1.

(3.43)

Probability laws for the noise terms

Both Gaussian noises
∫
dτ δsB1 and

∫
dτ δsB2 are accounted for in this al-

gorithm in a manner similar to the simplest case, with their respective

standard deviation being
√

2θ
Q0
dτ and

√
2θ
Q2
dτ . In the limit c = 0, one

recovers the second-order algorithm presented in the first section for a
RCSJ model, with the Gaussian noise being the sum of two terms. The
mean value of Gaussian noise remains zero while the variance of the over-
all Gaussian noise is the sum of the variances of the two noises, hence
2θ
Q0

+ 2θ
Q2

= 2θ
Qeff

where we defined Qeff = 1
1
Q0

+ 1
Q2

.
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3.4.2 Dynamics of the circuit

Cut-off frequency and Plasma frequency

The filter cuts the frequencies lower than 1
R2C2

= c
Q2

. This frequency has
to be compared with the plasma frequency:

νp =
1

2π
(1− s2)1/4. (3.44)

When the cutoff frequency is much smaller than the plasma frequency, the
filtering of the noise is expected to have a negligible effect on the escape
rate. At the opposite, the escape rate due to Poisson noise should be
strongly diminished when the cutoff is higher than the plasma frequency.

Quality factor

In the circuit of Fig. 3.13, the junction can not directly be considered
within a simple RCSJ model. The complete environment has to be taken
into account to calculate the quality factor of the phase dynamics for ar-
bitrary values of c. It appears that in the relevant case of a low-frequency
cutoff, i.e. c

Q2
≪ 1, the quality factor of the dynamics is well approxi-

mated by Qeff, and the junction is reasonably treated within an effective
RCSJ model.4 The effective temperature relevant for the escape rate with
a Poisson noise is then:

θeff = θ +
1

2
Qeffe

2
∗γN . (3.47)

3.4.3 Simulation results

We performed several tests to probe the effect of filtering, from energy
equipartition to rate asymmetry.

4 The admittance seen from the bias line is:

Ytot(ω) =
1

R
+ jCJω +

1

jLJω
+

1

R2 + 1
jC2ω

(3.45)

where LJ is the Josephson inductance. When c≪ 1, the admittance simplifies to:

Ytot(ω) =
1

Reff

[
1 + jQeff(

ω

ωp0
− ω

ωp0
)

]
(3.46)

where 1
Reff

= 1
R

+ 1
R2

and Qeff = ReffCJωp0. The environment thus behaves like a simple
Ohmic environment with two resistors in parallel and a quality factor Qeff.
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Energy equipartition

We first monitored the average kinetic energy 〈EK〉 of the particle at long
times, when the junction is submitted solely to a Poisson noise at s = 0
(the plasma frequency is thus equal to 1

2π
). For c = 0, the average kinetic

energy reaches 1
2
θeff, since there is no filtering. When c is increased, the

particle decouples from the noise source. Its energy thus decreases, as
shown in Fig. 3.14. In the limit c

Q2
≫ 1

2π
, where all frequencies below the

plasma frequency are cut, the energy of the particle reaches zero.
In another simulation, the Poisson noise was set to zero and the temper-
ature to a finite value θ. In this case, the energy of the particle reaches 1

2
θ

at all values of c, even if the Johnson-Nyquist noise δsB2 is completely fil-
tered for c

Q2
≫ 1. This is because at equilibrium, the variance of the noise

obeys the fluctuation-dissipation theorem. If part of the fluctuations are
filtered, part of the dissipation also, and both effects compensate each
other.
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Fig. 3.14. Kinetic energy of the particle at s = 0 as a function of c
Q2

for the two types
of noise. Dots: Only Poisson noise is present (θ = 0), with the parameters Q0 = 5, Q2=5,
γN = 640 yielding θeff = 0.02. Squares: the two sources of Gaussian noise are present
(θ = 0.04, Q0 = 5, Q2=5) and Poisson noise is set to zero. For large values of c

Q2
, the

(non-equilibrium) Poisson noise is filtered so that the kinetic energy of the particle goes to
0, while for the (equilibrium) Gaussian noise, the energy is not affected by the cutoff.

Escape rates

We then probed the behavior of the escape rate when varying c
Q2

. The
simulated rate is shown in Fig. 3.15 when the system is only submitted
to a Poisson noise (T = 0). The reduced bias current is s = 0.92, yield-
ing a plasma frequency of 0.1. The rates obtained for both signs of the
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bias current are shown, the difference being due to the asymmetry of the
noise. At very low values of c

Q2
, the rates are not affected by the cutoff.

When c
Q2

increases and approaches a significant fraction of the plasma

frequency, the rates are reduced since part of the noise is filtered.5

The corresponding rate asymmetry is shown in Fig. 3.16, where it is nor-
malized by its value at c = 0. Up to c

Q2
≃ 0.001, the rate asymmetry

RΓ −1 seems to remain unaffected by the low-frequency cutoff. However,
the rate asymmetry starts to diminish when c

Q2
is further increased. The

general curve depends only slightly on the quality factor (in the small
range of quality factor probed here, which is the relevant experimental
range). This allows to determine a general condition for the maximum
cutoff frequency yielding negligible effects on the observed rate asymme-
try:

c

Q2

<
νp

100
. (3.48)
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Fig. 3.15. Escape rates activated by Poisson noise for positive and negative bias (circles
and square) as a function of c

Q2
. Left: Escape rates for Q2 = Q0 = 4. Rates are obtained

for s = 0.92, θ = 0 and γN is fixed to yield θeff = 0.00625. Dashed vertical line corresponds
to the plasma frequency. Right: Escape rate for Q2 = Q0 = 16.

5 Surprisingly, the two rates behave slightly differently. The decrease is not similar for both
bias signs and does not start for the same value of c

Q2
. This discrepancy in the behavior

between the two rates is increased for higher values of Qeff, and no clear explanation has
been found presently.
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Fig. 3.16. Symbols: Rate asymmetry at s = 0.92 as a function of c/Q2 for three values of
effective quality factor (Qeff=2, 5, and 8 (circles, squares, and triangles)). Dashed vertical
line: plasma frequency at this bias current.

3.5 Conclusion

In this chapter, we have performed numerical simulations on the dynam-
ics of a Josephson junction biased with a Poisson noise source.

• In a first part, we determined the effect of the asymmetry of the Pois-
son noise on the escape out of the zero-voltage state in the simple
RCSJ model. We obtained the effective temperature and rate asym-
metry, which account respectively for the effects of the second and
the third moment, over a large set of parameters, and compared with
theoretical predictions. While predictions and simulations agree in
the range of low Q0, both for the effective temperature and the rate
asymmetry, a slight deviation appears for larger quality factor. We
attributed this deviation to an effect of the noise asymmetry on the
prefactor of the escape rate.

• In a second part, we evaluated the effect of an RC filtering of the
Poisson noise on the rate asymmetry, since this corresponds to the
actual experimental setup. The simulations indicate that the filtering
does not affect the rate asymmetry if the cutoff frequency νcutoff is in
the range:

νcutoff .
νp0

100
. (3.49)

where νp0 is the plasma frequency. In our experiment where the plasma
frequency was of the order of 1.5 GHz, the quality factor was 5 and
the cutoff frequency was 5 MHz, this condition was fulfilled.



Chapter 4
Experimental detection of an

asymmetric noise with a Josephson

junction

In this chapter, we present an experiment accessing the second and third
moment of the noise using a Josephson junction as a detector [38]. This
experiment, which extends the experiments of [35, 36, 37, 65], is mo-
tivated by the need to develop an efficient on-chip detection system of
the third moment of noise, as appeared from the first experiments that
measured this quantity [27, 79, 80, 81]. When the noise under study is
added to the bias current of a Josephson junction, the escape rate out
of the zero-voltage state of this junction can be used to probe the second
and third moments of this noise. A complete analysis of the experimental
circuit and an extension of the present predictions [12] allows to achieve
a quantitative agreement between measurement and theory, which consti-
tutes a significant improvement towards the use of this detector on more
exotic conductors.

4.1 Introduction

4.1.1 Direct measurement of the third moment of the
fluctuations

A pioneering experiment

The first measurement of the third moment of shot noise was performed
by Reulet et al. in 2003 [27, 79] on a tunnel junction. In the limit of
large bias (eVN ≫ kBT , where VN is the voltage across the junction),
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the number of tunneling events through a voltage-biased tunnel junction
during a probing time τp follows a Poisson distribution and the second
and third moment of the noise are simply:




S2 = e |IN |
S3 = e2IN

(4.1)

where IN is the mean current through the junction (see Fig. 4.1). The
voltage fluctuations across the junctions were measured with an RF am-
plifier presenting an input impedance R0 = 50 Ω (see Fig. 4.2). To avoid
a loss of signal due to impedance mismatches, the impedance R of the
tunnel junction was also close to the 50 Ω impedance of the coaxial ca-
bles. In the lumped-element model presented in the top of Fig. 4.2, the
current fluctuations i (due to the noise source) and i0 (due to the probe
resistor) both modulate the voltage across the sample, which results in a
modulation of the noise itself. Since R ≃ R0, this "feedback" effect gives
a sizeable contribution to the third moment of the voltage fluctuations
[82, 83].
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Fig. 4.1. Left: The current IN through a voltage-biased tunnel junctions presents fluctu-
ations δIN , due to the statistical processes governing the tunneling. In the limit of large
voltage (eVN ≫ kBT ), tunnel events through such a junction follow a Poisson process (see
Appendix B.3 for details). Right: Poisson distribution describing the number N of elec-
trons tunneling through the barrier during a given probing time τp (drawn for 〈N〉 = 100).
This distribution is fitted by a (symmetric) Gaussian distribution around the maximum to
highlight the asymmetry of the Poisson distribution on the wings.
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Fig. 4.2. Top Left: Setup used in [27, 79] to measure the third moment of the voltage noise
across a tunnel junction. A bias tee is used to feed a constant dc current through the junction.
Top right: Equivalent model at high frequency : the current fluctuations i emitted by the
tunnel junction of impedance R, and i0 emitted by the input impedance of the amplifier R0

flow through the parallel combination of R and R0. The output signal of the amplifier is
mixed twice with itself to obtain a dc signal proportional to the third moment of the voltage
fluctuations. Bottom: Measured third moment of the voltage fluctuations. The dash-dotted
line corresponds to the expected result for a perfectly voltage biased sample. The dashed line
fitting the data is the prediction obtained when taking into account "feedback" corrections.

Avoiding feedback effects

In 2005, Bomze et al. [80] performed another experiment on a tunnel
junction, but in a regime where the "feedback" effect of the environment
was negligible. A cryogenic amplifier was used to increase drastically
the sensitivity, and the noise was sampled at room temperature by an
analog-to-digital (A/D) converter. This reduced the constraints on the
impedance of the sample, and allowed to reach the limit RN ≫ R0. In
this case, the tunnel junction was almost perfectly voltage biased and
the third moment of the current noise was linear with the mean current,
as shown in Fig. 4.3. This highly sensitive detection scheme was then
used in 2008 to measure the third moment of noise on a Quantum Point
Contact (QPC) for a conductance varying between almost 0 and 2e2/h
[81]. However, due to the large conductance of the sample in this case,
"feedback" effects could not be avoided anymore. The third moment of
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noise was extracted through the substraction of different contributions,
a process very sensitive to the calibration of the measurements lines (see
details in [81]).

10 0.1�� �
NI pA V mV

Fig. 4.3. Third moment of current fluctuations across a tunnel junction having an impedance
RN larger than 10 MΩ deduced from the voltage fluctuations over a probe resistor R0 =
9 kΩ [80]. Different symbols corresponds to different measurement setups. The line is the
theoretical expectation for a Poisson noise.

Sensitivity

In the measurements presented above, the signal-to-noise ratio for the
third moment is determined by the Johnson-Nyquist current noise emit-
ted by the probe resistor R0. Since the amplitude of this noise scales as
1
R0

, the signal-to-noise ratio was considerably increased in the second ex-

periment (Bomze et al.) where R0 was three orders of magnitude larger
than in the case of Reulet et al.

In order to perform a simple comparison between detectors, we intro-
duce the sensitivity σ3 as the error obtained on the third moment when
averaging during one second. Noting ∆S3 the error on the third moment
obtained for a measurement time tmst, this yields:

∆S3 = σ3
1√
tmst

. (4.2)
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Fig. 4.4. Results obtained in [81]. Main panel: Conductance (in units of G0) of the QPC.
Bottom: Second moment of the noise divided by the Poisson expectation yields the Fano
Factor F2. Solid line is the predicted value. Top left: Fano Factor F3 of the third moment
(third moment divided by the Poisson expectation). Solid line is the predicted value.

In the experiment of Reulet et al., a typical error for one point ∆S3 =
2 e2µA was obtained for 10 h averaging1, yielding a sensitivity σ3 =
370 e2 µA/

√
Hz (the value of the error is obtained from Fig. 4.2). In the

following experiment of Bomze et al., the sensitivity was considerably
increased, since the error was typically ∆S3 = 2 e2nA for an integration
time of 250 s (corresponding to 1010 samples of 25 ns). This yields a

sensitivity σ3 = 30 e2 nA/
√

Hz, which allowed the measurement of the
third moment in a QPC.

4.1.2 Towards on-chip detection

As appears from the two previous paragraphs, setups measuring the third
moment of the noise by means of microwave signal processing proved to
be efficient in the simplest cases. This technique however presents some
drawbacks:

• The transmission from the noise source to the remote electronics needs
to be carefully calibrated at all frequencies, in particular when "feed-
back" effects are present.

• Even with the best cryogenic amplifiers available nowadays, the sen-
sitivity is barely sufficient.

Another strategy is to circumvent these difficulties by using an on-chip
detector, which converts the properties of the high frequency fluctuations

1 12 days for the complete curve shown in Fig. 4.2.
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into a simple easy-to-measure low frequency signal. In this spirit, a set of
experiments was performed using a QPC as a detector, but this technique
only applies to probe the slow sequential charging and decharging of a
nearby Quantum Dot (QD) [84]. Looking for a on-chip detection scheme
that could be applied to a large variety of noise sources, Tobiska and
Nazarov [28] proposed to access the FCS of noise using a circuit contain-
ing a Josephson junction. They showed in particular that when the noise
is added to the bias current of the Josephson junction, the difference in
the escape rates out of the zero-voltage state for opposite bias currents
reflects the asymmetry of noise.2

4.1.3 Probing shot noise with a Josephson junction

At the beginning of my work, a simplified version of this strategy, aiming
at measuring only the third moment and not the FCS, had been explored
experimentally by two groups: the group of J. Pekola at Helsinki Uni-
versity of Technology (HUT) [29, 37, 85] and the Quantronics group in
Saclay [36, 35]. In both cases, the shot noise of a tunnel junction was
added to the bias current of the Josephson junction (JJ), in order to
extract the third moment of the noise.

To do so, one option is to have the full current in the noise source
IN(t) flowing through the JJ. In this case however, the escape rate is
modified not only by the noise, but also trivially by the dc current 〈IN〉.
To get rid of this contribution, the dc part 〈IN〉 of the current was either
compensated for or filtered out.

Experiments performed at the Helsinki University of Technology

The first detection of shot noise with a JJ was reported in [29]. The tunnel
junction and the Josephson junction were placed in series but the dc
part of IN flowing through the JJ was compensated for with an opposite
current on the bias line of the JJ. Large inductances were placed on all
lines to increase their impedances at high frequency (see Fig. 4.5), in
order to ensure that all the noise from the tunnel junction flows through
the detector, which presents the lowest impedance. It was observed that,
by increasing IN , the noise yields a drastic increase of the escape rate.
This effect could be interpreted as an increase of the effective temperature
of the escape due to the second moment of the noise.

2 Another use of a Josephson junction as a detector of higher order moments had already
been proposed by Lesovik, based on the interplay of the noise with the ac Josephson
supercurrent. [71]
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In subsequent experiments [37, 85], the third moment of noise was
accessed through the asymmetry in the escape rate for opposite bias
situations. The current in the noise source was changed alternatively
from +IN to −IN . The second moment S2 being only related to |IN |, any
difference in the rate between the two configurations is attributed to the
asymmetry of the noise, i.e. essentially to S3. Comparing the effect of the
noise of a tunnel junction and the noise of a macroscopic resistor, which
is symmetric, this experiment indeed demonstrated that a Josephson
junction is sensitive to the third moment of the noise (see Fig. 4.5).

Fig. 4.5. Left: Setup used in the experiment performed at HUT [37, 85]. Noise source and
detector are placed in series. The fluctuations of IN add to the bias of the detector Josephson
junction, but the dc component does not contribute (thanks to a compensation). Inductor
on all the lines ensure that the noise flows in the Josephson junction, which presents the
smallest impedance. Top right: Effective temperature of the escape of the JJ detector in
[37] (various symbols correspond to various samples). Solid line is a fit with a model based
on transitions between levels in the MQT regime. Bottom right: Asymmetry in the mean
escape current. This asymmetry is defined as the difference between the mean escape current
of the Josephson junction obtained for opposite signs of IN . IC is the critical current of the
junction. Full symbols are measured for two tunnel junctions having different resistances,
while open symbols corresponds to a case where the noise source is an ordinary resistor
(with zero third moment of noise). Lines are adjusted comparisons with the adiabatic model
described in [65] and summarized in Chapter 2.
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A quantitative comparison of the results of this experiment with the-
ory cannot be carried out easily, because theory deals with a JJ in the
thermal escape regime and in an environment well described by an RCSJ
model [11, 31, 33], whereas in this experiment, thermal escape was only
obtained in an intermediate range of current, and the environment was
essentially inductive. Moreover, the observation of escape was compli-
cated by retrapping effects that arised because of the low quality factor
of the JJ. In [37], the authors compared their data with the adiabatic
model described in the previous chapter [65]. Using the frequency cutoff
introduced in this theory as an adjustable parameter, it was possible to
find a reasonable agreement with the data.

Experiments performed in the Quantronics Group

The measurement presented by Huard et al. was designed to achieve a
quantitative comparison between theory and experiment, and thus to ex-
tract the third moment of noise from such measurement [35, 36]. This
required to operate in the regime corresponding to the theoretical predic-
tions, in which escape is due to thermal activation, and where the circuit
can be described within the RCSJ model [31].

In this experiment, the dc part of IN(t) was removed from the current
bias of the Josephson junction detector by on-chip filtering. The current
through the noise source was separated into a fluctuating part that flew
through the detector, and a dc part that returned through a resistor (see
Fig. 4.6). Numerical simulations presented in Chapter 3 confirm that the
effect of the low frequency cutoff on the statistics of the noise reaching
the Josephson junction detector can be neglected.

Using independently measured parameters, the effect of the second
moment of the noise was well explained. However, the measured asymme-
try in escape rates appeared in strong disagreement with the predictions.
A tentative explanation for this disagreement is a spurious leakage in
the coupling capacitor between noise source and detector, which causes
some dc current to flow through the JJ and hence contribute to the rate
asymmetry.
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Fig. 4.6. Simplified setup used in the first experiment performed in the Quantronics group
[35]. The noise from a tunnel junction (green double box) biased at dc with a current IN
couples through a capacitor C to a Josephson junction detector (orange crossed box), which
is current-biased on its supercurrent branch. The filter formed by R0 and C separates the
signal flowing through the junction into two parts. The low frequency part, in particular the
dc component, flows in the resistor, letting the detector unaffected. In contrast, the high
frequency part of noise adds through the capacitor to the bias current of the JJ detector.

4.2 Experimental setup

We present here a second generation experiment [38] that aims at solv-
ing these difficulties and adress the discrepancies between theory and
experiment that appeared in [35]. The goal is to achieve a reliable under-
standing with the present theories of the effect of the shot noise on the
escape rate of the JJ out of its zero-voltage state, in order to use the JJ
as a detector for the third moment of noise of an arbitrary conductor.

4.2.1 Schematic setup

The setup that we implemented is shown schematically in Fig. 4.7 and
pictures of one of the sample are presented in Fig. 4.8. To strengthen the
decoupling at dc between the noise source and the detector, we fabricated
two coupling capacitors instead of one using a more robust technology
than in [35]. The noise source was again a tunnel junction. The large
capacitor CN ensures a constant voltage across the noise source at high
frequency. Due to a change in the relative position of the resistor R3

and the tunnel junction compared to the previous experiment (compare
Fig. 4.6 and Fig. 4.7), the fluctuating part of the noise here subtracts
from the bias current of the junction, which inverts the sign of the rate
asymmetry.
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Fig. 4.7. Detailed setup of the experiment presented in this chapter and in [38]. Compared
to the setup presented in Fig.4.6, two coupling capacitors C1 and C2 are used. The voltage VJ
across the junction monitors the switching to the dissipative state, through the resistor R2.
Capacitor CJ lowers the JJ plasma frequency

ωp0

2π
close to 1.5 GHz at zero bias. Capacitors

CN and Cg shunt the impedance of the external connections lines at ωp0, therefore the
admittance shunting the JJ is determined only by on-chip elements. Two large resistors RL
allow to fix the average value of IN . CL is a capacitor placed on the bias line at room
temperature whose role is to avoid spurious offsets arising from thermoelectric voltages (see
text for more details).

4.2.2 Requirements

The design was developed with three goals in mind:

• Place the detecting junction in the thermal activation regime, without
retrapping effects.

• Ensure a possible independent control on all the parameters charac-
terizing the detection.

• Measure the escape rate with a simple technique and a good signal-
to-noise ratio.

Constraints on the detection

• For the escape to be described by thermal activation, the temperature
has to exceed the crossover temperature TCO (see Eq. (2.25)). Consid-
ering that the lowest accessible temperature is approximately 20 mK,
and assuming the measurement is easier at the lowest temperature,
the plasma frequency is limited to:
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Fig. 4.8. Left: Large scale picture of Sample JJD2, presented in this chapter. Large pads
are in aluminum, and capacitors were obtained from parallel aluminum films separated by
Si3N4 (see Chapter 7 for more details). Top right: Connections to the two junctions. One
observes the capacitor CJ in parallel of the detector. Bottom right: SEM micrograph of the
detector Josephson junction under an angle of 50◦. The junction is formed at the overlap of
the two middle electrodes, while external electrodes result from the shadow mask evaporation
technique.

νp0 ≤ 2.5 GHz. (4.3)

• The critical current of the JJ, which sets a scale for measuring the
noise, should be as small as possible. However, the switching signal
of a Josephson junction with too small a critical current is difficult
to detect [86]. In pratice, a critical current of 500 nA yields a good
sensitivity and an easy switching detection (if the critical current is
too large, the bias current flowing through the resistors heats them
excessively, introducing artifacts in the experiments).

• Achieving a plasma frequency below 2.5 GHz with I0 = 500 nA im-
poses a capacitance in parallel of the junction of the order of 10 pF,
which is much larger than the intrinsic capacitance of the junction (of
the order of 100 fF for a 1 µm2 area [87]). An additional capacitor CJ
was therefore fabricated in parallel with the junction, with a technic
presented in details in Chapter 7.

• To use the simple RCSJ model, the impedance Z(ω) seen from the
junction should be equivalent to a resistance for frequencies close to
the plasma frequency, where the junction is most sensitive. To dimin-
ish the impact of the connections lines on this impedance, we used
shunting capacitors CN and Cg. At the plasma frequency, those ca-
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pacitors are expected to present a very small impedance compared to
that of the lines, typically 50 Ω, in order to shunt them. This require-
ment yields:

Cg, CN ≫ 5 pF. (4.4)

Within this limit, the admittance across the JJ reduces, at the plasma
frequency, to the on-chip elements presented in Fig. 4.9:

Y (ω) ≃ Y1 (ω) + Y2 (ω) + Y3 (ω) ≃ 1

R1

+
1

R2

+
1

R3

=
1

R||
. (4.5)

The circuit fits in the RCSJ model, with a resistance

R|| =
(

1

R1

+
1

R2

+
1

R3

)−1

(4.6)

shunting the junction at the plasma frequency.

CJ R//

CJ

Cg

R1

Cg

R2

C2 CN

R3

1 2

C1

3

RCSJ MODEL

Y( )

Fig. 4.9. Equivalent admittance seen in parallel of the junction (see text for conditions).
Capacitors Cg and CN behave as very small impedances around the plasma frequency, and
shunt the external lines. The environment can thus be limited to three on-chip branches
shown here. In this limit, the setup is properly described by the RCSJ model with an effective

resistance R|| =
(

1
R1

+ 1
R2

+ 1
R3

)−1
.

• To avoid the retrapping effects presented in the Chapter 2 [56, 58],
which strongly complicate the interpretation of the switching measure-
ment, the quality factor Q0 of the junction should be large enough in
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the explored range of reduced bias current s: Q0 >
4
πs

. Practically, due
to the very large effect of noise on the rate, s is varied in the range
[0.5 − 1]. The quality factor is thus bounded to:

Q0 > 3. (4.7)

Using Q0 = R||CJωp0, this requires 50 Ω ≤ R|| ≤ 200 Ω. The definition
of R|| as the parallel combination of all the on-chip resistors implies
that each resistor has a value larger than 50 Ω. Nevertheless, the re-
sistance values should be kept as small as possible to avoid heating
effects.

• In the underdamped regime, the magnitude of the voltage that appears
at switching Vsw is controlled by the mean switching current Isw and
the biasing resistor by

Vsw ≃ (R1 + 50)Isw (4.8)

(here R1 + 50 Ω corresponds to the sum of the on-chip bias resistor
and the impedance of the bias line). If R1 is too large, Vsw ≃ 2∆

e
and

a finite current flows after the junction has switched, resulting in the
apparition of quasiparticles in the junction electrodes and heating of
the biasing circuit. It takes then longer for the junction to reset, and
one prefers to choose R1 such that:

Vsw <
2∆

e
. (4.9)

• With the previous requirements fulfilled, other constraints are satis-
fied. Current pulses can be sent through the biasing line with a short
rising time (controlled by R1Cg). The response time of the voltage
measurement on-chip R2Cg is anyway much shorter than the actual
response time of the measurement line (4 µs), therefore the value of
R2 does not limit the response time of the detector.

Constraints on the noise source and the coupling

• In order to simplify the fabrication process, the noise source and the
detector junction are two tunnel junctions fabricated in the same evap-
oration step with aluminum electrodes, superconducting at low tem-
perature. The noise source is thus also a Josephson junction. However,
when biased at a voltage VN larger than twice the superconducting
gap, this junction is expected to behave as a normal metal tunnel junc-
tion in terms of the noise moments S2 and S3 [40]. For the experiment
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to be performed in this regime, the current through the tunnel junc-
tion must exceed Imin

N = 2∆
eRN

.3 With a large value of the resistance of
the tunnel junction RN , the minimum current is small and the effect
of the noise can be set to a negligible amplitude. In practice, we chose
RN of the order of h

e2
≃ 26kΩ, which corresponds to the characteristic

resistance of samples of interest like QPCs.
• If the thermal fluctuations associated to the resistor R3 modulate the

voltage across the noise source, it induces the "feedback" effects de-
scribed earlier. In practice, the impedance of the noise source is much
larger than that of the JJ in series with the coupling capacitor in a
broad frequency range, and the current fluctuations associated with
both the resistor and the noise source flow essentially in the detec-
tion branch, leaving the voltage across the noise source unaffected.
Feedback effects can thus be neglected.

• The capacitors C1 and C2 in series form an equivalent capacitor CC =
C1C2

C1+C2
. The −3 dB point of the first order RC filter formed by R3

and CC is at (R3CC)−1. The numerical simulations presented in the
previous chapter confirm that this cutoff has no effect on the statistics
of the noise that reaches the detector if:

1

R3CC
≤ νp0

100
∼ 10 MHz. (4.10)

4.2.3 Chip parameters

The experimental results on two samples will be discussed. Many tests
were performed on Sample JJD1, but it turned out that the behavior of
the detector junction was imperfect, as discussed later. Reliable results
could be obtained on Sample JJD2, therefore we first present the results
obtained with Sample JJD1 then those obtained with Sample JJD2. The
parameters of both samples are given in Table4.1, which summarizes the
nominal values of the design and the values measured in-situ, as described
in the following section.

3 As will be presented further, the switching of the detector when the noise source is biased
below the gap is not understood, therefore all the measurements are done for VN above
2∆
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Parameter Sample JJD1 Sample JJD2

RJ 926Ω 745 Ω
IAB0 0.340 µA 0.420 µA
I0 0.358 µA 0.437 µA
CJ 13 pF 12.5± 0.5 pF
ωp0 1.5 GHz 1.65 GHz
Q0 10 12

RN 30.8 kΩ 22.9 kΩ
Imin
N 11 nA 15 nA

C1 250 pF 230 pF
C2 350 pF 345 pF
Cg 200 pF 190 pF
CN 150 pF 140 pF
CL 220µF 220µF

R1 200 Ω 215 Ω
R2 500 Ω 515 Ω
R3 200 Ω 215 Ω
RL 1.5 MΩ 1.5 MΩ

Table 4.1. Parameters of the two samples presented in this chapter. RJ is the normal re-
sistance of the detector junction, while RN is the resistance of the tunnel junction, IAB0

corresponds to the prediction of the critical current from the Ambegaokar-Baratoff predic-
tion [47] (see text for details). The critical current is obtained from switching experiments
described further. Plasma frequencies and quality factors were estimated from the others
parameters, based on a RCSJ model. The values of the capacitor were measured indepen-
dently only for Sample JJD2, while the values for Sample JJD1 are estimations from typical
results. The values of the resistances R1, R2, and R3 differ between the two samples due to
a technological change.

4.3 Circuit characterization & measurement
techniques

The sample was mounted on a small printed circuit board thermally
anchored to the mixing chamber of a dilution fridge with a base temper-
ature of 20 mK. Connections lines were heavily attenuated and filtered
to reduce spurious noise. The description of the connections is given in
Chapter 8.

4.3.1 Junctions

Detector JJ

The I(V ) characteristics of the detector junctions of Samples JJD 1 and
JJD 2 are shown in Fig. 4.10(a) and 4.10(b). Using the superconduct-
ing gap voltage ∆/e ≃ 200 µV determined from the I(V ) characteristics
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and the normal resistance of the junction RJ , one predicts the criti-
cal currents in Table 4.1 using the Ambegaokar-Baratoff relation from
Eq. (B.94) [47] (in this section, we considered in a good approximation
that the gap are the same in both electrodes, although they differ be-
cause of different thicknesses. See Appendix B.6 for more details). This
prediction is in good agreement with the values precisely deduced by the
switching measurements described further. On the I(V ) characteristics,
two unexpected features are observed:

• Near 100 & 150 µV in Sample JJD1, and 100 µV in Sample JJD2,
the current is not zero. The observed current peaks are attributed to
inelastic Cooper pair tunneling mediated by resonances in the circuit
at the corresponding frequencies 2eV

h
, although it is difficult to at-

tribute these frequencies (25 & 35 GHz) to specific parts of the circuit
configuration.

• At VJ ≃ 400 µV, the I(V ) characteristics is not vertical, but shows
a slight "back-bending". This effect is often attributed to a reduction
of the gap with heating [36]. Indeed, at that voltage, a dissipative
current starts to flow in the junction and creates a stationary popu-
lation of quasiparticles in the electrodes of the JJ which reduces the
superconducting gap. The higher the current, the smaller the gap,
thus producing a back-bending of the curve. This feature is discussed
in more details in Appendix A.
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Fig. 4.10. Left: I(V ) characteristics of the detector of Sample JJD1. We attribute the
resonances near VJ = 100 µV and 150 µV to inelastic tunneling mediated by the modes of
the electromagnetic environment. The large dot gives the prediction for the critical current
IAB0 using the Ambegaokarr-Baratoff relation. Right: I(V ) characteristics of the JJ detector
of Sample JJD2, with similar remarks. The dashed line corresponds to the predicted load
line of the measurement.



4.3 Circuit characterization & measurement techniques 89

Current calibration The detector junction is neither perfectly current
biased, nor voltage biased (see Fig. 4.11). It is connected to a voltage
source through a heavily attenuated 50 Ω coaxial line and two resistors
R1 and Rm in series. Rm is a probe resistor across which the voltage is
measured, giving access to the current IB flowing through the detector
junction. It allows to calibrate the ratio dIB

dVB
that relates the voltage of

the source VB and the current IB. For example, this ratio was found to
be 683nA/V for Sample JJD2. To compare this measured value with the
nominal attenuation of the line, we can model the complete line having a
total attenuation a in dB with a symmetric combination of three resistors
(see Fig. 4.11 and Appendix B). In the limit of large attenuation, the
values of the resistances are given by:

Reff ≃ 50 Ω and 2
reff

Reff

≃ 10−
a
20 . (4.11)

The ratio dIB
dVB

can thus be expressed as

dIB
dVB

≃ 1

Reff +Rm +R1

reff

Reff

. (4.12)

For Sample JJD2, the measured value of dIB
dVB

corresponded to an effec-
tive attenuation of 80.5 dB, in good agreement with the 79 dB nominal
attenuation of the coaxial line.

VB
I0

CHIPEFFECTIVE LINE

R1RmReffReff

reff

VM

VProbe

IB

Fig. 4.11. Simplified scheme of the biasing line of the detector junction. The line is composed
of a series of attenuators and filters, which can be modeled by a symmetric combination of
the resistors Reff and reff .

Switching voltage The total resistance on the biasing line of Sample
JJD2 was Reff +Rm +R1 = 275 Ω which gives a load line



90 4 Experimental detection of an asymmetric noise with a Josephson junction

I = Isw −
V

275 Ω
(4.13)

shown in Fig. 4.10(b).

Noise source

The I(V ) characteristics of the tunnel junctions used as noise sources are
shown in Figs.4.12 and 4.13. At large scale, the characteristics is linear, as
expected from a tunnel junction. At the scale of twice the superconduct-
ing gap, the characteristics of a Josephson junction is observed, although
measuring the supercurrent required some care due to the presence of
spurious noise. The curves also present a back-bending behavior at twice
the superconducting gap.
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Fig. 4.12. Left: Large scale I(V ) characteristics of the tunnel junction of Sample JJD1.
Right: At the scale of the superconducting gap.
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Fig. 4.13. Left: Large scale I(V ) characteristics of the tunnel junction of Sample JJD2.
Right: At the scale of the superconducting gap.
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Noise The complete expression for the second moment of shot noise at
zero frequency produced by a tunnel junction at finite temperature is
given [21] by:

S2 = e |IN | coth
[
eVN

2kBT

]
. (4.14)

In the experiment, VN is always higher than 2∆
e

. For temperatures lower
than 500 mK, this implies that the tunnel junction used here as a noise
source is always in the large bias regime and finite temperatures effects
are neglected:

eVN
2kBT

≥ 5 therefore coth
[
eVN

2kBT

]
≃ 1. (4.15)

Coulomb Blockade The tunnel junction is a small junction, thus with a
small intrinsic capacitance. However, the total capacitance seen from this
tunnel junction is the series combination of the coupling capacitor C1 and
C2 and the capacitance CJ across the detector, thus a large capacitance
of the order of 10pF. Coulomb Blockade effects [88] are therefore absent.

4.3.2 Rate measurements

The measurement of the escape rate of the Josephson junction is per-
formed by applying current pulses of amplitude IB and duration τp with
a typical shape shown in Fig. 4.14. During a pulse, the phase difference
across the junction has a finite probability P to go over the barrier and
escape:

P = 1− e−Γτp . (4.16)

If the escape occurs, the phase runs down the potential and a finite
voltage develops across the junction. In order to lengthen this voltage
pulse and facilitate its measurement, the bias current is reduced to a value
Isus < IB during a time τsus ≫ τp. The probability that switching occurs
during this "sustain" time is negligible. The voltage pulse is amplified and
detected at room temperature. The system is then "reset" by lowering
the current to zero or even a slightly negative value; if the junction has
switched, it gets retrapped back on the supercurrent branch.

In order to measure simultaneously the escape probability for positive
and negative bias, signals with opposite signs and same amplitudes are
sent alternatively, as it is shown in Fig. 4.14. This experiment is repeated
a large number of times N , typically N = 104. Hence, the signal sent to
the junction is a burst of current pulses, as shown in Fig. 4.15. The escape
probability is the ratio of resulting voltage pulses across the JJ over N .
The repetition period of the signal is called tsignal.
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Fig. 4.14. Typical signal used to obtain the escape rate. The pulse time corresponds to the
effective probing time. Sustain time allows to facilitate the detection, by holding the voltage
across the junction. The symmetry of this signal allows to probe simultaneously escape rate
for positive and negative bias.
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Fig. 4.15. Illustrative example of the escape probability measurement procedure. In this
case, N = 4 current signals are sent to the detector. During the probing pulse, the junction
can escape, producing a voltage pulse. A non-zero voltage is held during all the sustain time.
When the voltage crosses a threshold, the event is detected, yielding the escape probability
as the ratio of detected events over N . The escape probability is measured simultaneously
for positive (P+) and negative (P−) pulses using two thresholds detectors.
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Tuning the pulse shape This method assumes that the current in the
junction is constant during the pulse. If the current presents an overshoot,
the switching will be dominated by this imperfection because of the ex-
treme sensitivity of the escape rate to the current amplitude. Since the
signal synthesized at room temperature by the voltage source is distorted
by the heavily attenuated and filtered line, the current flowing through
the junction during the pulse has no reason to be perfectly constant. The
distortion is compensated by tuning the pulse shape with the following
procedure :

• An histogram of the escape instants during the pulses is performed, as
shown in Fig.4.16. The probability to escape at time tesc between time t
and t+dt is given by p = Γdt e−Γt. In the case of low escape probability
P ≪ 1, one has Γt ≪ 1 for all t, and p is a constant p ≃ Γdt. The
histogram shown in Fig. 4.16 was measured in this regime, and used
to tune the pulse. The outcome of such a tuning procedure is shown
in Fig. 4.17 where only the effective pulse part is shown. It is clear
from the shape that the main effect to be compensated is the ringing
in the cable for a short rise time.

• The pulse synthesized by the voltage source is tuned manually until
a flat histogram is obtained for a long pulse duration τp ≃ 20 µs. At
long times, after an oscillatory behavior, the current in the junction is
exactly given by the dc value measured with dIB

dVB
. Only the beginning

of this pulse shape is kept to obtain the desired shape and duration
of shorter pulses.

Signal symmetry dc current offsets in the junction would lead to an
artificial asymmetry in our measurement of the escape probability for
positive and negative biasing signs. To avoid offsets, that might result
from thermoelectric voltages, the signal is fed to the biasing line through
a large unbiased capacitor Cin = 220 µF placed at room temperature.4

This capacitor blocks the dc connection between the first stage of the
dilution fridge and the line at room temperature, preventing dc current to
flow in the attenuators. The use of this large capacitor was only possible
when sending a symmetric bias signal to the detector junction.

4 We added also two capacitors in parallel of values 1 µF and 100 nF to ensure a fast
response.
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Fig. 4.16. Screen capture of an oscilloscope in histogram mode using a pulse with τp ≃
21 µs. Many traces are shown, corresponding to the voltage across the junction during the
measurement time. When switching occurs, a finite voltage develops across the junction.
The histogram shown in the bottom part of the figure corresponds to the number of traces
crossing the detection window shown in the middle, accumulated over a long time. The
escape probability being here smaller than 0.1, the histogram is expected to be completely
flat at this scale.
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Fig. 4.17. Time trace of the signal synthesized by the voltage source, focused on the pulse,
with τp ≃ 21µs. Due to the improper transmission of the biasing line, the shape of the pulse
sent from the voltage source has to be tailored to obtain a suitable square bias current pulse
on the junction.
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4.4 Results on Sample JJD1

4.4.1 Detection parameters

The escape probability is measured as a function of the pulse height IB for
positive and negative bias, in the range of current where P goes from 0 to
1, as shown in Fig. 4.18(a) (this curve is taken when the current through
the noise source is the lowest). The escape probability used here is the
mean value of the probabilities obtained for both bias signs, in order to
eliminate the asymmetry due to the third moment of the noise, that is
addressed further. The escape probability is converted into a rate using
Γ = − 1

τp
ln (1− P ). Theoretically, this rate is expressed from Eq. (2.30)

as [50]:

Γ = λ
ωp(IB/I0)

2π
e
−∆U(IB/I0)

kBTeff , (4.17)

where compared to Eq. (2.30), we introduced the effective escape temper-
ature Teff that represents the noise power, and which can be higher than
the fridge temperature T . Fitting the measured rate with this expression
allows to extract the critical current and an effective temperature.5 A
visual way to confirm the correct dependence of the rate with the barrier
height is to represent the function

B2/3(IB/I0) =

(
ln λ

ωp(IB/I0)

2πΓ (IB/I0)

)2/3

, (4.18)

as shown in Fig. 4.18(b). In the thermal activation regime and considering
the approximate expression of the barrier height from Eq. (2.14), this
function is predicted to vary as:

B2/3 =

(
∆U(IB/I0)

kBTeff

)2/3

∝ T
−2/3
eff (1− IB/I0) . (4.19)

Hence the function B2/3 should vary linearly with s = IB/I0, as observed
in Fig. 4.18(b). The critical current I0 = 0.358 µA corresponds to the
intersection between this line and the current axis. The effective tem-
perature T 0

eff ≃ 70 mK is obtained from the slope (in the following, T 0
eff

represents the effective temperature measured for the lowest current in
the noise source). T 0

eff is higher than the fridge temperature T = 20mK, a
discrepancy partly due to Joule heating of the resistors and to insufficient

5 This is performed using the exact expression for the barrier height∆U from Eq. (2.13). The
prefactor for our experimental range of quality factors and barrier height is approximated
to λ ≃ 0.8.
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filtering of black-body radiation of the fridge elements placed at higher
temperatures. The heating of the bias resistor is discussed in details in
Appendix A.2. In the following, one considers that the base temperature
of the measurement is not given by the fridge temperature, but by T 0

eff .
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Fig. 4.18. Left: Variation of the escape probability with the bias current IB . Data obtained
using N = 105 pulses of duration τp = 0.94 µs (τsus = 3 µs and tsignal = 18 µs). The solid
line is the fit using Eq. (4.17), that yields I0 = 0.358 µA and T 0

eff ≃ 70 mK. Right: Similar
data shown as a B2/3 function using Eq. (4.18). The solid line is a prediction with the same
critical current and effective temperature. The dashed vertical line corresponds to I0.

4.4.2 Effect of the shot noise

When the current in the noise source is switched on, shot noise increases
the effective temperature. This effect is demonstrated in the B2/3 plots of
Fig. 4.19, where the slope diminishes with IN (the slope is proportional

to T
−2/3
eff ). The values of s = IB/I0 for which P goes from 0 to 1 shift

down with IN from s ≃ 0.93 to s ≃ 0.6.
In Figure 4.19, the lines corresponding to the fits of the experimental

results do not extrapolate to the same point at B2/3 = 0. In other words,
the apparent critical current changes when increasing the amplitude of
the shot noise, while it is only expected to affect the effective temperature.
The apparent critical current is plotted in Fig. 4.20 as a function of IN .

In order to confirm that this unexpected behavior of the critical cur-
rent was not an experimental artifact, we set the shot noise to a negligible
amplitude, and then increased the fridge temperature. As can be seen in
Fig.4.21, the effective temperature follows the fridge temperature, except
for the smallest values as discussed in Sec. 4.4.1. In this situation, the
behavior of the critical current with temperature is properly described
by the Ambegaokar-Baratoff prediction [47] (see Fig. 4.20 and Appendix
B.6 for more details). This measurement indicates that the behavior of
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Fig. 4.19. Dots: B2/3 functions obtained from escape rate measurements performed for
IN = 0.011, 0.21, 0.52, and 1.15 µA from right to left. Solid lines: Fits using Eq. (4.19)
and the exact expression of the barrier height from Eq. (2.14). The effective temperature is
obtained from the slope, and the critical current is read from the intersection between the
fit and the current axis. When IN is increased, the absolute value of the slope diminishes,
denoting the increase in effective temperature. But, unexpectedly, the extrapolated critical
current also decreases, since all the lines do not cross at a single point on the current axis.

the critical current under simple thermal fluctuations did not present any
unexpected features. The evolution of the critical current of the detector
was thus well understood for the case of an elevated fridge temperature,
but very surprising in the case of shot noise.

A possible explanation can be proposed: the shot noise spectrum ex-
tends up to a frequency corresponding to the energy eVN [21], which is
here much larger than the superconducting gap (the smallest value be-
ing eVN ≃ 2∆), as can be seen in Fig. 2.10. This high-frequency noise
is energetic enough to break Cooper pairs in the electrodes forming the
detector. The population of quasiparticles created through this process
reduces the superconducting gap in the electrodes and thus the critical
current.

From this measurement on Sample JJD1, we concluded that
the shot noise induced of a change in the critical current of the
detector, probably through the creation of quasiparticles. Since
this change prevented us from measuring the effect of the shot
noise reliably, we designed a second sample in order to protect
the detector from those quasiparticle effects. For this purpose,
we used normal metal pads as quasiparticles traps, as discussed
further.
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Fig. 4.20. Symbols: Relative change of the apparent critical current (with respect to
I0 = 0.358µA) as a function of the fridge temperature (dots) or the current in the noise source
IN (squares). Both affect the effective temperature, and scales in current and temperature
are linked by Eq.(4.23). Solid line: Prediction of the BCS theory for the modification of the
critical current with the temperature of the electrodes, for two electrodes having the same
superconducting gap (see Appendix B.6 for details).
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Fig. 4.21. Dots: Effective temperature extracted from switching measurement for various
fridge temperatures T . Solid line: the line Teff = 0.95T , probably accounting for a slight
miscalibration of the thermometer. At low fridge temperature, the effective temperature
saturates down to 70 mK.
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4.4.3 Retrapping effects

When the noise amplitude was increased at very large values, the range
of reduced bias current where switching occurs was reduced down to
IB ≃ 50 nA. In this region, the escape appeared to be dominated by the
retrapping effects predicted below s ≃ 4

πQ0
, as seen in Fig. 4.22 where

the transition from 0 to 1 of the escape probability gets narrower when
increasing the effective temperature. This turnover, which had already
been observed in [89, 90, 91, 92], was used in [37] to evaluate the quality
factor from the reduced bias current. In our case, this was not possible
since the evolution of the critical current due the shot noise prevented us
from defining a value s ≃ IB

I0
independent of IN , especially for the large

values of IN used in this case (up to 7.5µA, corresponding to a change in
critical current of the order of ∆I0

I0
≃ 40% if one extrapolates the curve

shown in Fig. 4.20).
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IB HnAL

P

Fig. 4.22. Escape probabilities obtained when increasing the effective temperature. From
right to left: First three curves: At IN = 0.012 µA when increasing the fridge temperature
(20, 100, and 200 mK from right to left). Next curves: Escape probabilities obtained at T =
400mK for IN = 0.012, 0.520, 1.25, 2.2, 3.3, 5.3, 7.4 µA. For very large effective temperature
(last four curves), increasing IN does not anymore broaden the escape probability curve.
This is interpreted as an effect of retrapping.

4.5 Results on Sample JJD2

The experimental results on Sample JJD1 suggested that the response
of the detector was affected by quasiparticles in the electrodes, leading
to changes of the critical current with the noise power. We present now
results on Sample JJD2 on which we attached "quasiparticles traps" (see
Fig. 4.23), i.e. large normal electrodes in good contact with the electrodes
of the junction, to remove rapidly the quasiparticles [93].
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Fig. 4.23. SEM Micrograph of the detector junction of Sample JJD2, taken with an an-
gle of 50◦. Large normal metal pads (bright zone) were placed in good contact with the
superconducting electrodes (light gray zone) of the detector to evacuate quasiparticles.

4.5.1 Effect of noise on the effective temperature

Experimental detection

Figure 4.24(a) was produced at T = 20 mK using exactly the proce-
dure described in Sec. 4.4.1. The corresponding variations of the critical
current are plotted in Fig. 4.25. The variation are now smaller than in
Sample JJD1, and also non-monotonous. Recent calculations by D. Ur-
ban et al. [12] suggest that the variations of the apparent critical current
could be due to the frequency dependence of the circuit. Actually, in such
a case, the use of a B2/3 plot to extract an effective temperature and the
critical current looses its validity, as detailed further in text. Anyway, the
remaining 2% relative variations of the critical current were considered
small enough to be neglected at first order. In Fig. 4.24, we repeated the
fitting procedure when fixing a common critical current I0 = 0.437 µA
for all curves.

This procedure was repeated at various fridge temperatures. From the
B2/3 plots, we extracted the variation of the critical current and of the
effective temperature with IN , shown in Fig. 4.25 and 4.26.

The variation of the apparent critical current with the noise ampli-
tude is very similar at all fridge temperatures. We again neglected these
variations and considered a constant critical current I0 = 0.437µA for all
values of IN and fridge temperatures up to 370 mK. The effective tem-
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Fig. 4.24. Top: B2/3 plots taken at IN = 0.02, 0.44, 0.86, 1.27, 1.69 and 2.11 µA (from
right to left). The critical current is left as a fit parameter for each curve. Data were obtained
with N = 105 pulses of duration τ = 0.53 µs (τsus = 3 µs and tsignal = 18 µs). Bottom:
Same data. The fits have only the slope as a parameter, the critical current being fixed at
the common value I0 = 0.437 µA.

peratures presented in Fig. 4.26 are extracted from fits using a common
critical current.

At all temperatures of the fridge, the effective temperature increases
with the current in the noise source with a similar slope, from the base
temperature up to above 1.2 K. Note that the effective temperature can
be higher than the critical temperature of the superconductor without
any incidence. The two properties are absolutely not related one to each
other: the effective temperature is only a measure of the noise power.
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Fig. 4.25. Top: Relative changes at T = 20 mK of the apparent critical current of Sample
JJD2 with IN (with respect to I0 = 0.437 µA) deduced from the B2/3 plots of Fig. 4.24
(linked circles). Compared to the same effect measured on Sample JJD1 (squares). Bottom:
Relative variation (with respect to I0 = 0.437 µA) of the apparent critical current as a
function of IN for T = 20 mK (dots), 110 mK (squares), 218 mK (triangles), and 370 mK
(diamonds)

Comparison with predictions

RCSJ Model The predicted effective temperature can be expressed from
the amplitude of the total noise reaching the junction. In presence of
different noise sources, one has to evaluate the contribution of each of
them to the escape process:

• On the one hand, let us first consider the different contributions sepa-
rately. The junction is placed in parallel with three branches described
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Fig. 4.26. Effective temperature as a function of IN , for T = 20 mK (dots), 110 mK
(squares), 218 mK (triangles), and 370 mK (diamonds) extracted using I0 = 0.437 µA.

in Fig. 4.9. The total spectral density of the noise reaching the junc-
tion, which can be described by a short-circuit when it is biased on the
supercurrent branch, is the sum of the noise spectral densities emitted
by each branch (see [94] for more details). The three resistors and the
noise source are sources of white current fluctuations, therefore the
total spectral density is:

SDeff =
2kBT1

R1

+
2kBT2

R2

+
2kBT3

R3

+ e |IN | . (4.20)

• On the other hand, to the admittance Y (ω) = 1
R||

in parallel to the

junction in the equivalent circuit of Fig.4.9 is associated a noise source
with spectral density:

SDeff =
2kBTeff

R||
. (4.21)

Matching the two expressions (4.20) and (4.21) leads to:

Teff =
R||
R1

T1 +
R||
R2

T2 +
R||
R3

T3 +
1

2
R||

e

kB
|IN | . (4.22)

When all the resistors are at the same temperature T , one obtains:

Teff = T +
1

2
R||

e

kB
|IN | (4.23)

which is the expression for an RCSJ model presented in Eq. (2.72). This
prediction is compared with the data in Fig. 4.27. At all temperatures,
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the predicted slope is larger than the measured one, which is, moreover,
not exactly the same for the different curves. This suggests that R|| does
not correctly describe the admittance across the junction at the relevant
frequencies.
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Fig. 4.27. Symbols: Measured effective temperature for T = 20 mK (dots), 110 mK
(squares), 218 mK (triangles), and 370 mK (diamonds). Solid lines: Predicted effective
temperature from the lumped-element model of the environment (Eq. 4.23). The disagree-
ment suggests that this model is inaccurate.

Frequency dependence of the parameters In order to understand this
discrepancy, we performed an analysis of the actual circuit at microwave
frequencies, which revealed the origin of this mismatch. Due to the mil-
limeter size of the on-chip connection pads, the circuit is expected to
present resonances at a few tens of GHz. But with the supplementary
on-chip resistors, theses resonances have a poor quality factor, and their
effects span over a wide frequency range. This affects the system down
to the plasma frequency. The environment of the junction, that is now
written Y e(ω), is frequency-dependent, and thus deviates from a simple
Ohmic behavior. Moreover, the shot noise reaching the junction becomes
a colored noise. A current fluctuation δIN(ω) emitted by the noise source
leads to a current α(ω)δIN(ω) through the detector, where α(ω) is a
transfer function. The microwave simulation software Sonnet was used
to model the effective environment of the junction and the transfer func-
tion.

For the simulation we considered the large scale circuit presented in
the left panel of Fig. 4.8, but in absence of the junctions and of the
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capacitance CJ . Capacitances and resistors were modeled with lumped
elements, and only the sample elements were taken into account (there-
fore excluding the effects of the connection lines. This simulation is thus
only valid for sufficiently large frequencies).

• We first placed only a pair of ports at the position where the detector
junction is connected, and computed the admittance Y e(ω) seen from
this point.

• We then placed a second pair of ports at the position where the noise
source is connected, and computed the admittance matrix between
the two ports: (

I2

I2

)
=

(
Y11 Y12

Y21 Y22

)(
V1

V2

)
(4.24)

where Ii and Vi are the current through and the voltage drop across
the pair of ports (1 for noise source, 2 for detector). Assuming V2 = 0
for a detector on its supercurrent branch, the current flowing through
the port 1 (detector) as a function of the current flowing through the
port 2 (noise source) yields the transfer function:

α =
I2

I1

=
Y21

Y11

. (4.25)

Plasma frequency and quality factor The real part of Y e(ω) obtained
from the simulation is plotted in Fig. 4.28. At the lowest frequency, it
reduces to the value calculated from the lumped-element model 1

R||
=

1
89 Ω

. But it strongly departs from this value at larger frequencies, and
especially in the range of the plasma frequency of the junction (typically
1.5 GHz).

• The plasma frequency of the junction is obtained from:

CJωp −
1

LJ (s)ωp
+ Im [Y e(ωp)] = 0 (4.26)

where LJ (s) is the Josephson inductance (see Sec. 2.1.3). The plasma
frequency at zero bias is found to be νp0 ≃ 1.5 GHz, slightly lower

than the value
√
I0
ϕ0CJ

≃ 1.7GHz found when considering a frequency-

independent environment. The s-dependence of the plasma frequency
is plotted in Fig.4.29. It is compared with the approximate expression:

νp(s) = νp0
(
1− s2

)1/4
(4.27)

that corresponds to the standard s-dependence. The very good agree-
ment between the two curves allows one to consider that the plasma
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Fig. 4.28. Real part of Y e(ω) calculated using a microwave simulation software in units of
the expected lumped-element value 1/R|| = 1/89 Ω above the low frequency cutoff, shown
as a dashed line.

frequency obtained with the complete environment is just slightly
scaled down,6 and is given by Eq. (4.27). Since experimentally s ∈
[0.5− 0.93], the plasma frequency is tuned in the range [1− 1.4 GHz].

• The quality factor is also modified by the environment. At zero bias,
it is given by :

Q0 =
1

Re [Y e (ωp0)]
CJωp0 ≃ 4.5 (4.28)

compared to a nominal value of 12 with the simple lumped-element
model. As a function of s, the quality factor is

Q(s) =
1

Re [Y e (ωp (s))]
CJωp(s) (4.29)

plotted in Fig. 4.29. It is compared to Q0 (1− s2)
1/4

, which is the s-
dependence in the RCSJ model. It is clear from this figure that the
effect of the environment on the quality factor cannot be described by
a simple numerical factor, since the s-dependence is strongly different.
In the relevant experimental range s ∈ [0.5− 0.93], we considered that
Q0 = 5 was a simple and sufficient approximation.

Transfer function The magnitude of the simulated transfer function
is shown in Fig. 4.30. At low-frequency, its behaviour is due to the on-
chip filtering designed on purpose. Between 50 MHz and 300 MHz, it is
equal to unity, in agreement with the lumped element model. But at

6 Since the cross-over temperature is rescaled down, the condition on the thermal activation
regime remains fulfilled.
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Escape temperature from a harmonic assumption A simple, although
possibly naive, prediction for the effective temperature is obtained for
the frequency-dependent circuit when considering that the response of
the junction is dominated by its dynamics at the plasma frequency. The
effective temperature can then be expressed following the procedure that
yielded Eq. (4.23), but with some changes:

• The spectral density of the noise e |IN | is replaced by SD2 (ω) ≃
e |α(ωp)|2 |IN | .

• The resistor R|| is replaced by (Re [Y e (ωp)])
−1 .

The effective temperature writes at first order:

Teff ≃ T 0
eff +K (ωp) |IN | . (4.32)

where

K (ωp) =
1

2

e

kB

|α(ωp)|2
Re [Y e (ωp)]

. (4.33)
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Fig. 4.33. Symbols: Experimental effective temperature from Fig. 4.26. Solid lines: Ex-
pected effective temperature obtained from Eq. 4.32, based directly on the results obtained
using a microwave simulation software.

In principle, since the temperature with this complete model is depen-
dent on the plasma frequency ωp(s), it is also dependent on the reduced
bias current. This dependence on the temperature with the reduced bias
current should be seen on the B2/3 functions shown in Fig.4.24. However,
although a large range of s is spanned by this complete measurement,
each curve taken separately for a given value of IN only corresponds to
a small range of s. Since the s-dependence of the plasma frequency is
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very smooth, the effective temperature is thus almost constant for each
curve. At this level, one assumes a single effective temperature for each
value of IN . In Fig. 4.33, the temperature calculated at the reduced bias
current corresponding to P = 0.6 from Eq. (4.32) is compared with the
experimental result; the agreement is now correct, without any adjustable
parameter, which gives confidence in our understanding of the effect of
the second moment of the shot noise on the escape rate of a Josephson
junction out of its zero-voltage state.

Escape temperature with a complete resolution In the time interval be-
tween the publication of this experimental results [38] and the writing of
this manuscript, D. Urban and H. Grabert [12] developed a generalization
of the theory presented in [11]. This generalized theory allows to compute
the escape rate out of the zero-voltage state for a Josephson junction in
an arbitrary environment current-biased by a colored asymmetric noise.
Using the model circuit of Fig. 4.31, they computed the escape rate for
various values of IN in the range of s corresponding to the experiment,
and reproduced the B2/3 functions, as shown in Fig. 4.34.
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Fig. 4.34. Symbols: Experimental B2/3 functions obtained at T = 20 mK, already pre-
sented in Fig. 4.24. Solid Lines: Prediction obtained with a generalization of the theory
presented in [11] (see text) for IN = 0.02, 0.44, 0.86, 1.27, 1.69 and 2.11 µA from right to left
(similar to the experimental curves) and T 0

eff = 80 mK. Dashed line: Fit of the prediction
obtained for IN = 2.11µA with the Eq.(4.19) and a critical current kept as a free parameter.

An important feature of this predicted B2/3 functions is that they
are not anymore linear as (1 − s), the definition of an effective temper-
ature thus looses it validity, since it becomes strongly s-dependent (as
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was already the case in the simple harmonic assumption, althougth we
neglected this effect). However, for the sake of comparison with the ex-
periment, it is possible to extract an effective temperature by fitting the
predicted B2/3 functions with the expression from Eq. (4.19) in the range
B2/3 ∈ [3 − 4.3] and with a critical current I0 = 0.437µA, as is done for
the experimental curves.7 The effective temperature corresponding to the
predicted response is compared with the one extracted from the experi-
mental data, as shown in Fig. 4.35, without any adjustable parameters.
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Fig. 4.35. Symbols: Experimental effective temperature from Fig. 4.26. Solid lines: Ex-
pected effective temperature by performing a complete calculation of the escape rate from
the model circuit of Fig. 4.31 [12], using the base temperatures T = 80 mK, 128 mK, 230
mK and 380 mK.

The correct agreement with the data confirms that the response of
the junction is properly captured by this generalized theory, and that
the harmonic assumption performed in the previous section leads to a
good understanding of this response.

4.5.2 Rate asymmetry

Having understood the effect of the second moment of the noise on the
effective temperature of the junction, the effect of the asymmetry of the
noise on the escape rate is now described.

7 When the critical current is kept as a free parameter in this procedure, its apparent value
depends on IN . This effect possibly accounts for part of the modulation of the apparent
critical current observed in Fig. 4.25.
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Experimental detection

The effect of the noise asymmetry on the rate is seen by changing the
relative sign of the currents through the noise source and through the
detector.

• When the bias current of the detector junction and the third moment
of noise seen by this detector have the same sign, the rate is higher
than for a Gaussian noise at the same effective temperature, denoted
Γ (Teff). Since the noise δIN as defined in Fig. 4.7 subtracts from the
bias current, this situation is accessed when IN and IB are of opposite
sign. Two configurations are thus possible:
– {IN ≤ 0 and IB ≥ 0}, with a rate Γ+(−IN)
– {IN ≥ 0 and IB ≤ 0}, with a rate Γ−(+IN).

• When the junction bias current and the third moment of noise have
opposite signs, the rate is lower than Γ (Teff). Experimentally, this
situation is obtained in the two configurations:
– {IN ≥ 0 and IB ≥ 0}, with a rate Γ+(+IN)
– {IN ≤ 0 and IB ≤ 0}, with a rate Γ−(−IN).

This summarizes into the expected relations:



Γ+(−IN) = Γ−(+IN) > Γ (Teff)

Γ+(+IN) = Γ−(−IN) < Γ (Teff)
(4.34)

In the conditions of this experiment, the relative effect on the rate
due to the third moment is a tiny effect, typically a few percent, at
most 6 %. The escape rate being very sensitive to the bias current and
to the temperature, which are submitted to offsets and drifts, several
experimental effects can produce such a rate asymmetry and one needs
to be particularly careful with the measurement. A single measurement of
the rate is therefore not sufficient to separate the very tiny contribution
of the third moment from the large effect due to the second moment. To
eliminate part of the effect of spurious drifts, we define the two quantities:

R+
Γ = Γ+ (−IN) /Γ+ (+IN) and R−Γ = Γ− (+IN) /Γ− (−IN) . (4.35)

which we call rate asymmetries. If the bias current IB drifts slightly with
time, both Γ+ (−IN) and Γ+ (+IN), which are measured with the same
bias pulse, should be modified the same way. As long as this drift stays
small, their ratio R+

Γ should be almost constant. Moreover, the two rate
asymmetries are expected to be equal in absence of artifacts.
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Rate asymmetry as a function of current in the noise source The
procedure to measure the asymmetry signal R±Γ as a function of IN is as
follows:

1. A given value of IN is chosen.
2. A curve similar to the one presented in Fig.4.18(a) is measured where

the evolution of the mean escape rate 1
2

[Γ+ (+IN) + Γ− (+IN)] is
monitored as a function of the bias current with N = 104 pulses
in order to extract the effective temperature Teff(+IN).

3. The current in the noise source is first fixed to +IN ;

a) The amplitude of the detector bias current is adjusted to obtain
a switching probability P = 0.6 for the positive bias current, cor-
responding to a rate Γ = 1.76 MHz and a reduced barrier height
B ≃ 6.5.

b) The escape rates Γ+ (+IN) and Γ− (+IN) are measured simulta-
neously using N = 105 pulses.

4. The current in the noise source is then inverted and fixed to −IN .

a) The amplitude of the detector bias current pulses is kept constant.
b) The escape rates Γ+ (−IN) and Γ− (−IN) are obtained similarly.

5. From the steps 3 and 4, one extracts a value for R+
Γ and R−Γ .

These steps are repeated typically 100 times each, except at the low-
est temperature where we repeated 250 times. This corresponds to
2×100×105 = 2×107 signals of 18µs, therefore a measurement time
of 6 min for each value of IN , which yields two measurements of the
rate asymmetry R+

Γ and R−Γ .8

A typical outcome of this procedure is found in Fig. 4.36. We reproduced
in this figure the four different rates extracted for 100 repetitions of steps
3 and 4 at T = 110mK. As can be seen in some cases, a spurious difference
in amplitude between the positive and negative bias pulses was large
enough to induce a significant difference between the rates in absence of
any effect of shot noise. The difference between the rates corresponds to
a difference of 0.3 nA between the current amplitude of the two pulses,
which a relative difference of 0.1%. We attributed this slight difference
to the signal generators, that appeared to provide a slightly asymmetric
signal in some ranges.9 On the bottom left panel of this figure, one can
also observe that the rate could drift a little during the measurement,

8 In fact, to avoid relaxations effects, we introduced latency times between two measure-
ments at different values of IN , so that the measurement time of one point was typically
10 min.

9 The spurious offsets were essentially predominant for the lowest effective temperature,
where the dependence of the escape probability with the bias current is the steepest. At
larger temperatures, these offsets could be neglected.
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∆Γ ∝ ∂Γ

∂IB
∆IB. (4.38)

The current shift ∆IB increases with IN due to the third moment of the
noise, but ∂Γ

∂IB
, which can be considered as the sensitivity of the rate,

diminishes due to the increased effective temperature. The shape of RΓ
is thus a convolution between the increasing effect of the third moment
(linear increase observed at small values of IN) and the loss of sensitivity
due to the second moment (decrease in I−2

N observed at larger values of
IN). It is therefore expected to present the observed maximum.

Sensitivity

In order to compare the performance of a Josephson junction with other
conventional detectors, we estimated here its sensitivity for the second
and third moment, as was done at the beginning of this chapter. The
total time of the measurement is tmst = N × tsignal, the statistical error
for the escape probability is thus:

∆P

P
≃ 1√

N
≃
√
tsignal

tmst

. (4.39)

The error on the rate at P ≃ 0.5 (see Eq. (3.24)) is linked to the escape
probability by:

∆Γ

Γ
≃ ∆P

P
(4.40)

but can also be expressed as an error on the effective temperature:

∆Γ

Γ
=

∆U

kBT 2
eff

∆Teff . (4.41)

• The error performed on the measurement of the second moment is
obtained as:

∆S2 =
2kB
R||

∆Teff ≃
2kBTeff

BR||

√
tsignal

tmst

≃ σ2

√
1

tmst

(4.42)

where B is the typical reduced barrier height at which the measure-
ment is performed and where we defined σ2 as the sensitivity of the
detector (the error on the measurement of the second moment when
measuring during one second). The order of magnitude can be ob-
tained by assuming that the effective temperature is the lowest one
Teff = 70 mK (where the escape is the most sensitive) and B = 6.5,
tsignal = 18 µs, R|| = 90 Ω. This yields:

σ2 ≃ 80 e pA/
√

Hz. (4.43)
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• The same calculation can be performed for the third moment of the
noise. In our case Q0 = 5 and the rate asymmetry is expanded into:

RΓ − 1 ≃ S3ω
2
p0

(
ϕ0

kBTeff

)3

0.81(1− s)2.14. (4.44)

Since the measurement is performed at almost constant B, the term
(1− s) is better expressed as:

1− s =

(
3B

4
√

2

kBTeff

EJ

)2/3

. (4.45)

Therefore, the rate asymmetry becomes:

RΓ − 1 ≃ S3ω
2
p0

(
ϕ0

kBTeff

)3

0.81

(
3B

4
√

2

kBTeff

EJ

)1.4

. (4.46)

Considering that the error on the effective temperature is completely
negligible, the error on the third moment of noise is:

∆S3 =

(
kB
ϕ0

)3
1.23

ω2
p0

(
3B

4
√

2

kB
EJ

)−1.4 (
T 0

eff +
1

2

R||
kB
S2

)1.6

∆RΓ . (4.47)

where we have used Eq.(4.23) for the effective temperature, but placed
T 0

eff as the base temperature. Using the statistical expression

∆RΓ ≃
∆RΓ
RΓ

=
√

2
∆Γ

Γ
=

√
tsignal

tmst

(4.48)

with the same parameters as for the second moment, a critical current
I0 = 0.4 µA and a plasma frequency νp0 = 1.5 GHz, the error can be
evaluated at the top of the curve taken at T = 20 mK in Fig. 4.37, so
for IN = 0.2 µA, with:

∆S3 = σ3

√
1

tmst
(4.49)

where the sensitivity on the third moment is:

σ3 ≃ 60 e2 nA/
√

Hz (4.50)

• Experimentally, from the error bar of Eq. (4.37), one has at IN =
0.2 µA an error on the third moment ∆S3 = 0.02 × 0.2 e2 µA for a
measurement time of 360 s. The empirical sensitivity is close to:

σ3 ≃ 75 e2 nA/
√

Hz. (4.51)

in good agreement with the rough prediction.
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This sensitivity on the third moment measured through the escape rate
of a Josephson junction is thus of the same order of magnitude as the
one found when directly monitoring voltage fluctuations with a cryogenic
amplifier [80], calculated at the beginning of this chapter. In a sense, it
seems quite disappointing that the Josephson junction, which plays the
role of a large gain cryogenic amplifier, does not allow to considerably
improve the sensitivity. In fact, the main difference between the two
techniques comes from the sampling cycle time, here given by tsignal =
18µs, although only a small fraction of the signal is a measurement pulse,
while in the case of [80], the sampling cycle time is 25 ns, three order of
magnitude smaller. It should be possible to decrease tsignal by one order
of magnitude through a careful tuning, but probably not further without
more technical add-on. This plays a considerable role on the sensitivity,
and limits the efficiency of the Josephson junction as a detector.

Rate asymmetry as a function of the reduced bias current Using dif-
ferent pulse durations, and/or measuring the asymmetry at different es-
cape probabilities, we obtained the variation of the rate asymmetry with
the reduced bias current s for IN = 0.334 µA at T = 20 mK (which
corresponds to the maximum of the rate asymmetry in Fig. 4.37). This
measurement is shown in Fig. 4.38. It appears that the rate asymmetry
increases when the reduced bias current is lowered. A qualitative expla-
nation is that at lower s, thus at larger barrier height, the escape is due
to larger fluctuations, which present also the largest asymmetry.

Since the asymmetry increases when lowering s, it is tempting to have
long bias pulses to increase the rate asymmetry and thus have a large
signal. However, long bias pulses also correspond to long measurement
times. Therefore the sensitivity, which corresponds to the measurement
time needed to obtain a given signal-to-noise ratio, is not improved.

Comparison with predictions

In order to compare the measured asymmetry with the theoretical predic-
tions, the frequency-dependence of the admittance Y (ω) and of the trans-
fer function α(ω) has to be taken into account. The theoretical model
however assumes that the circuit is described by the RCSJ model and
that the noise is white, therefore it does not apply directly here.

For the case of the second moment and the resulting effective tem-
perature, we went further than the RCSJ model with the assumption
that the plasma frequency was the only relevant frequency entering the
spectral density. However, in the case of the third moment, the transfer
function translates into a frequency dependence of the spectral density
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Fig. 4.42. Top: I(V ) curve of the noise source around VN = 400 µV, presenting strong
non-linearities. The rate asymmetry was measured when biasing the noise source on this
branch, for five different currents. Bottom: Evolution of the escape rate Γ as a function
of the reduced bias current for the two signs of IN , when the noise source is biased on the
back-bending branch (the five first panels on top figure) and well above the superconducting
gap, at a larger current, where the asymmetry is already sizeable, typically RΓ − 1 ≃ 0.03
(panel 6, for comparison).
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Noise source biased on the supercurrent branch

Again on Sample JJD1, we measured the rate asymmetry with the noise
source biased on the supercurrent branch. The asymmetry was measured
using the same procedure, and appeared to be sizeable, even if the super-
current was extremely small. On this branch, the sign of the asymmetry
was opposite, as can be seen in Fig. 4.43.
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Fig. 4.43. Rate asymmetry
〈
R+
Γ

〉
(circles) and

〈
R−Γ
〉

(squares) measured when the noise
source was biased on the supercurrent branch, thus for very low current. Note that the sign
of the asymmetry is opposite to the one in Fig. 4.37.

It appeared moreover that when the noise source was biased on the
supercurrent branch, the escape probability was not constant along the
measurement time, as shown on the histogram in Fig 4.44. We checked
at the opposite that, at the same escape probability but when the noise
source was biased above the gap, the histogram appeared completely flat.
Since an increased escape probability is observed at the beginning of the
pulse when the tunnel junction is biased on the supercurrent branch, we
checked that changing the rise time had no effect on the shape of the
histogram. Overall, it appeared that the asymmetry on the supercurrent
branch could not be meaningfully measured with our technique, and this
phenomenon was not further investigated.
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Fig. 4.44. Screen capture of the switching measurement when the noise source is biased
on the supercurrent branch. On the top part, an histogram is shown as in Fig. 4.16 (beware
that it is pointing downward). The pulse has been tuned to ensure that this histogram is flat
when the noise source is not on the supercurrent branch (at low P ). Surprisingly, this is not
the case anymore here.

4.6 Perspectives

4.6.1 Controlling the frequency-dependence of the circuit

The experiments presented in this chapter confirmed the necessity to
achieve a perfect control of the dynamics of the detector, especially the
plasma frequency and the quality factor. A possibility to measure inde-
pendently those parameters would be to use the resonant activation of the
junction [61], a measurement that we could not achieve in this experiment
due to a poor transmission of the biasing line at high frequency. However,
even such a measurement would leave some uncertainty on the quality
factor (see uncertainties in [51]), while this quality factor can enter in the
expression of the rate asymmetry at the second power. Moreover, even
having properly determined the dynamical parameters of the detection,
the transfer function cannot be calibrated in situ, as was done in another
use of a Josephson junction as an on-chip detector, but at much higher
frequency [96]. One thus needs a better design of the circuit, in order to
avoid spurious resonances that complicate the understanding.

Using the microwave simulation software Sonnet, we designed a new
circuit for a next generation of experiments. In order to achieve a fre-
quency independent transmission between the noise source and the detec-
tor, we reduced considerably the overall size of the circuit and especially
the superconducting coupling loop between the noise source and the de-
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tector, which tremendously affects the transfer function. The design pre-
sented in Fig. 4.45 has a transfer function whose magnitude stays in the
range 1± 0.01 up to 10 GHz, and a real part of the admittance seen by
the junction that decreases linearly with increasing frequency, up to 5%
at 10 GHz. A sample using this new design, aiming at having a plasma
frequency of the order of 5 GHz, is presently being fabricated by the
group of N.O. Birge at Michigan State University, where the experiment
will take place.

C
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C1

R

R R

R3

CV

RL

R1 R2

Cg Cg'

CNV

C2

Cg CgRL

VJ
IBVB

Fig. 4.45. The new design presented in this figure uses the notations of Fig.4.7. Two different
layers of aluminium are used (here in gray and blue) and all the capacitors are formed at
the overlap between them (shown in green). Resistors (shown in purple) are made with an
additional layer. The design is performed assuming a surface capacitance of 0.015 pF/µm2

and a sheet resistance for the resistors of 100 Ω per square.

4.6.2 Signal optimization

For further measurement, the amplitude of the signal can be enhanced
by fine tuning the parameters. We derive here optimal parameters within
the accessible range (set by the constraints presented in the beginning of
this chapter). The main free parameters of the detection are the plasma
frequency and the quality factor. In order to gain some insight on how the
different parameters influence the rate asymmetry signal, we considered
from Eq. (2.94):
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RΓ − 1 ∝ S3ω
2
p0

1

T 3
eff

j(Q0, s) (4.53)

with j(Q0, s) ∝ Q2
0(1− s)5/2 for low Q0 and j(Q0, s) ∝ (1− s)2 for high

Q0. Moreover one can modify Eq. (2.72) into:

Teff ∝
Q0

ωp0
S2 (4.54)

and we also considered, as was the case in the previous paragraph:

1− s ∝
(
Teff

EJ

)2/3

=

(
Q0

ω3
p0

S2

)2/3

(4.55)

with EJ ∝ ω2
p0. From this expression, one can evaluate the magnitude of

the correction due to the third moment in two limits:

• In the low Q0 limit:

RΓ − 1 ∝ S3

S
4/3
2

Q
2/3
0 (4.56)

therefore one has to increase the quality factor to improve the signal.
• In the high Q0 limit:

RΓ − 1 ∝ S3

S
5/3
2

ωp0
1

Q
5/3
0

, (4.57)

therefore one has to decrease the quality factor and increase the plasma
frequency, down to the limit set both by the condition of thermal acti-
vation regime and the condition of Q0 ≥ 3 to avoid retrapping effects.
An optimum is thus found in the intermediate range of quality factor,
as was already noticed in [31], and as can be seen also in Fig. 3.10
where the rate asymmetry has been computed for various Q0.

The underlying conclusion is that the quality factor should be low enough
so that the increase of the effective temperature is small when the cur-
rent in the noise source is increased, but one should remain in the under-
damped limit. The plasma frequency, which can be seen as a bandwidth,
should be increased as much as reasonably possible. Experimentally, three
parameters are tuned for the detection : I0, CJ and R||. In order to grasp
the role of each parameter, RΓ−1 as a function of IN is shown by varying
each one of them separately in Fig. 4.46.

• According to the requirements expressed in the beginning of this chap-
ter, an optimum situation for the detection would be I0 ≃ 0.4µA, and
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Fig. 4.46. Rate asymmetry obtained by varying one of the thee parameters : critical current,
parallel resistance, or capacitor across the junction, and leaving the two other unchanged
Top: Changing the critical current. Left: Changing the parallel resistance. The red dot
represent the maximum IN before reaching the retrapping regime. Right: Changing the
capacitor across the junction.

CJ ≃ 3 pF and R|| ≃ 50 Ω so that νp0 ≃ 3.2 GHz with a quality fac-
tor Q0 ≃ 3. The rate asymmetry could thus reach a typical value of
RΓ − 1 ≃ 0.2, which is three times larger than in the present experi-
ment for the same conditions.

• However, the best would be to increase the plasma frequency much
more. But then, the detector junction would not be in a thermal acti-
vation regime at the lowest temperatures. Therefore, in order to stay
in the thermal activation regime, the base temperature should be in-
creased accordingly. Assuming that all measurements are performed
with a fridge temperature being twice the cross-over temperature, the
rate asymmetry could be as large as RΓ − 1 ≃ 1 (15 times larger than
in the present experiment) when increasing the plasma frequency to
vp0 ≃ 10 GHz.
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4.6.3 Towards the measurement of the Multiple Andreev
Reflections

In the near future, this detector could be used to probe the noise of a
superconducting point contact in the regime of Multiple Andreev Reflec-
tions (more details on the superconducting point contacts are found in
the following chapters and in [19]). As probed experimentally in [25, 97]
through the second moment of noise, the current when VN ≤ 2e/∆ in
such systems results from the simultaneous tunneling of large packets of
charges, "giant" shots with an increased number of charges when the bias
voltage is decreased towards zero. For a single superconducting channel
having a transmission τ , the predicted second and third moment of the
noise [40] are shown in Fig. 4.47. Using a detector junction similar to
the one used in this chapter would be sufficient to measure the third
moment of noise for the large enough but not perfect transmission (typi-
cally higher than 0.4), as shown in Fig.4.48. This would shed light on the
interplay between the different contributions of the charge transmissions.
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Fig. 4.47. Top: Current-voltage characteristics of a superconducting channel, for various
transmissions. Left: Second moment of noise (the curves for the transmissions 0.01 and 1
are not shown, since the result is just very close to 0 everywhere). Right: Third moment of
noise. (All curves were presented in [40]. Courtesy of J.C. Cuevas and W. Belzig)
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Fig. 4.48. Left: Predicted effective temperature for a detector junction I0 ≃ 0.4 µA, CJ ≃
3pF and R|| ≃ 50Ω when the noise source is a single superconducting channel (three different
values of the transmission are shown, see Fig. 4.47), with a base effective temperature of
T 0

eff = 70 mK. Right: Expected rate asymmetry for the same parameters with the technique
presented in this chapter.

Such an experiment might also allow to perform a measurement in the
normal regime, with a point contact biased above the gap, playing the
role of a normal QPC. One could think that this measurement could also
be done directly with a QPC in a 2D electron gas, but these conductors
present non-linearities of the conductance for voltage bias larger than
100 µV , and the corresponding current for a single channel (of the order
of a few nA) would be too small for the present detection scheme. Note
that this measurement was already performed by [81], but only in the
regime eV ≤ kBT .

4.7 Conclusion

In this chapter, we presented the use of a JJ as a detector of the second
and third moment of noise.

• We performed a measurement of the effect of shot noise arising from a
tunnel junction on the escape rate of a JJ out of its zero-voltage state.
The effect of the second moment of noise, that translates into an in-
crease of the effective temperature of the escape, was quantitatively
understood without any adjustable parameters by a microwave anal-
ysis of the circuit and simple harmonic approximation of the response
of the detector. The effect of the third moment of the noise is linked to
a rate asymmetry that was measured accurately over a large range of
currents in the noise source. Due to the frequency dependence of the
circuit, it is impossible to achieve a meaningful comparison between
the measured rate asymmetry and the predictions that assumes only a
white noise. It appears however that the measured behaviour is quali-
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tatively well described by these simple predictions using an adjustable
factor.

• D. Urban and H. Grabert generalized the theory presented in [11]
to the frequency-dependent case, both for the spectral density of the
noise and the environment of the detector, which allows a comparison
with the measurement. Using this theory and a model circuit repro-
ducing the frequency dependence of our sample, one obtains a quanti-
tative understanding for both the effective temperature and the rate
asymmetry. This confirms that the Josephson junction can be used as
reliable detector for the second and third moment of noise.

• However, from the simulations performed in Chapter 3, it appears that
a slight discrepancy can be found between the simulated rate and the
predicted one, leaving some uncertainty on the predictions. Willing to
further probe the theory without uncertainties, and being aware of the
requirements on the circuit and its effect on the rate asymmetry, we
designed a new setup to be frequency independent up to 10 GHz. This
would allow both a comparison with the present analytical theories,
facilitating the extraction of the third moment of the noise, and would
also enable to increase the plasma frequency of the detector, therefore
considerably improving the magnitude of the rate asymmetry signal.

• One should note also that the extreme sensitivity of the rate asym-
metry to the plasma frequency and the quality factor (even through
resonant activation), two parameters that can hardly be accessed with
a large precision, explains the difficulty to extract in a reliable way
the third moment of noise from the rate asymmetry.

• As for moments at order higher than three, it appears that, at least
for the present setup, that it is not possible to access any of them.
As a last word, one can signal that a solution might come from other
setups that have been envisioned [41, 69] to access either directly the
fourth cumulant or the FCS by measuring the tail of the distribution.
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opposite signs of the current through the tunnel junction. Measurements are compared quantitatively with

recent theoretical predictions.
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The current through voltage-biased electrical conductors

exhibits fluctuations, which, in contrast to equilibrium

Johnson-Nyquist noise, are not symmetric with respect to

the average current. This translates into finite odd cumu-

lants in the distribution of the number of electrons trans-

ferred through the conductor in a given time. Whereas the

full counting statistics of this number can be calculated for

arbitrary conductors [1,2], up to now high order cumulants

have been measured in very few experiments. The third

cumulant has been successfully accessed by signal pro-

cessing the time-dependent current [3–5], but with setups

that are restricted either to low impedance samples, which

leads to large environmental effects [3], or to low frequen-

cies [4,5]. As an alternative strategy, Tobiska and Nazarov

[6] proposed to use a Josephson junction (JJ) as a large

bandwidth on-chip noise detector [7–9]. It has a high

intrinsic sensitivity, and can be coupled to noise sources

over a large range of impedances. The detection principle

relies on the exponential current sensitivity of the switch-

ing of a JJ from a metastable zero-voltage branch to a

dissipative one. When biased at a current IJ slightly below

its critical current I0, the rate of switching is therefore very
sensitive to noise in the current. The first detection of

asymmetric noise with a JJ was reported in Refs. [7,8].

However, the JJ detector, which was placed in an inductive

environment, had a very large plasma frequency, and the

dynamics of the junction changed regime as the noise

intensity increased, from macroscopic quantum tunneling

(MQT) to retrapping [10] through thermal activation. The

measured asymmetry in the escape rates could only be

compared to an adiabatic model [11], using empirical

parameters. For a detector to be of practical use it must

have a well characterized and a simple enough response, so

that information on the noise can be reliably extracted. As

quantitative theories have been developed for a JJ in the

thermal regime placed in a resistive environment [12–14],

we designed an experiment in this framework, allowing for

a detailed, quantitative comparison with theory.

The principle of our experiment is to add the current

noise from a noise source to the dc bias current of a JJ (see

Fig. 1). The dynamics of a JJ placed in a resistive environ-

ment are described by the resistively and capacitively
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FIG. 1 (color online). Top: Experimental setup. Noise from a

tunnel junction (green double box) biased at dc with a current IN
couples through capacitors C1 ¼ 230 pF and C2 ¼ 345 pF to a

Josephson junction (JJ) detector (orange crossed box), which is

current-biased on its supercurrent branch. The voltage VJ across

the junction monitors the switching to the dissipative state.

Capacitor CJ ¼ 12:5 pF lowers the JJ plasma frequency to

!p0=2� ’ 1:5 GHz. Capacitors CN ¼ 190 pF and Cg ¼
140 pF shunt the external impedance at !p0, so that the imped-

ance across the JJ is determined only by on-chip elements.

Resistors R1 ¼ R3 ¼ 215 � and R2 ¼ 515 � were fabricated

with thin Cr films. Bottom left: IV characteristic of the tunnel

junction, linear at this scale, with inverse slope RN ¼ 22:9 k�.

Bottom right: IV characteristic of the JJ detector, with critical

current I0 ¼ 437 nA. We attribute a resonance near VJ �
120 �V to a mode of the electromagnetic environment of the

junction.
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shunted junction (RCSJ) model [15], with the voltage

related to the average velocity of a fictitious particle placed

in a tilted washboard potential. The tilt of the potential is

determined by the reduced parameter s ¼ IJ=I0. At s < 1
the potential presents local minima where the particle can

be trapped. The voltage is then zero: this corresponds to the

supercurrent branch. The frequency of small oscillations is

called the plasma frequency !p. Johnson-Nyquist current

noise related to the finite temperature T of the environment

of the junction is modeled as a fluctuating force on the

particle, which triggers escape from the local minimum

(‘‘switching’’). When kBT > @!p=2�, the switching rate

� is given by Kramer’s formula [16] � ¼ A exp½�B2ðTÞ�
with A ’ !p=2� for moderate quality factors Q, !p ¼
!p0ð1� s2Þ1=4 the plasma frequency in the tilted potential,

!p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I0=’0CJ

p

the bare plasma frequency determined

by the capacitance CJ and critical current I0 of the junc-

tion, with ’0 ¼ @=2e, and

B2ðTÞ ¼ ð4
ffiffiffi

2
p

I0’0=3kBTÞð1� jsjÞ3=2: (1)

Recently, this result was extended to the situation in

which an additional delta-correlated noise �INðtÞ, char-
acterized by a finite third cumulant S3 defined by

h�INðtÞ�INðt0Þ�INðt00Þi ¼ S3�ðt0 � tÞ�ðt00 � t0Þ and a sec-

ond cumulant h�INðtÞ�INðt0Þi ¼ S2�ðt0 � tÞ adds to the

current through the JJ [12–14]. The effect of higher order

cumulants is assumed to be weak. The corresponding

fluctuating force leads to a modification of the rate: � ¼
A expf�½B2ðTeffÞ þ B3�g. The second cumulant yields an

increased effective temperature Teff given by

2kBTeff=Rk ¼ 2kBT=Rþ S2: (2)

Here, R is the parallel combination of all the resistances

which produce Johnson-Nyquist noise across the junction.

The resistance Rk characterizes the friction acting on the

fictitious particle and is, in a simple model, given by the

total resistance across the junction, including both R and

the resistance RN of the noise source. This expression

indicates that the second cumulant of noise from the noise

source S2 simply adds to the Johnson-Nyquist noise of the

rest of the circuit. The third cumulant gives rise to the

additional term

B3 ¼ �S3ð’0=kBTeffÞ3!2
p0jðsÞ (3)

with jðsÞ a function of the tilt that depends on the quality

factor [14]. When reversing the sign of the average current

IN through the noise source, S2 remains unchanged

whereas S3 changes sign. Therefore, the departure from 1

of the rate ratio

R� ¼ �ðþINÞ=�ð�INÞ ¼ expð2jB3jÞ (4)

is a measure of nonsymmetric noise (S3 � 0).
The experimental setup is shown schematically in Fig. 1.

As it is well established that current noise through a tunnel

junction is Poissonian (S2 ¼ ejINj and S3 ¼ e2IN , with e

the electron charge), we use such a device (green double

box) as a benchmark noise source. The JJ detector (orange

crossed box) is coupled to it through capacitors C1 and C2.

The finite frequency part �IN of the current through the

tunnel junction INðtÞ flows through the JJ detector, owing

to the high-pass filter formed by R3, C1 and C2 (3 dB point

at 5 MHz). The switching of the JJ current-biased at IJ is

signaled by the appearance of a voltage VJ across it. The

low plasma frequency of 1.5 GHz guarantees kBT >

@!p=2� even at the lowest temperature of our experiment

(20 mK) [17]. In the relevant range of frequencies slightly

below !p0=2�, numerical simulations of the actual circuit

indicate that the quality factor of the Josephson oscillations

Q is close to 5, insuring an underdamped dynamics, and no

effect of retrapping [7,10] as long as s � 4=�Q ’ 0:25.
The sample was fabricated on a thermally oxidized high

resistivity (103 to 104 �cm) Si wafer. All on-chip resistors

are 10 nm-thick Cr layers, with 215 �=h sheet resistance

at 4 K, placed between mm-size pads. Capacitors were

obtained from parallel aluminum films separated by

29 nm-thick sputtered silicon nitride as an insulator [18].

The tunnel junction and the JJ detector were fabricated at

the same time by shadow evaporation of 20 nm and 80 nm-

thick aluminum films. Their current-voltage characteristics

are shown in Fig. 1. The tunnel junction has an area of

0:09 �m2 and a tunnel resistance RN ¼ 22:9 k�. It was

biased at voltages larger than twice the superconducting

gap 2�=e ¼ 0:4 mV (which corresponds to IN ¼
0:02 �A), so that it behaves as a normal metal junction,

with Poissonian noise. The JJ detector, with area 1 �m2,

has a supercurrent I0 ¼ 0:437 �A. It was biased in series

with a resistor R1 ¼ 215 � through a 50 � coaxial line

equipped with attenuators. When switching occurs at a

supercurrent Isw, the voltage across the junction jumps to

ðR1 þ 50 �ÞIsw < 2�=e, so that the current through it

drops to zero and no quasiparticles are generated.

Moreover, gold electrodes in good contact with the Al

films were fabricated a few �m away from the junctions

in order to act as traps for spurious quasiparticles [19] that

could be excited by the high frequency noise. Apart from

the Cr resistors and the Au traps, all conductors on the chip

are superconducting aluminum films.

The sample was thermally anchored to the mixing cham-

ber of a dilution refrigerator. The tunnel junction was

biased by a floating voltage supply through two 1:5 M�
resistors. The on-chip capacitance CN ¼ 190 pF on the

bias line is large enough to maintain the voltage across

the tunnel junction at VN ¼ RNIN for all relevant frequen-

cies. Escape rates of the JJ were measured using 2� 105

current pulses of duration � ¼ 0:53 �s with alternatively

positive (þIJ) and negative (�IJ) amplitude, separated by

9 �s. They were fed through a nonpolarized capacitor

Cin ¼ 200 �F placed at room temperature, which prevents

dc thermoelectric currents from unbalancing the pulses.

The switching rates �þ and �� for the two signs of IJ were
deduced from the switching probability P ¼ 1� e���
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measured as the fraction of the current pulses which led to

a voltage pulse.

We first demonstrate that the switching of the detector

junction is well described by the model of thermal activa-

tion whatever the current in the noise source. Figure 2(a)

shows, for various currents IN > 0, the s dependence of

B2=3 ¼ ½� lnð�=AÞ�2=3. Data fall on straight lines that ex-

trapolate to 0 for IJ ¼ I0, as expected from Eq. (1). This

allows us to extract an effective temperature Teff , whose

dependence on IN is shown in Fig. 2(b), with data taken at

four different base temperatures T. We do find a linear

dependance with correct extrapolations at IN ¼ 0 (values

slightly above T are attributed to imperfect filtering), as

expected from Eq. (2) with S2 ¼ eI. Understanding the

slope quantitatively requires an accurate model of the

actual circuit at microwave frequencies: the RCSJ model

assumes that the JJ is simply connected to a capacitor, a

resistance Rk and a current source, in parallel. In the limit

Q � 1, Rk, which describes friction, has to be replaced

with Rkð!pÞ � 1=ReðYð!pÞÞ, with Yð!Þ the total admit-

tance of the circuit across the JJ. Microwave simulations

indicate that Rkð!pÞ varies almost linearly from 63 � at

1 GHz to 36 � at 1.5 GHz, and that a current INð!Þ
through the tunnel junction leads to a current �ð!ÞINð!Þ
through the JJ detector, with a transfer function �ð!Þ
varying from 1.1 at 1 GHz to 1.27 at 1.5 GHz. Since es-

cape is determined essentially by the noise at !p, we

replace S2 by �
2ð!pÞeIN. Altogether, the prediction Teff ’

T þ �2ð!pÞRkð!pÞeIN=2kB is in agreement with the data

(see dashed lines in Fig. 2; to fit the 20 mK data, we used

T ¼ 72 mK), apart from the slight change in slope when

varying T which could be attributed to variations in the

kinetic inductance of the superconducting electrodes.

We now discuss the effect of noise asymmetry. The B2=3

plots for opposite signs of the current through the noise

source are undistinguishable within the symbol size, dem-

onstrating that the effect of the second cumulant S2 is

dominant. In the limit eVN � kBT, theory predicts that

the effect of S3 is to shift the curves by �IJ �
0:6Bð!p0=QÞðS3=S2Þ ¼ 0:6Be=RkCJ � 0:2%I0, which is

difficult to measure reliably [20]. In our experiment,

we measured directly the asymmetry ratio R� defined by

Eq. (4), which varies by several percent (see Fig. 3). We

first set the amplitude IJ of the current pulses at a value

corresponding to a switching probability P� 0:6, for

which the statistical precision on the rates is good [21].

We then measured 100 times �þ and ��, with alternatively
þIN and�IN through the noise source. This allows for two

independent measurements of R�: Rþ
� ¼ �þð�INÞ=

�þðþINÞ and R�
� ¼��ðþINÞ=��ð�INÞ [22]. In Fig. 3(a),

we show with full and open symbols the corresponding

measurements. The rate ratio R� differs from 1, a signature

of asymmetric noise, as soon as IN � 0. The statistical

uncertainty on R� is smaller than the symbols. Small

differences between Rþ
� and R�

� , in particular around IN ¼
2 �A, are not understood. As for the comparison with

theory, a difficulty arises because of the frequency depen-

dence of the transfer function �ð!Þ, which results in a

colored third cumulant at the detector S3ð!1; !2Þ ¼
�ð!1Þ�ð!2 �!1Þ�ð�!2Þe2IN . In the following, and in

the absence of indication as to which frequencies are

important, we compare however with the only existing

theory, which assumes white noise (S3 ¼ e2IN). The cor-

responding predictions, Eqs. (3) and (4) with jðsÞ ’
0:81ð1� sÞ2:14 [23], are shown as solid lines in Fig. 3(a),

scaled by an arbitrary factor 1.5. R� exhibits a maximum as

a function of IN due to the opposite variations of S3 and Teff

with IN . For Teff , we used interpolations between the

measured values shown in Fig. 2. When scaled up by 1.5,

which might be due to frequency dependent transmission

[�ð!Þ], theory accounts well for the experimental data.

Feedback corrections due to the detector, described in [13],

are neglected since Rk=RN � 1 [14]. Note that there is no

feedback associated to the series resistance R3 like in

Ref. [3] because the current noise associated to R3 does

FIG. 2 (color online). (a) Dependence of B2=3 ¼
ð� logð�=AÞÞ2=3 on the current IJ through the JJ detector, for

data taken at T ¼ 20 mK and currents through the tunnel junc-

tion IN ¼ 0:02 to 2:11 �A, by steps of 0:42 �A. Linear de-

pendence is a signature of the thermal activation regime.

(b) Effective temperature extracted from the slope of data sets

as in (a), as a function IN , for various temperatures T. Arrows
indicate the data points corresponding to the plots in (a). Solid

lines are linear interpolations. Dashed line are the predictions

from full theory, taking into account the frequency dependence

of the admittance Yð!Þ across the JJ and of the transfer function

�ð!Þ from noise source to JJ detector.
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not flow through the noise source, but through the JJ detec-

tor. In Fig. 3(b), we also compare with theory the s depen-
dence of R�. In order to perform this measurement, we

used pulses of various durations (0.53 to 21 �s), which
allows us to obtain the switching rates at different values of

s. For the longest pulses, the rate asymmetry is as large as

16%. Here also, theory scaled by 1.5 accounts precisely for

the data.

Qualitative agreement between experiment and theory

gives confidence for the use of the JJ as a measuring device

for S3, even if the application to a wider range of systems

requires some theory for colored noise. A limitation con-

cerns situations with strong nonlinearities in the voltage

dependence of the cumulants, where feedback effects

could become sizeable [24,25]. For quantitative measure-

ments of S3 on other systems, it is not only important to

tune the plasma frequency of the junction in the GHz range

as done in this work, but also to improve the microwave

design, in particular with more compact electrodes, so as to

avoid frequency dependent factors in the analysis. Propos-

als to access the full counting statistics with a JJ embedded

in more complex circuits [6] remain to be investigated.
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surement pulses of various lengths. Solid line is theoretical

prediction scaled by 1.5.
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Part II

Probing Andreev States in
superconducting atomic contacts





Chapter 5
Josephson effect and Andreev states

In this chapter, we review the description of the Josephson effect in terms
of Andreev bound states. Having introduced the theoretical framework in
which the Andreev states are relevant, we describe experiments probing
the Josephson effect in atomic contacts between two superconducting elec-
trodes. At the beginning of this thesis work, the dc supercurrent and in
particular the current-phase relation had already been measured in the
Quantronics group [20], and found to be in quantitative agreement with
predictions. Most of the results could be satisfactorily accounted for by
just considering the contribution of the ground Andreev state of the dif-
ferent conductions channels characterizing the contact. As a first step
towards the spectroscopy of the two Andreev levels of a channel, we con-
ducted a new series of similar measurements. We retrieved the previous
results and completed the theoretical description to account for finite tem-
perature effects corresponding to the thermal population of the Andreev
states. We also observed, in slightly different samples developed for the
spectroscopy measurements, new behaviors which, although not really un-
derstood, point to a possible role of the excited Andreev levels.

5.1 Andreev Bound States

In the Landauer formalism describing coherent transport in terms of
independent conduction channels [98], the origin of the pair of Andreev
states appearing in a short, clean, and coherent channel1 between two

1 This signifies that the channel characteristic length L is in the limit L ≪ ξ, le, Lφ where
ξ = ~vF /∆ is the superconducting coherence length, le the elastic mean free path and
Lφ the phase coherence length. In the case L exceeds ξ, more than one pair of states can
exist.
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superconducting electrodes is particularly simple to grasp in the case of
a perfectly transmitted (or "reflectionless") channel (τ = 1), as illustrated
in Fig. 5.1 [16].

L R

L R

E

I

�����
E

I

�����"e"

"h"

"h"

"e"

1
Fig. 5.1. Schematic representation of the two Andreev bound states in a short reflectionless
channel connecting two superconducting electrodes with different phases φL and φR. The
wiggly lines represent an Andreev reflection in which an electron (hole) is reflected as a hole
(electron) acquiring the local superconducting phase. The upper (lower) loop corresponds to
the transfer of Cooper pairs to the right (left).

A right-moving electron is Andreev reflected at the right interface,
with some probability amplitude dependent on its energy, into a left-
moving hole at the same energy and a Cooper pair is transferred to the
electrode [13]. It also acquires a phase shift corresponding to the phase
of the local superconducting order parameter. In turn, this left-moving
hole is Andreev reflected as a right-moving electron at the left electrode,
leading to the destruction of a Cooper pair. These successive reflections
interfere constructively, like in a Fabry-Pérot interferometer, when the
phase shift acquired along one round-trip is an integer multiple of 2π. A
similar process occurs for left-moving electrons reflected as right-moving
holes. From theses two processes, two resonant quasiparticle states appear
in the channel region, with energies:

E⇄(δ) = ∓∆ cos
δ

2
sgn

[
sin

δ

2

]
, (5.1)
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symmetric with respect to the Fermi level and lying within the super-
conducting energy gap, as shown in Fig. 5.2.2
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Fig. 5.2. Top: Energies E⇄(δ) of the two Andreev states in a reflectionless channel from
Eq. (5.1) (dashed lines). Global ground state energy (solid thick line). Bottom: Supercurrent
I⇄(δ) carried by the two Andreev states in a reflectionless channel from Eq. (5.4), calculated
for ∆ = 200 µeV (dashed lines). Ground state supercurrent (solid thick line).

In fact, these two states are detached from the continuum of states
with its well-known gap edge singularities at ±∆ and the local density
of states is:

n(E)/nF =
1

2
|E/∆|

√(
E

∆

)2

− 1
1

(E/∆)2 − 1 + sin2 δ
2

, (5.2)

2 The "leaky" Andreev levels described in [99] outside the gap are neglected in the limit
L≪ ξ.
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where nF is the density of states at the Fermi level in the normal state.3

This DOS is depicted in Fig. 5.3.
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n F

Fig. 5.3. Local density of states at the atomic contact for a single reflectionless channel at
δ = 0.08, 0.2, 0.45 (blue solid, orange dashed-dotted, and green dashed). The vertical lines
represent the reflectionless levels within the superconducting gap (see [45] for details).

These two reflectionless Andreev states, noted {|→〉 , |←〉}, carry op-
posite supercurrents4 given by:

I⇄ =
1

ϕ0

∂E⇄

∂δ
= ±e∆

~
sin

δ

2
. (5.4)

At zero temperature, only the state of lower energy is occupied. Since
the two reflectionless levels cross at δ = π, the state |→〉 is occupied for
0 ≤ δ ≤ π and the state |←〉 is occupied for π ≤ δ ≤ 2π, resulting in a
ground state energy:

Eground(δ) = −∆
∣∣∣∣∣cos

δ

2

∣∣∣∣∣ . (5.5)

The current carried by the channel in this ground state is:

Iground(δ) =
1

ϕ0

∂Eground

∂δ
=
e∆

~
sgn

(
cos

δ

2

)
sin

δ

2
. (5.6)

3 This formula is extended to the case of channel of transmission τ smaller than 1 as:

n(E)/nF =
1

2
|E/∆|

√(
E

∆

)2

− 1
1 +
√

1− τ
(E/∆)2 − 1 + τ sin2 δ

2

. (5.3)

4 positive currents are counted from left to right.
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This ground state current is the dc Josephson current in a single reflec-
tionless channel, shown in Fig. 5.2.

If the channel is not perfectly transmitted (τ < 1), a right-moving
electron in the state |←〉 can also be simply reflected as a left-moving
electron in the state |→〉, as depicted in Fig. 5.4. The existence of this fi-
nite reflection probability thus couples the two reflectionless states, there-
fore lifting the degeneracy at δ = π. The two resulting states, denoted
{|−〉 , |+〉}, are called the "adiabatic Andreev states". They will often be
referred simply as the "Andreev states" in what follows, and have energies
E± shown in Fig. 5.5:

E± (δ, τ) = ±∆
√

1− τ sin2
(
δ
2

)
. (5.7)

L RL R
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"h"
"e"

"h"

1
Fig. 5.4. Schematic representation of the scattering mechanisms in a short reflective channel.
In addition to the Andreev reflection processes (black wiggly lines), a normal reflection
process (green dashed lines) connects electron (hole) states traveling in different directions,
thus mixing the two reflectionless states of Fig. 5.1. This gives rise to the "adiabatic Andreev
states".
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Fig. 5.5. Top: Adiabatic Andreev levels in a single channel of transmission τ = 0.97 (solid
curves) compared to the reflectionless ones (dashed curves). Bottom: Supercurrent car-
ried by the upper (I+) and lower (I−) state calculated for ∆ = 200 µeV compared to the
reflectionless currents (dashed curves).

For a single channel of transmission τ , the frequency corresponding
to the transition between the two states, called the "Andreev gap" and
plotted in Fig. 5.6, is given by:

νA(δ) =
ΩA(δ)

2π
=

2∆

h

√√√√1− τ sin2

(
δ

2

)
. (5.8)

It presents a minimum at δ = π:

νA(π) = 2∆
h

√
1− τ . (5.9)
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Fig. 5.6. Andreev gap as a function of the phase difference (from Eq. (5.8)), for aluminum
single channel contacts of various transmissions, calculated for ∆ = 200 µeV.

Because the number of transferred charges and the phase difference
are conjugated variables [46], the corresponding supercurrents5, shown in
Fig. 5.5, are given by:

I± (δ) =
1

ϕ0

∂E± (δ)

∂δ
= ∓e∆

2~

τ sin δ√
1− τ sin2

(
δ
2

) . (5.10)

This corresponds to the dc Josephson effect in a phase-biased single chan-
nel of arbitrary transmission. In aluminum, where the superconducting
gap ∆ is typically of the order of 200 µeV, this current reaches at most
≃ 50 nA for the perfectly transmitted case.

When the structure is voltage-biased at small voltages V ≪ ∆/e,
the phase varies linearly with time at a small speed δ̇ = V/ϕ0, and
the Andreev levels move adiabatically within the superconducting gap
∆. As the motion is periodic, there is no energy transfer to the system
on average and a purely ac current flows. This corresponds to the ac
Josephson effect.

5 The well-known sinusoidal Josephson relation for a tunnel junction is recovered by as-
suming a coupling structure consisting of a large collection of channels having all a van-
ishing transmission τi ≪ 1. In this case, the normal tunnel conductance is given by

GN = 1
RN

= 2e2

h

∑
τi. Considering all channels, the current-phase relation can then be

written

I (δ) =
e∆

2~

∑

i

τi sin δ = I0 sin δ,

where the critical current I0 corresponds to the Ambegaokar-Baratoff expression [47] of
Eq. (B.94).
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To describe the general dynamics of the phase, one requires to consider
the Hamiltonian of the system, and not only its energy levels. Restricting
the system to just the two Andreev states, a two-level Hamiltonian HAS
has been introduced [17, 100, 101]. In the basis of the reflectionless states
{|←〉 , |→〉}, the Hamiltonian H0

|⇄〉 is:

H0
|⇄〉(δ) = ∆

(
cos δ

2

√
1− τ sin δ

2√
1− τ sin δ

2
− cos δ

2

)

= ∆

[
cos

δ

2
σ̂z +

√
1− τ sin

δ

2
σ̂x

]
(5.11)

where we have introduced Pauli matrices σ̂z and σ̂x (see Appendix B.5 for
details). This form of the Hamiltonian derives from the perturbation of
the reflectionless states with a coupling term

√
1− τ sin δ

2
between them.

As the role of the continuum of states has been completely neglected, this
Hamiltonian can only be valid close to δ = π, where the states lie deep
in the superconducting gap. By performing a rotation of the eigenbasis
presented in Appendix B.5, one obtains the HamiltonianH0

AS in the basis
of the Andreev states {|+〉 , |−〉}:

H0
AS(δ) =

(
E+ 0
0 E−

)
=
hνA(δ)

2
σ̂ASz , (5.12)

where we introduced the new Pauli matrix σ̂ASz . The physics of the system
is therefore similar to the one of a spin 1/2 in a magnetic field, and the
appropriate conceptual framework is thus the one of Nuclear Magnetic
Resonance [102].

5.2 An experimental test-bed: superconducting
atomic contacts

In order to probe these theoretical predictions, experiments have been
performed on a very simple kind of system: atomic-size contacts between
two superconducting electrodes (for a review, see [19]). Such a situation
fulfills the criterion of a short, ballistic and coherent system. The num-
ber of conducting channels in a one atom contact is small, essentially
determined by the number of valence orbitals of the species under con-
sideration [103]. Moreover, the transmission of the channels are tunable
over a broad range, and can be determined with great accuracy [18]. This
set of transmission determines all the properties of the conductor [98],
and is therefore usually coined the Personal Identity Number of the con-
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tact [19, 44]. For these reasons, atomic contacts constitute a test-bed for
mesoscopic physics [44].

In the Quantronics group we use the mechanically controllable break
junction technique [104, 105], applied on micro-fabricated bridges [106],
to create contacts of a few or even one atom. A suspended metallic thin-
film microbridge (usually aluminum) is broken at cryogenic temperature
by bending the macroscopic substrate on which it has been fabricated.
The two resulting electrodes are then gently brought back into contact.

z
L

2µm �
x

z
lPushing 

rods

Metallic 
film

Elastic 

Polyimid h

Counter-support substrate

Fig. 5.7. Principle of the microfabricated break-junction technique. A thin microfabricated
metallic bridge, suspended over a distance l ≃ 2µm, is broken by bending the elastic substrate
(of thickness h ≃ 500 µm) on which it was fabricated. The bending is achieved using a
three-points mechanism, with a central counter-support and two pushing rods separated by
L ∼ 16mm. A relative vertical displacement ∆z of the pushing rods, corresponds to a change
of the distance between the electrodes ∆x ≃ r∆z where r = 6hl/L2 is of the order of 10−4

in typical experiments. ∆z can be easily adjusted at the micron level, and the displacement
between electrodes ∆x is therefore controlled at the level of 100 pm or better [19, 44].

As compared to atomic contacts obtained for example with an STM
tip [107], this technique has two major advantages:

• It provides very stable contacts (weeks at low temperatures)
• The contacts can be integrated in well defined on-chip circuits, an

essential factor to address the physics of the Josephson effect.

If the electrodes are superconducting, the I(V ) characteristics provide a
tool to extract the transmissions of all channels. The probability ampli-
tude of the Multiple Andreev Reflections (MAR) processes, that are re-
sponsible for the current at finite voltage, are highly-non linear functions
of the transmission, as was calculated in [108, 109, 110]. The predicted
I(V ) curves are shown in Fig. 5.8 for a few values of the transmission.
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Fig. 5.8. Left: Theoretical I(V )s for a single superconducting channel for various transmis-
sions. Right: Example of an experimental I(V ) characteristics fitted by adding the contri-
butions of three channels. This procedure yields the separate transmission of each channel.

Using the curves tabulated for each transmission, a fit of the exper-
imental I(V ) characteristics of a superconducting atomic-sized contact
allows to extract the number of channels and the unique set of transmis-
sions {τi} describing the properties of the contact [18, 44], as is shown
in Fig. 5.8. The fitting is performed using a Monte Carlo procedure that
Gabino Rubio, from the Universidad Autónoma de Madrid, has kindly
made available to us [111].

The uncertainty on the transmissions obtained by this fitting proce-
dure depends of course on the uncertainty in the measurement of both
voltage and current, and on the transmission of the channels participat-
ing in the contact. Typically, for channels with a large transmission the
relative uncertainty achieved on τi is of the order of 0.1%. For channels
having low transmissions (τ < .05), this procedure fails to disentangle
the contributions of the different channels, and yields a large error bar
(see Chapter 1 of [44] for more details).

5.3 Supercurrent in atomic contacts

5.3.1 Supercurrent in current-biased contacts

The study of the Andreev states in superconducting atomic contacts
started in the Quantronics group with the measurement of the dc super-
current.

• In [112], the maximum supercurrent was accessed by measuring the
switching current of current-biased contacts. In this case, the phase
was not an externally tunable parameter, but a dynamical variable
subject to random fluctuations. As in the experiments the dissipation,
and thus the fluctuations, were under control, the results could be
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compared with the predictions of the RCSJ model (see Chapter 2).
The measured switching current could be well understood by consid-
ering just the contribution of the ground Andreev state of each chan-
nel, for all contacts containing channels with transmissions τ < 0.9.
However, for transmissions above this value, the measured switching
currents were significantly above the expected ones. These deviations
were attributed to non-adiabatic transitions (Landau-Zener type) to
the upper state across the small Andreev gap. At that time only an
ad-hoc model was proposed, which required an unrealistically high
transition probability to explain the data. However, very recently Fritz
and Ankerhold have developed a theory that takes into account the
stochastic dynamics of the phase [113], which predicts, with reasonable
values of the parameters, the appearance of switching currents higher
than expected by the adiabatic theory. In any case, these experiments
were the first to support convincingly the idea that the supercurrent
is carried by the Andreev states.

• This idea was further supported by the excellent agreement found be-
tween theory and experiment concerning the crossover between the su-
percurrent branch and the dissipative MAR branch for voltage-biased
contacts, presented in [114]. This crossover can be understood in terms
of Landau-Zener transitions between the bottom and the upper An-
dreev states.

However, these experiments were actually only an indirect test of the
prediction of Eq. (5.10), since the phase was not an external parameter
that could be swept over its entire range. Although they constituted a
significant step for the description of the mesoscopic Josephson effect
in terms of Andreev states, the need for a direct measurement of the
current-phase relation was clear.6

5.3.2 Supercurrent in phase-biased contacts

This was achieved by using a new setup which permits to either phase
or voltage bias an atomic contact in a reversible manner [20, 36, 45].
In this way both the current-phase relation and the I(V ) characteristics
could be measured for the very same atomic contact. Using the trans-
missions {τi} obtained from the I(V ), a quantitative agreement without
any adjustable parameters was obtained between the measured and the
expected current-phase relation.7 This comparison was performed by just

6 For a review on current-phase relations in Josephson systems, see [115].
7 Koops et al. had already observed in 1996 a non-sinusoidal current-phase relation for Nb

atomic contacts, but a quantitative comparison with theory could not be achieved at that
time, since the transmissions of the channels {τi} were not measured simultaneously [116].
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taking into account the contribution of the lower Andreev state of each
channel.

5.4 Current-phase relation of well-characterized
contacts

We now present measurements of the current-phase relation performed
during this thesis using essentially the same technique as presented in
the previous paragraph [20]. The results presented in this section were
obtained on a sample, referred to further as Sample AC1, whose param-
eters are listed in Table 5.1. Several atomic contacts were tested on this
sample with similar results.

5.4.1 Experimental setup

Measuring both the current-phase relation of an atomic contact and its
I(V ) characteristics requires contradictory conditions:

• For the former, one needs to phase-bias the atomic contact. To do so,
the atomic contact must be placed in a small superconducting loop
and the flux threading the loop fixes the phase.

• For the latter, one needs to voltage-bias the same atomic contact,
which cannot be achieved if it is shunted by the superconducting loop.

To fulfill both conditions, one must be able to open and close this loop
in situ with a reversible superconducting switch. The setup presented in
Fig. 5.9, which is related to the one of the Quantronium [117], uses a
Josephson junction in this role. The atomic contact and the Josephson
junction are embedded in a small superconducting loop, forming a device
that was coined the "Atomic SQUID". The junction not only allows both
biasing configurations; it is used to measure the loop current.8 The critical
current of the Josephson junction is chosen to be much larger than the one
of a typical aluminum one-atom contact (∼ 50 nA), so that the Atomic
SQUID essentially behaves like a slightly perturbed Josephson junction.

5.4.2 Determining the transmissions of the channels in the
contact

The I(V ) characteristics of the atomic contact denoted IAC(V ), especially
the dissipative MAR current flowing when the bias voltage is smaller than
2∆/e, has to be analyzed to deduce the number of channels and their

8 Similar and related setups were used in [118, 119].
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Fig. 5.9. Top: An aluminum atomic contact in parallel with a Josephson junction having a
large critical current I0 = 310nA forms an "Atomic SQUID". An on-chip capacitor Ce ≃ 20pF
lowers the plasma frequency of the junction to 1.1GHz and its associated spurious resistance
r ∼ 0.5Ω damps the dynamics of the phase to ensure a stable switching process. The Atomic
SQUID is biased through a resistor R = 200 Ω by a current IB , and the voltage VJ across
it is monitored to detect switching. Bottom: SEM micrographs of Sample AC1 at different
scales. In the upper-right panel, the brighter pads are gold electrodes, while the darker
part constituting the loop are made out of aluminum. The whole structure is deposited on
top of a polyimide layer on a metallic substrate. The gold electrodes form the shunting
capacitor Ce through the metallic substrate, and also act as quasiparticle traps (see Part
III for details). The junction (lower-left panel) is fabricated with a double-angle evaporation
through a suspended mask, which results in a parasitic metallic bridge of no importance,
seen on the bottom-right panel.
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Parameter Sample AC1

Critical current I0 310 nA
Capacitor Ce ≃ 20 pF
Plasma frequency νp0 ≃ 1.1 GHz
Loop inductance LL ≃ 10 pH

Table 5.1. Parameters of Sample AC1 presented in this section.

transmissions {τi}. It is obtained from the I(V ) of the Atomic SQUID
IASQUID(V ). In principle, in the region at finite voltage below the super-
conducting gap V ≤ 2∆/e, the current of the Atomic SQUID should
correspond just to the one through the atomic contact, since the DC
current flowing through the junction is expected to be zero. In practice
however, a sizable current is observed experimentally in this region in
the characteristics IJJ(V ) of the junction alone, which can be measured
when the metallic bridge forming the atomic-size contact is fully open.
This spurious current, which we think is related to resonances in the envi-
ronment, leads to significant differences between IAC(V ) and IASQUID(V )
in the region below the gap. Assuming that IJJ(V ) is not affected by the
contact, IAC(V ) is then obtained by the subtraction:

IAC(V ) = IASQUID(V )− IJJ(V ), (5.13)

which is then fitted using the MAR theory to obtain the transmissions.
The full procedure is illustrated for a particular atomic contact on Sample
AC1 in Fig. 5.10.
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Fig. 5.10. Description of the procedure followed to extract the transmissions of the atomic
contact in an Atomic SQUID. Left: Current-voltage characteristics of the Atomic SQUID
IASQUID(V ) and of the JJ alone IJJ(V ) (measured when the contact is completely open).
Right: The same two curves and their difference IAC(V ), which corresponds to the atomic
contact characteristics, in the range 0 ≤ V ≤ 2∆

e
(Eq. (5.13)). The best fit using MAR

theory (solid line) yields the gap ∆ = 183 µeV and the set of transmissions {0.994 ; 0.13} .
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5.4.3 Principle of the current-phase relation measurement

The superconducting loop allows to impose a phase difference across the
atomic contact by applying an external magnetic flux φext. If the loop is
sufficiently small so that the screening flux can be neglected9, the phase
differences γ (across the tunnel junction) and δ (across the atomic-size
contact) are linked through the external flux:

δ = γ +
φext

ϕ0

≡ γ + ϕ, (5.14)

where ϕ is the reduced flux threading the loop.
At zero temperature, the large Josephson junction switches out of

its zero-voltage state for a phase difference γ = π
2

(a current I0 flows
through the junction). Assuming that the contributions of the junction
and of the atomic contact can be separated, the critical current I0

ASQUID

of the Atomic SQUID is the sum of the critical current I0 of the junction
and of the flux-dependent critical current IAC(δ) of the atomic contact:

I0
ASQUID(ϕ) = I0 + IAC(

π

2
+ ϕ). (5.15)

Measuring the flux dependence of the critical current of the Atomic
SQUID is thus a direct way to probe the current-phase relation of the
atomic contact. In practice however, one measures the mean switching
current of the Atomic SQUID, rather than its critical current.

5.4.4 Modulation of the switching current

Measurement technique

In the experiment, the mean switching current is determined accurately
through the escape rate Γ , obtained itself from the escape probability
P . The latter is measured using a train of bias-current pulses10 for var-
ious values of the external flux and counting the number of pulses for
which a voltage appears across the Atomic SQUID (as already described
in Chapter 4 for a simple JJ). We plot in Fig. 5.11 the escape proba-
bility as a function of both the bias current and the flux. Clearly, the
escape probability evolves very rapidly from 0 to 1 in a narrow range

9 The geometric inductance LL of the loop, typically 10 pH [120] is chosen so that it is
negligible as compared to the inductance of both the Josephson junction LJ ≃ 1 nH and
the atomic contact LAC ≃ 10nH. In this way, the phase drops essentially only across these
two last elements.

10 The pulses are as described in Chapter 4. Here, we used pulses with a duration τp = 1 µs
of the measurement pulse (of height IB ), a sustain time τsus = 3 µs and pulses were
repeated every tsignal = 50 µs.



152 5 Josephson effect and Andreev states

of bias current which depends on the applied flux. In the following, we
simply present the reduced bias current s∗(ϕ) = IB/I0 leading to an
escape probability P = 0.5 (corresponding to a rate Γ = 0.69 MHz).
This normalized switching current s∗(ϕ) curve will be referred to as the
(normalized) modulation curve.
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Fig. 5.11. Left: Escape probability for Sample AC1 as a function of the reduced bias
current, for two values of the external flux. The two vertical dashed lines correspond to the
reduced current s∗(ϕ) leading to a escape probability P = 0.5. Right: Escape probability
as a function of both the bias current and the flux.

Comparison with the current-phase relation

To explain the evolution of the escape probability in Fig. 5.11, a simple
model is to consider, by analogy with Eq. (5.15), that the switching
current of the Atomic SQUID is given by the sum of the switching current
of the junction alone Isw and of the current-phase relation of the atomic
contact:

s∗simple(ϕ)× I0 = Isw
ASQUID(ϕ) = Isw + IAC(

π

2
+ ϕ). (5.16)

In Fig. 5.12, the measured s∗(ϕ) is compared with the predictions of this
model, where Isw = 0.89× I0 was measured when the contact was com-
pletely open. The agreement between the measured modulation curve
and this simple model is good over most of the flux range, but clear de-
viations can be seen for flux values around ϕ = π

2
. In order to completely
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understand the measurements, one needs to consider the full dynamics
of the phase in the potential of the Atomic SQUID.
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Fig. 5.12. Top: Measured (symbols) reduced bias current s∗(ϕ) corresponding to an escape
probability P = 0.5 as a function of the reduced flux threading the loop, for a contact having
two channels of transmissions {0.994, 0.13}, in Sample AC1. The dashed line is the expected
switching current s∗simple of the Atomic SQUID (normalized to the critical current of the
junction), predicted by the simple model of Eq. (5.16): it corresponds to the atomic contact
contribution (the sum of the currents from the lower Andreev states of all channels), shifted
horizontally by π/2 and vertically by the average switching current of the junction, measured
independently. Bottom: Same experimental data. The solid line is the prediction s∗thy(ϕ)
of the full theory taking into account the complete potential U−(ϕ) of the Atomic SQUID
and an effective temperature of 80 mK (measured independently on the junction alone).
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Comparison with a model based on the complete phase dynamics

In the limit where the phase differences are linked by Eq. (5.14), the
dynamics of the Atomic SQUID reduces to a one-variable problem sim-
ilar to the Josephson junction presented in Chapter 1. This situation is
described by a Langevin equation, with a force term that has three con-
tributions: the bias current, the current through the Josephson junction
and the current IA(δ) through the atomic contact. This force derives from
a potential given by:

U−(γ) = U0 (γ) + E− (γ + ϕ)

= −EJ [cos (γ) + sγ]−∆
∑

i

√

1− τi sin2 (γ + ϕ)

2
, (5.17)

where we used IA = 1
ϕ0

∂E−
∂δ

, which assumes a low enough temperature to

take only into account the contribution of the lower Andreev state (this
hypothesis is discussed in Sec. 5.4.5). Hence, the potential is the sum
of the contributions U0 from the junction (EJ is the Josephson energy)
and E− from the lower Andreev state of the atomic contact. Using the
mechanical analogy, one describes the phase dynamics as the motion of a
particle in this modified tilted washboard potential. The particle is sub-
mitted to the random force corresponding to the Johnson-Nyquist noise
of the resistor R. The noise associated to fluctuations of the population
of Andreev states [121] is neglected at low temperature. The evaluation
of the escape rate of the Atomic SQUID performed further is valid only
if EJ ≫ ∆, in which case the modifications introduced by the atomic
contact to the potential are small and the expressions for the escape out
of the zero-voltage state given in Chapter 2 hold true for the Atomic
SQUID.

In the experiment, the plasma frequency of the Atomic SQUID is
reduced down to 1.1 GHz by a large capacitor Ce in parallel (see Fig. 5.9
and Table 5.1). With such a low plasma frequency, the escape out of the
zero-voltage state occurs through thermal activation at all experimental
temperatures, with a quality factor close to 5 (more details on a similar
setup can be found in [36]).

The modulation curve is predicted assuming the escape rate is given
by Eq. (2.30):

Γ ∝ exp [−∆U−(s, ϕ)/kBTeff ] , (5.18)

where ∆U− is the barrier height for the Atomic SQUID. Neglecting the
role of the prefactor (see Chapter 1), a constant escape rate at a given
temperature corresponds to a constant barrier height ∆U−. The effective
escape temperature is assumed to be the one measured independently on
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the junction alone: Teff = 80 mK.11 This fixes the barrier height ∆Uexp ∝
−kBTeff lnΓ , from which we extract the value s∗thy (ϕ) by solving the
equation ∆U−(s, ϕ) = ∆Uexp. The result of this calculation is compared
to the measured modulation curve in Fig. 5.12. The agreement between
the experiment and this theory, which contains no adjustable parameters
and takes into account only the lower Andreev state of each channel, is
excellent.

Why the modulation curve differs from the current-phase relation?

It is interesting to discuss the conditions for the Atomic SQUID switch-
ing current modulation curve to represent faithfully the current-phase
relation of the atomic contact.

The potential for the sole junction presents a well where the phase is
trapped, with a minimum Umin

0 at position γmin and a maximum Umax
0 at

position γmax (see Fig. 5.13). The barrier height and the distance between
the extrema are given by:

∆U0 = Umax
0 − Umin

0 , (5.19)

∆γ0 = γ0
max − γ0

min = π − 2 arcsin s. (5.20)

The latter is plotted as a function of the critical current and for different
temperatures in Fig. 5.13 (for a typical value of the rate exponent B =
∆U/kBTeff).

If the contact can be treated as a small perturbation, the effect of its
lower Andreev state is to modify the potential of the junction, shifting in
energy the minimum by E−(γmin + ϕ) and the maximum by E−(γmax +
ϕ), as shown in Fig. 5.13. When computing the modulation curve, one
considers the modification of the barrier height from ∆U0 to ∆U−(ϕ)
which can be estimated as:

∆U−(ϕ) = ∆U0 + d (∆U0) (ϕ), (5.21)

with a flux dependent term:

d(∆U0)(ϕ) = E−(γmax + ϕ)− E−(γmin + ϕ). (5.22)

If E−(δ) varies smoothly with the phase on the scale of ∆γ0, this bar-
rier height correction is, to a good approximation, proportional to the
derivative of the Andreev energy, i.e. to the current phase relation of the
channel:
11 This measurement is performed when the contact is open. The effective temperature and

the critical current of the Josephson junction are extracted from the dependence of the
escape rate on the bias current, as was done in Chapter 4.
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Fig. 5.13. Top: Complete potential of the Atomic SQUID U−(δ) (solid line) given as a
sum of U0 (dashed line) and E−(dashed line) shifted by a flux ϕ = 0.17, for s = 0.9 (biased
current used in the experiment for a typical effective temperature of Teff = 100mK), and the
parameters of the experiment (curves are shifted vertically to be aligned). ∆γ0 corresponds to
the width of the potential well in U0. Bottom: Distance in phase ∆γ0 between the extrema
of the potential well in U0 as a function of the critical current of the junction, for a constant
rate exponent B = ∆U/kBTeff = 7 and three different effective escape temperatures. The
other experimental parameters are τp = 1 µs, and Ce = 20 pF.

d(∆U0)(ϕ) ≃ ∂E−
∂δ

dδ ∝ I−(δ). (5.23)

Therefore, to reproduce the current-phase relation of the atomic contact
through the measurement of the switching current of the Atomic SQUID,
it is necessary to choose parameters such that ∆γ0 is small enough for all
values of the phase. As shown in Fig. 5.13, to reduce ∆γ0 it is convenient
to work with I0’s as large as possible and at low temperature.

On the other hand, the higher the critical current of the junction,
the smaller the relative modulation introduced by the atomic contact as
shown in Fig. 5.14, thus requiring a higher resolution on the bias current
in order to get a good signal to noise ratio. Moreover, although this is a
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Fig. 5.14. Top: normalized modulation curves (normalized bias current s∗(ϕ) correspond-
ing to P = 0.5 as a function of the reduced flux), for an Atomic SQUID with a single channel
of transmission τ = 0.995, for three different junction critical currents (I0 = 0.3, 0.9 , and
9 µA) (see also Fig. 5.13 for more details). Bottom: centered modulation curves (I∗ − Isw,
where Isw is the switching current of the junction alone), compared to the current-phase
relation calculated for a channel of transmission τ = 0.995 (green dashed line) for the same
parameters as in previous panel.

separate practical problem, the higher I0 the higher the subgap current of
the junction (see [36]), thus making it increasingly difficult to determine
accurately the transmissions of the contact. In practice, reasonable values
for the junction critical current are in the range 300 nA . I0 . 1 µA.

Under these conditions, as was shown in [20], the modulation curve
corresponds faithfully to the current-phase relation for contacts contain-
ing channels of not too high transmissions (where E− varies smoothly
with δ). However, there can be significant deviations when the contact
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contains at least one channel of high transmission, as shown in Fig. 5.12,
because the Andreev energy can then vary rapidly with δ around δ = π
on the scale of ∆γ0 (∼ 0.15× 2π in this particular case).

In conclusion, at low temperature and for a junction critical current
around ten times larger than the contact one, the switching current of the
Atomic SQUID as a function of the flux represents quite well the current-
phase relation of the contact, with small deviations which in practice
become noticeable only for high transmissions (τ ≥ 0.95) .

5.4.5 Thermal effects on the modulation curve

The modulation curve was also measured at temperatures higher than the
base temperature of the dilution refrigerator, but where the parameters of
the setup (I0 and ∆) were not modified (see [47, 58] and Appendix B.6).
It is observed that switching occurs at smaller currents, as expected, but
also that the modulation curve gets rounded (see Fig. 5.15). This latter
effect cannot be explained when only the lowest Andreev state is taken
into account, as shown by the predictions in solid lines. The population
of the upper Andreev state thus probably plays a role when temperature
is increased. In this section, we describe the impact on the modulation
curve of a thermal population of the Andreev states.
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Fig. 5.15. Symbols: Measured modulation curve s∗ for a contact with transmissions
{0.994, 0.13} at temperatures T = 25mK and T = 350mK (orange circles and blue squares).
Solid lines: modulation curves calculated with Teff = 80 mK (as measured on the junction
alone, orange line) and Teff = 378 mK (adjusted to fit the average current, blue line), when
only the lower Andreev state is taken into account (no thermal population).
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Equilibrium properties of an Andreev doublet at constant phase

Since the Andreev states are two fermionic states (detached from the con-
tinuum), there are four possible configurations for the population of the
two-level system in each channel, as shown in Fig. 5.16. If we assume that
they are populated according to a Boltzmann distribution at a tempera-
ture TA, hereafter called the Andreev temperature, the partition function
is:

Z = 2 + e−βAE− + e−βAE+ = 2 + 2 cosh [βAE+] , (5.24)

where β−1
A = kBTA. We have used the energy of each configuration given

in Fig. 5.16.
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Fig. 5.16. The four possible configurations for an Andreev doublet. The ground state (en-
ergy E−) corresponds to only the lowest Andreev state being occupied by a quasiparticle.
There are two configurations with zero total energy, corresponding to the states being either
both empty or both occupied. The fourth configuration (energy E+) corresponds to a quasi-
particle in the upper Andreev state only. These configurations are populated according to a
Boltzmann distribution with temperature kBTA = β−1

A .

The equilibrium current of each channel at a temperature TA is then:

〈I〉 (δ) =
1

Z

{
I+e

−βAE+ + I−e
−βAE−

}
= I− tanh

[
βAE+

2

]
. (5.25)
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where 〈.〉 denotes the thermal averaging in the following.12 The function
〈I〉 (δ) is shown in Fig. 5.17 for a channel with transmission τ = 0.995,
at temperatures from 0 to 600 mK.
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Fig. 5.17. Left: Equilibrium average current 〈I〉 for a single channel of transmission τ =
0.995, and for Andreev temperatures TA =0, 0.1, 0.2, 0.4, and 0.6 Right: Corresponding
energy 〈E〉I obtained by integration of the average current, see Eq. (5.27).

Atomic SQUID modulation curve at large temperatures

To treat the case of the Atomic SQUID, one has to write the Langevin
equation of the circuit.

Adiabatic approximation Assuming that the time needed to reach the
thermal equilibrium population of the Andreev configurations is much
shorter than all the times involved in the dynamics of the phase, the force
associated to the atomic contact entering the Langevin equation for the
circuit corresponds to the average current 〈I〉. This leads, as derived in
[113], to the effective potential:13

〈U〉I (γ) = U0(γ) +
∑

i

〈E〉Ii (γ + ϕ), (5.26)

where for each channel i:

〈E〉Ii = ϕ0

∫ δ

0

∂ 〈I〉i
∂δ′

dδ′ −∆. (5.27)

12 One should note that this is just the same as considering that each channel is populated
by a Fermi distribution; the upper state with a distribution f(E+) and the lower state
with f(E−). Since E+ = −E− and I+ = −I−, the thermal average contains a term

f(E−)− f(E+) = 1− 2f(E+) = tanh
[
βAE+

2

]
[16, 115].

13 this effective potential is very different from the one obtained using the average Andreev
energy 〈E〉 used in [36, 45] because 〈I〉 6= 1

ϕ0

∂〈E〉
∂δ

.
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This potential allows to calculate the modulation curve s∗. Let us re-
call that the calculation consists in solving, for each flux, the equation
∆U(s∗, ϕ) = ∆Uexp(Teff), where Teff is the effective escape temperature.
In theory, one should consider the noise arising from both the Johnson-
Nyquist noise of the environment and the telegraph noise due to the
fluctuations of the Andreev populations [121]. In practice, we assume
that the noise is white and can be described by an effective temperature.
Figure 5.18 compares the experimental modulation curve measured at
T = 350 mK (already shown in Fig.5.15) with this prediction. The ef-
fective temperature Teff = 378 mK is found from the fit of the average
switching current, and we fixed TA = Teff.
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Fig. 5.18. Symbols: Measured modulation curve s∗ at T = 350 mK, for the same contact
as in Fig. 5.15. Solid line: Modulation curve calculated with the effective potential 〈U〉I
using Teff = 378 mK (adjusted to fit the average switching current) and TA = Teff .

Out of the adiabatic approximation Instead of using an average poten-
tial, a calculation can be made in the opposite limit, assuming slow tran-
sitions between the states [36, 45]. The predictions for the modulation
curve is however very different from the experimental data when the
transmission is close to 1, because its leads to the admixture of different
switching processes, and deformations of the curve P (s) compared to the
case of Fig. 5.11. Such effects have not been observed at any tempera-
tures, thus supporting the validity of the adiabatic approximation.
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Conclusion From the experimental curves presented in Figs. 5.15 and
5.18, it appears that the modulation curve for this Atomic SQUID is very
well understood within the adiabatic approximation at finite tempera-
ture. However, in a slightly modified type of sample, we have observed
different and much stronger modifications of the modulation curve prob-
ably due to non equilibrium effects, as discussed in the next section.

5.5 Out-of-equilibrium effects

The experiments presented in the previous sections were performed with
samples in which the on-chip lines connecting the Atomic SQUID to the
outside world were made out of gold, a normal i.e. dissipative metal at
low temperatures. On the contrary, in our first design to attempt Andreev
spectroscopy and in order to minimize the dissipation which limits the
life-time of the excited Andreev levels, we decided to fabricate all on-
chip electrodes out of aluminum. Apart from this change of material,
Sample AC2 was almost identical to the previous one (see Fig. 5.1), and
in particular the critical current of the junction was I0 = 295 nA, less
than 5% smaller than before. However, as we will discuss now, this change
of material had very strong consequences on the overall behavior of the
system.

Figure 5.19 shows the escape probability as a function of both the flux
and the reduced bias current, for an atomic contact with transmissions
{0.999, 0.586, 0.171, 0.171} . As compared to Sample AC1 (see Fig. 5.11)
the escape probability does not vary sharply from 0 to 1 for all values
of the flux. In some flux ranges, the escape probability displays steps or
oscillations as a function of the bias current. These features appear only
in a region bounded by the expected modulation curve, and by another
modulation curve calculated when neglecting the contribution of the very
well transmitted channel. Similar effects were observed for other contacts
on the same sample, as seen in Fig. 5.20. These effects are not limited to
channels of high transmission, as some faint structure can be observed
even for contacts with τ ∼ 0.5, but with a much smaller and hardly
detectable amplitude.

A tentative explanation for this observation is that in this region, the
very well transmitted channel contributes only partially, or even not at
all, to the total current through the contact. This would arise if the two
Andreev states in this channel were either both empty or both occu-
pied. Although the underlying physics is neither understood nor under
control, we think that a double occupation of the Andreev states of a
channel could occur due to poisoning by external quasiparticles, pro-
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Fig. 5.19. Top: Escape probability as a function of the external flux and the bias current
for Sample AC2, with an atomic contact of transmissions {0.999, 0.586, 0.171, 0.171} . The
white line corresponds to the modulation curve calculated taking into account the contri-
bution of the Andreev ground state of all the channels. The black line corresponds to the
modulation curve calculated for {0.586, 0.171, 0.171}, i.e. excluding the contribution of the
most transmitted channel. Bottom: Escape probability as a function of the reduced bias
current for three different values of the applied flux.
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duced for example when the SQUID switches into the dissipative state.
Since the Andreev states have energies below the superconducting gap,
the quasiparticles could easily get trapped into them. The fact that this
effect only appeared on a sample having no large normal electrodes able
to efficiently trap the quasiparticles strongly supports this hypothesis.

Fig. 5.20. Escape probability as a function of the external flux and the bias current for
sample AC2, with two different atomic contacts.

There are several experimental facts which could help finding a thor-
ough explanation of these effects. In the previous examples, the out-of-
equilibrium effects were limited to the low switching current region (low
compared to the mean switching current of the JJ alone). One can won-
der why a symmetric effect is not seen in the upper region. One could
understand this in the following way: the first pulses of a sequence create
quasiparticles, that populate essentially the upper Andreev state of the
very well transmitted channels. As long as this state is occupied, the crit-
ical current of the Atomic SQUID looses the contribution of this channel.
If it happens in a flux region for which the critical current gets enhanced
by the double occupancy, subsequent pulses of the same height would
be unable to make the system switch. It is only after the quasiparticle
gets untrapped, that switching occurs again. Quasiparticles are created
once more, and after some time, populate the upper state. The previous
blockade of switching repeats itself. This should result in intermittency
of switching, a phenomenon that we indeed observed (see Fig. 5.21) and
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that explains the large fluctuations observed on P (s) for short measure-
ment times (see bottom panel of Fig. 5.19).

t (ms)0

P = 0.2

0

Vsw

0

Vsw

50 0 50 t (ms)

Fig. 5.21. Voltage across the Atomic SQUID as a function of time during a sequence of
bias-current pulses (50 µs period). Each voltage pulse corresponds to a switching event.
Left: at a flux value for which the P (s) curve is normal. Right: Similar measurement, at a
flux value for which it displays a step, showing intermittency attributed to the dynamics of
quasiparticle trapping and untrapping in the upper Andreev state.

The escape probability in this regime depends on the ratio of the
quasiparticle trapping and untrapping times. In the opposite situation
where the critical current gets reduced by a trapped quasiparticle, noth-
ing can be observed. As quasiparticles are created only when switching
occurs, no effect can be seen for pulses smaller than the reduced bias cur-
rent s∗thy calculated when considering the contribution of all the channels.
However, we found that even in this situation a non equilibrium effect is
observed when a short but strong bias-current pulse is applied just before
the measurement pulse, as shown in Fig. 5.22. This excitation induces
the switching of the detector junction, thus creating quasiparticles (it
is however not long enough to develop a detectable voltage pulse, and
therefore is not counted in P (s)). Under this perturbation, a step appears
in the curve P (s), bounded as before by the theoretical predictions for
the full contact and for the one in which the most transmitted channel
is neglected.

Furthermore, we have measured the histogram of the switching-times
along these peculiar steps, as shown in Fig. 5.23. The histograms, which
should be a simple exponential in case the switching were a Poisson pro-
cess, presented a clearly distinct behavior, with a peak at short times and
a constant background. The peak can be interpreted as due to situations
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Fig. 5.22. Right: Escape probability P (s) as a function of reduced bias current s, for
different heights of a short bias pulse applied before the measurement pulse (see scheme
on the left). The data was taken at ϕ = 0.24 × 2π for the contact shown in Fig. 5.19. A
step develops on the P (s) curve, which for this particular value of the flux is otherwise
normally narrow (see the curve taken at h = 0). The vertical dashed lines at s1 = 0.935 and
s2 = 1.045 correspond respectively to the black line in Fig. 5.19, therefore the modulation
curve obtained when neglecting the contribution of the very well transmitted channel, and
to the white line in Fig. 5.19, therefore to the normal modulation curve. It appears that the
prepulse is efficient in producing quasiparticles that populate the upper Andreev state when
h × s > 1.1. If s > 1.1/h (condition to populate the upper Andreev state) and s > s1, the
measurement pulse yields switching, and a step develops in P (s). When h is larger than
1.2, the two conditions are always fulfilled at the same time, explaining why the curves at
h = 1.25 and h = 1.3 superimpose.

where the upper Andreev level is already occupied at the beginning of
the pulse: the switching current is therefore much smaller than the pulse
height and switching occurs very early in the pulse. The background,
which seems to remain unchanged along the step, could be attributed to
situations where the upper Andreev level is unoccupied at the beginning
of the measurement pulse, and gets occupied during the pulse.

We also noted that the non-equilibrium effects are sensitive to the
dynamical properties of the measurement pulse, like the rise time. The
effects tend to disappear when slowing the rise time of the bias pulse
(see Fig. 5.24). However, when slowing down the whole measurement
sequence, in particular by increasing the time between measurement
pulses, the non-equilibrium features diminished but never disappeared
completely.
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Fig. 5.23. Main panel: Escape probability P as a function of reduced bias current s,
obtained at ϕ = 0.24 × 2π for the contact presented in Fig. 5.19 (when adding a prepulse
with h = 1.3, see Fig. 5.22). Small black panels: histograms of the escape times during
the bias-current pulse, measured for different positions along the P (s) curve. Contrary to
the normal case, in which there is no step in the P (s) curve and for which the histogram
is a simple exponential decay reflecting a Poisson process, the structure in the histograms
along the step point out to the competition between two switching processes.

Fig. 5.24. Escape probability as a function of the external flux and the bias current measured
on Sample AC2 for an atomic contact with transmissions {0.999, 0.696, 0.275, 0.26}. The
escape probability is shown for two different rise times of the measurement pulse. The out-
of-equilibrium effects tend to disappear for longer rise times.
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5.6 Conclusions

In this chapter, we presented experiment probing the Andreev states in
an atomic contact:

• By embedding an atomic contact in a superconducting loop together
with a Josephson junction in a SQUID-like geometry, it is possible to
measure both the current-phase relation of the atomic contact and its
current-voltage characteristics. From the latter, one can extract the
transmissions of the channels accommodated by the atomic contact,
therefore allowing a direct comparison with the predictions for the
current-phase relation based on the Andreev bound states theory. We
recovered the results of [20] but also completed the description of
measurement at temperatures large enough to populate the upper
Andreev state.

• Our results on Sample AC1 at low temperature (as those obtained
previously in the group) can be perfectly understood by considering
that, in every channel of the contacts, only the lower Andreev state
is occupied. However, with Sample AC2, very similar in parameters
but where dissipation in the connecting electrodes was strongly re-
duced using a superconducting metal instead of normal one, we faced
spurious effects that we tentatively attribute to the out-equilibrium
population of the upper Andreev states by quasiparticles generated
during the measurement pulses.

In the next chapter, we discuss the possibility to use the present setup
to probe the upper Andreev state in a controlled manner by performing
the spectroscopic measurement of the transition between Andreev states.



Chapter 6
Towards Andreev states

spectroscopy

In this chapter we discuss the main requirements for achieving the spec-
troscopy of the Andreev states in a superconducting atomic contact using
the Atomic SQUID setup. After having presented the ideal phase-bias
case, we describe the adiabatic approximation well suited for treating the
Hamiltonian of this system, and introduce a new description that goes
beyond this approximation. We also evaluate the lifetime of the upper
Andreev level, and show that its observation requires an electromagnetic
environment with much lower dissipation, and a much more efficient ex-
citation, than achieved in the setup presented in Chapter 5. We propose
a new setup designed for Andreev state spectroscopy, and present a pre-
liminary experiment that probes it.

How to probe the transition to the upper Andreev state ? The two An-
dreev states accommodated by a single channel of a superconducting
atomic contact form an original kind of microscopic quantum two-level
system (TLS) controlled by a macroscopic variable, the phase difference
across the contact [100]. Experimentally, essentially the properties of the
ground state have been probed up to now, through the supercurrent it
carries, and a detailed measurement of the upper state is still lacking (al-
though the experiments at finite temperature of the Chapter 5 constitute
an indirect measurement). Achieving the spectroscopy of the transition
between the two Andreev states is clearly an essential step to characterize
the Andreev TLS. Furthermore, in the context of quantum information,
Andreev TLSs have also been considered as possible solid state quantum
bits [17, 122, 101, 43]. Although the use of atomic contacts in this direc-



170 6 Towards Andreev states spectroscopy

tion has not really started, the coherence properties of Andreev TLSs are
an important issue that could be addressed by spectroscopy experiments.

Achieving such a spectroscopy experiment requires:

1. A short Josephson weak-link with a number of channels small enough
to disentangle their different Andreev TLSs;

2. A well-controlled method to fix the phase-difference across the contact
and measure the states population;

3. That the Andreev transition can be induced by an external excitation
matching the Andreev gap νA(δ);

4. A long enough relaxation time of the upper state in order to detect
its population within the time scale of the available measurement
methods.

As shown in Chapter 5, the Atomic SQUID setup fulfils criteria 1 and
2, which raised hopes that it could allow the spectroscopy of Andreev
states. We discuss now the last two requirements.

6.1 Predictions for the Andreev transition

6.1.1 Ideal phase-bias

In order to grasp the basic relevant parameters, we first assume here
that the Atomic SQUID setup provides a perfect phase-biasing of the
atomic contact. The only parameter controlling the Andreev states is
the phase difference δ, and the energy difference between the Andreev
levels varies from 2∆ at δ = 0 down to the Andreev gap 2r∆ at δ = π,
where r =

√
1− τ is the reflection probability. A modulation of the phase

difference at a frequency 2r∆/h ≤ νexc ≤ 2∆/h is thus expected to pop-
ulate the upper state when νexc ≃ νA(δ). If the excitation is applied
continuously, it can at best achieve a "saturation" of the transition, with
equal populations of the two Andreev states. Since these states carry op-
posite currents, one expects a noticeable modification of the modulation
curve of the switching current as depicted in Fig. 6.1.

Matrix element for the phase excitation of the Andreev transition

One has first to evaluate how a fluctuation of the phase difference across
the contact couples to the Andreev TLS. Under a small phase perturba-
tion dδ(t) around a phase difference δ0, the Hamiltonian of the Andreev
states defined in Eq. 5.12 is modified according to:

HAS(δ) = H0
AS(δ0) + ϕ0ÎAS(δ0)dδ(t), (6.1)
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Fig. 6.1. Schematic response of a phase-biased atomic contact to a small phase modulation
at frequency νexc, such that 2∆

√
1− τ ≤ νexc ≤ 2∆. Left: The upper Andreev level is

populated for the phase difference at which the excitation frequency matches the Andreev
gap: νexc = νA(δ). Right: The population of the upper state should lead to a drastic change
of the average current-phase relation (red thick line) at the corresponding phase difference.

where ÎAS(δ) is the current operator through the atomic contact (see
Appendix B.5 and [101]):

ÎAS(δ) =
e∆2

~E+(δ)

[
−1

2
τ sin (δ) σ̂ASz + rσ̂ASx

]
. (6.2)

The transverse part couples the two Andreev states with a matrix element
M⊥(δ) given by the expression:

M⊥(δ) = ϕ0

〈
+
∣∣∣ÎAS

∣∣∣−
〉

=
∆
√

1− τ
2
√

1− τ sin2 δ
2

. (6.3)

The variations of this matrix element with the phase δ are shown in
Fig. 6.2. A maximum occurs at δ = π, with a sharpness that increases
with the contact transmission.

Transition Frequency

The Andreev gap is shown in Fig. 6.3 for a single channel with transmis-
sion τ . Experimentally, for our microwave generators, and for the connec-
tors installed in our dilution fridge, the range of accessible frequencies is
restricted below ≃ 20 GHz. In the case of aluminium, with ∆

h
≃ 50 GHz

for thin layers, the condition 2r∆ ≤ 20 GHz implies:

τ ≥ 0.95. (6.4)

The phase difference interval where νexc can coincide with the Andreev
frequency in a very-narrow range around δ = π, with a width that in-
creases with the transmission, as can be seen in Fig. 6.3.
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Fig. 6.2. Matrix element M⊥(δ) from Eq. (6.3) between the lower and the upper state in
the ideal phase-bias situation for τ = 0.9, 0.99 and 0.999.
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Fig. 6.3. Andreev frequency νA(δ) for different transmissions of a single channel (calculated
for ∆ = 200µeV) in the experimentally accessible frequency range (0−20GHz). This limited
frequency range requires channels with a large transmission τ ≥ 0.95 .

Relaxation of the upper Andreev state

Relaxation of the upper Andreev state proceeds by transferring its energy
to the environment of the contact, characterized by an impedance Z(ω).
The Andreev levels are coupled to the different degrees of freedom of the
environment, in particular the phonons [122] and the electromagnetic
modes of the impedance connected across the contact. The electromag-
netic channel is expected to dominate relaxation, characterized by its
relaxation time T1(δ) = Γ1(δ)

−1. To calculate the relaxation rate, the
impedance Z(ω) is described as an infinite set of harmonic oscillators
at thermal equilibrium [46], and using the generic model of a two-level
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system linearly coupled to this bosonic bath, as done for qubits (e.g.
the Quantronium in [123]). The calculation of the relaxation rate can be
found in [101] and is detailed in the Appendix B.5. At zero temperature,
the relaxation rate is related to the matrix element M⊥ that couples the
two states and the impedance Z(ω) by the relation (see Eq. B.92):

Γ1(δ) =
1

πνA

(
M⊥
~

)2 Re [Z(ΩA)]

RK
= π

∆

~

Re [Z(ΩA)]

RK

1− τ
(
1− τ sin2 δ

2

)3/2

(6.5)
with RK = h/e2 is the resistance quantum. The variations of the re-
laxation rate with the phase are shown in Fig. 6.4. One notices that
relaxation is the largest at δ = π, precisely where the transition is best
observable. The coherence time of a coherent superposition is determined
by the decoherence rate Γ2 = Γφ + Γ1/2, where Γφ is the dephasing rate
due to fluctuations of the phase.

Due to this relaxation, it is questionable whether it is possible exper-
imentally to probe this transition, what is now discussed.
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Fig. 6.4. Relaxation rate (Eq. (6.5)) of the upper state in an ideal phase-bias situation
for τ = 0.9, 0.99 and 0.999. Since the relaxation rate is proportional to the real part of
the impedance across the Atomic SQUID at the Andreev frequency ΩA, a small value of
Re [Z(ΩA)] is requested to obtain a small enough relaxation rate.

Probing the transition

First of all, let us recall that the state of the system is probed using mea-
surement current pulses of length τp. To probe the transition, a microwave
excitation is applied, which induces coherent Rabi oscillations between
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the two Andreev states. The corresponding Rabi frequency νR is propor-
tional to the excitation amplitude. Relaxation of the upper Andreev state
imposes constraints on this amplitude and on the measurement time τp
in order to have an observable effect. The precise constraints depend on
the exact protocol:

• The less demanding protocol consists in applying continuously mi-
crowaves during the measurement pulse. If the resonance condition
is achieved, the population of the upper Andreev state is controlled
by the parameter νR/Γ1 . When this parameter is large enough
νR/Γ1 & 1, the upper state is significantly populated, and no further
requirement is requested on the measurement time.

• If, on the contrary, one wishes to prepare the upper state with a short
π pulse before the readout, the condition Γ1(δ) τp . 1 is also requested.

In any case, achieving a long enough relaxation time is an important
goal. In our setup, the achievable measurement pulses are in the range
τp ∼ [100 ns− 1µs], and the inequality Γ1(δ) τp . 1 with Γ1(δ) given by
Eq. (6.5) implies for the impedance across the setup to be very small.
For example around δ = π, for which the Andreev frequency is in the
accessible range, but where the relaxation rate is the highest, the real
part of the environment impedance must fulfill:

Re [Z(ΩA)] ≤ ~

π∆

√
1− τ × 1 MHz×RK ∼ 10 mΩ. (6.6)

Although this inequality (6.6) is only requested for performing qubit-like
manipulation of the Andreev TLS, which goes beyond the goal of this
thesis, we tried to design an electromagnetic environment able to meet
it.

6.1.2 The Atomic SQUID configuration

In the Atomic SQUID, however, the phase across the contact is not a
parameter, but a dynamical variable with both thermal and quantum
fluctuations. The real situation is thus different from the ideal phase-
biasing situation considered previously and one has to consider now the
dynamics of the full circuit.

Hamiltonian of the Atomic SQUID

We first derive the Hamiltonian of the simplified Atomic SQUID circuit
sketched in Fig. 6.5, where the phase differences across the atomic contact
(δ) and the junction (γ) are linked by the reduced flux through the loop
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Fig. 6.5. Model circuit of an Atomic SQUID.

δ = γ + ϕ. This circuit has a spin-like degree of freedom (due to the
Andreev doublet), and a phase degree of freedom (due to the junction).
As a basis of the Hilbert space for the whole system, we choose the
tensorial products 



|γ,←〉 = |γ〉⊗ |←〉
|γ,→〉 = |γ〉⊗ |→〉 . (6.7)

of the phase states |γ〉 for the junction, and of the right |→〉 and left-
moving |←〉 reflectionless states for the Andreev system. In this reflec-
tionless basis {|γ,←〉 , |γ,→〉}, the Hamiltonian of the Atomic SQUID
takes the form:

HASQUID(γ, ϕ) = ∆

[
cos

γ + ϕ

2
σ̂z + r sin

γ + ϕ

2
σ̂x

]
− EJ [cos γ + sγ] +

p2
γ

2ϕ2
0CJ
(6.8)

where pγ is the reduced charge on the junction capacitance conjugated
to the phase [pγ, γ] = i~. The kinetic energy term for the fictitious par-
ticle, of position γ and mass m = CJϕ

2
0 (see Table 2.1), represents the

electrostatic Hamiltonian of the junction capacitance.
The Andreev part of the Hamiltonian is diagonal in the basis of the

Andreev states {|+〉 , |−〉}, which are related to the reflectionless states
through the unitary transformation:




|+〉 = cos θ

2
|←〉+ sin θ

2
|→〉

|−〉 = − sin θ
2
|←〉+ cos θ

2
|→〉 (6.9)

where θ = arctan
(
r tan δ

2

)
(and r =

√
1− τ). We therefore introduce the

adiabatic basis 


|γ,−〉 = |γ〉⊗ |−〉
|γ,+〉 = |γ〉⊗ |+〉 . (6.10)
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This Atomic SQUID setup, in which an atomic contact with a spin-
like degree of freedom is connected in parallel with a Josephson junction,
bears strong similarity with the Quantronium [123], in which a super-
conducting single Cooper pair transistor, with an inner charge degree of
freedom, is connected in parallel with a Josephson junction.

Adiabatic potential surfaces

Therefore, following Ankerhold and Grabert [124], we first consider the
case where the phase is almost a classical variable, because of its large

mass. Since the kinetic energy term
p2γ

2ϕ2
0CJ

is negligible in this limit, the

Hamiltonian is exactly diagonal with eigenvalues



U−(γ) = U0(γ) + E−(δ)

U+(γ) = U0(γ) + E+(δ)
(6.11)

that determine two adiabatic potential surfaces, or manifolds (U0(γ) =
−EJ [cos(γ) + sγ] is the potential of the junction alone, as in Chapter 5).

To go one step further, one has to take into account the kinetic energy
term. A simple first order approximation is to consider that the Andreev
spin-like variable follows adiabatically the slow phase dynamics. We thus
consider only the diagonal part of pγ, i.e. the restriction p̃γ of the momen-
tum operator to the adiabatic manifolds. This adiabatic approximation
is discussed in the next section. We will consider afterwards how to go
beyond this approximation.

6.1.3 Dynamics in the adiabatic approximation

In the adiabatic approximation, one is left with two uncoupled manifolds.
The question is thus to find the eigenstates in each manifold separately.
Typical adiabatic potentials U−(γ) and U+(γ) are shown in Fig. 6.6.

Eigenstates and eigenenergies within the adiabatic approximation

In each manifold, the restriction of the momentum operator p̃γ acts as:

p̃γψ±(γ) =
~

i

∂ψ±(γ)

∂γ
. (6.12)

One is therefore left with two solvable one-dimensional Hamiltonians:

H± = E±(γ + ϕ) + U0(γ) + p̃2
γ/(2CJϕ

2
0). (6.13)

A good approximation to solve them is to treat the potential wells as
harmonic potential wells. However, as can be seen in Fig. 6.6, the two
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Fig. 6.6. Solid lines: Atomic SQUID potentials U−(γ) (bottom) and U+(γ) (top) at ϕ =
0.23 × 2π and s = 0.8. Dashed line: Potential U0(γ) of the junction calculated at s = 0.8
for τ = 0.995. Dots: Potential minima at phases γ−min and γ+

min , with energies U−(γ−min) and
U+(γ+

min), respectively.

potentials are different, and, in particular, their curvatures at the respec-
tive minima, which determine the plasma frequencies, are not the same.
The angular frequencies ω− and ω+ in the two Andreev manifolds are:

ω+ =
1√
CJϕ2

0

∂2U+

∂γ2

)

γ−min

(6.14)

ω− =
1√
CJϕ2

0

∂2U−
∂γ2

)

γ+
min

(6.15)

In the adiabatic basis, the eigenstates of the system take the general
form: 



|ψ−〉 =

∫+∞
−∞ ψ−(γ) |γ,−〉 dγ,

|ψ+〉 =
∫+∞
−∞ ψ+(γ) |γ,+〉 dγ, (6.16)

where ψ±(γ) are the wave-functions in the upper and lower manifolds.
With the harmonic assumption, the levels in the two manifolds, shown
in Fig. 6.8, are just the solution of the harmonic oscillator (see p. 499 in
[125]), labeled by integers m, n = 0, 1, 2, ..., with energies:





∣∣∣ψm+
〉
→ U+(γ+

min) + (m+ 1
2
)~ω+∣∣∣ψn−

〉
→ U−(γ−min) + (n+ 1

2
)~ω−

(6.17)

An accurate determination of the eigenstates and eigenenergies could
be obtained, if needed, by resorting to the semi-classical approximation,
or by diagonalizing the Hamiltonian using this harmonic oscillator basis.
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Fig. 6.7. Energy levels of a current-biased Atomic SQUID within the adiabatic approxima-
tion. The two Andreev manifolds live in the two different potentials U−(γ) and U+(γ). The
curvature at the bottom of each well is different, this corresponses to two different plasma
frequencies ω− and ω+.

Transition frequency

In the case of perfect phase-bias, the accessible transitions below 20 GHz
appeared to be limited to a narrow phase range around δ = π. We further
develop this discussion for Atomic SQUIDs, where the transitions now
take place from each populated state in the lower manifold to any other
state in the upper manifold, which are empty at thermal equilibrium
(the states in the lower manifold are populated according to Boltzmann
distribution) (see Fig. 6.8).
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Fig. 6.8. Left: Scheme of the ground-state to ground-state transition ~ν00(ϕ). The ground
eigenstates levels in each potential

∣∣ψ0
−

〉
and

∣∣ψ0
+

〉
are shown as Gaussian curves in each

well. Right: Scheme of the transition in the almost classical case νclassical(ϕ).
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With the levels determined in Eq. (6.17), the transition frequency

νnm(ϕ) from the state
∣∣∣ψn−

〉
to the state

∣∣∣ψm+
〉

is given by:

~νnm(ϕ) = U+(γ+
min)− U−(γ−min) + (m+

1

2
)~ω+ − (n+

1

2
)~ω−. (6.18)

The ground-state to ground-state transition between the two manifolds,
which is expected to be probed in the experiment, is thus at a frequency
ν00(ϕ) given by :

~ν00(ϕ) = U+(γ+
min)− U−(γ−min) +

1

2
~(ω+ − ω−). (6.19)

In the classical case, where the mass is large enough to neglect the zero-
point motion, it reduces to:

~νclassical(ϕ) = U+(γ+
min)− U−(γ−min). (6.20)

Knowing this, the question we need to answer for the experiment is the
following: while measuring the modulation curve at low temperature, at
what frequency should we irradiate the system to induce a transition to
the ground state of the upper manifold? Clearly, we have to calculate the
frequency along the modulation curve presented in Fig. 5.14 in Chapter 5.
In other words we have to consider, for each value of the flux, the transi-
tion at a reduced bias current corresponding to a constant barrier height.
In Fig. 6.9, we compare the two transition frequencies of Eqs. (6.19) and
(6.20) calculated in this way, to the Andreev gap expected in the perfect
phase-bias situation.

These transition frequencies can significantly depart from this ideal
case. In the almost classical case, the lower the critical current of the
junction the higher the minimal transition frequency, whose position is
furthermore increasingly shifted in flux. This is due to the fact that, far
from the perturbation case EJ ≫ ∆, there is a sizable shift between the
potential minima γ+

min and γ−min. Therefore it is not possible to have them
both simultaneously at the phase corresponding to the minimal transi-
tion frequency. Furthermore, when quantum fluctuations of the phase are
significant (i.e. for larger plasma frequency), the transition frequency of
Eq. (6.19) is appreciably increased compared to the Andreev gap and
the almost classical case, due to the difference between the plasma fre-
quencies ω− and ω+. In conclusion, with respect to the ideal phase-bias
situation, the actual flux range for which the transition frequency is less
than 20 GHz is shifted and narrower.
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Fig. 6.9. Left: Transition frequency νclassical(ϕ) obtained from the difference between the
minima of the adiabatic potentials, for τ = 0.995 and three values of the critical current. This
has been calculated along the modulation curve of Fig. 5.14, i.e. for a constant barrier height
∆U−. The dashed curve corresponds to the ideal Andreev gap νA(δ), expected in a perfect
phase-bias situation. Right: Transition frequency ν00(ϕ) of the ground-state to ground-
state transition between the two Andreev manifolds, when considering a plasma frequency
νp0 = 30 GHz for the junction alone, for τ = 0.995 and three values of the critical current.
This has been calculated along the same modulation curves as in the first panel. The dashed
curve corresponds again to the Andreev gap νA(δ).

Modification of the switching rate

When inducing a transition between the two Andreev manifolds, the
escape rate gets modified because of the difference in the barrier height
for both states. But is the rate increased or decreased ? And in particular,
when operating at constant barrier height, as is done experimentally,
what are the expected effects in comparison with the simple picture of
Fig. 6.1 ?

To answer this question, we calculate, again along the same modula-
tion curve as in Fig. 5.14, the quantity ∆U+−∆U−

EJ
, when it is meaningful,

i.e. when both potentials present a barrier.1 This quantity, shown in
Fig. 6.10, changes sign around ϕ = π/2, therefore in the region where
the transition frequency is below 25GHz (compare to Fig. 6.9). However,
the transition frequency is not anymore centered at ϕ = π/2 for rea-
sonable values of the critical current, therefore the simple picture of two
opposite peaks looses its validity. The transition in this region is more
complex than in the perfect bias case, and it is necessary to know for each
flux whether the barrier height is increased or decreased to predict the
expected change in switching current. In particular, for some tran-
sition frequencies, the excitation could result in two peaks in

1 For a small critical current, in some regions of the flux, the contribution of the lower
Andreev state is sufficient to create a potential barrier in the full potential U−, but
because the upper Andreev state has an opposite contribution, the potential U+ does not
present a potential well.
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the same direction, which is qualitatively different from what
is expected in the case of ideal phase-bias.
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Fig. 6.10. Difference between the barrier height of the two potentials along the modulation
curve for the same three values of the critical current as in Fig. 5.14.

Matrix Element for flux excitation

As compared to the perfect phase bias, the matrix element for a flux
excitation now involves the wave-functions in each manifold. The matrix
element between the state

∣∣∣ψn−
〉

and the state
∣∣∣ψm+

〉
incorporates the

overlap between the wave-functions with the general expression:

Mnm⊥ =

+∞∫

−∞
ψn(γ−min, σ−)∗ ψm(γ+

min, σ+)

〈
+

∣∣∣∣∣
∂HAS
∂δ

∣∣∣∣∣−
〉
dγ (6.21)

In particular, one is interested in the ground-state to ground-state matrix
element:

M00
⊥ =

+∞∫

−∞
ψ0(γ−min, σ−)∗ ψ0(γ+

min, σ+)

〈
+

∣∣∣∣∣
∂HAS
∂δ

∣∣∣∣∣−
〉
dγ (6.22)

The ground states in the two Andreev manifolds, denoted
∣∣∣ψ0
−
〉

and
∣∣∣ψ0

+

〉
,

have the ground state wave-functions of the harmonic oscillators depicted
in Fig. 6.8:

ψ0(γimin, ωi) =

(
CJϕ

2
0ω
i

π~

)1/4

exp

(
−CJϕ

2
0ω
i

2~

(
γ − γimin

)2
)

(6.23)



182 6 Towards Andreev states spectroscopy

The term
〈
+
∣∣∣∂HAS
∂δ

∣∣∣−
〉

is the matrix element M⊥(γ + ϕ) calculated in

the ideal phase-bias situation. A crude approximation for this matrix
element M00

⊥ is shown in Fig. 6.11, considering a junction with a plasma
frequency of νp0 = 30 GHz. As can be seen from this figure, the matrix
element is only slightly reduced when moving away from the perturbation
limit.
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Fig. 6.11. Matrix element for flux excitation, calculated for the same three critical currents
as in the previous figures, using the same width for the ground state wave-functions in both
manifolds.

6.1.4 Beyond the adiabatic approximation

The decoupled manifold approximation has been always used up to now
for analyzing experimental results on Atomic SQUIDs. We try here to
go beyond this approximation in order to understand its validity range,
evaluate the corrections, and treat experimental situations with large
quantum fluctuations. This is done in a manner very similar to Fritz and
Ankerhold [113], who treated the case of a simple current-biased atomic
contact is treated.

Hamiltonian

In the reflectionless basis spanned by the states |γ,→〉 and |γ,←〉, the
kinetic energy term takes a simple diagonal form. However, in the adi-
abatic state basis, the operator pγ = ~

i
∂
∂γ

contains more terms than its

restriction p̃γ to the two manifolds because the adiabatic states vary with
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γ. From the definition of the adiabatic states, one finds, in a conventional
spin notation:

pγ = p̃γ − ~(θ′/2)
′

σ̂ASy , (6.24)

where:

θ′ =
dθ

dγ
=
r

2

1

1− τ sin2 δ
2

. (6.25)

The additional term in (6.24), which is non-diagonal, couples the two
adiabatic manifolds. The full Hamiltonian written in the adiabatic basis
{|γ,+〉 , |γ,−〉} is, in a matrix form:

HASQUID = H̃ASQUID +
(2e)2

2CJ

(
θ′2/4 θ′′ + θ′∂/∂γ

−(θ′′ + θ′∂/∂γ) θ′2/4

)
(6.26)

where we called H̃ASQUID the reduction to the two manifolds in the adi-
abatic approximation. This result is very similar to the one obtained in
[113].

Eigenstates and eigenenergies beyond the adiabatic approximation

The Hamiltonian of Eq. (6.26) contains two types of corrections to the
adiabatic Hamiltonian given in Eq. (6.13):

• The first one, associated to the diagonal part of the correcting term,
modifies the potential term similarly for the two manifolds. However,
the potential wells, whose minima occur at different values of the
phase, are modified differently. Furthermore, θ′ has a strong phase
dependence in the vicinity of the phase δ = π for large transmissions.
The small value of the charging energy EC = (2e)2/2CJ ≈ 30 mK
makes however this correction small but for transmissions extremely
close to one.

• The second correction, associated to the non-diagonal part of the cor-
recting term, couples the two manifolds. It induces a small admixture
of the adiabatic eigenstates, and yields a small change of their energies.
This change, that can be readily evaluated using perturbation theory,
is however small because the Andreev frequency is large compared to
the coupling term.

6.1.5 Conclusion

We conclude that the adiabatic approximation provides a valid descrip-
tion of the Andreev states in an Atomic SQUID, but that their proper-
ties can significantly depart from the perfect biasing situation of a simple
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atomic contact. We find in particular that fluctuations of the phase signif-
icantly increase the transition frequency compared to the perfect phase-
biasing situation of a simple atomic contact, in particular the quantum
fluctuations. This has important consequences for the observation of the
Andreev transition, which is only possible in a very narrow range of pa-
rameters. We also conclude that the real part of the impedance across
the contact must be very small in order to obtain a relaxation time com-
parable with the measurement time.

6.2 Design of an experimental setup

After this theoretical discussion on the requirements to excite and probe
the upper Andreev state, realistic setups are now considered in this sec-
tion. Using Sample AC1 presented in Chapter 5, we tried to excite the
Andreev transition by adding a microwave current to the bias current
of the SQUID. We did not observe any effect that could reliably be at-
tributed to the excitation of an Andreev transition. We propose two
tentative explanations for this failure:

• At microwave frequencies above a few GHz, the excitation current es-
sentially flows in the shunting capacitor Ce, thus inducing only a small
phase modulation across the contact, and hence a small population of
the upper Andreev level.

• Following the discussion on relaxation given in the preceding section,
the dissipation might have been too large in this sample to induce a
sufficient population of the upper Andreev state, in particular due to
the electrodes in gold.

Elaborating upon these considerations, we propose the following require-
ments for a new experiment on the spectroscopy of Andreev states:

• The excitation signal has to be coupled efficiently in the GHz range
to the atomic contact.

• The dissipation in the environment of the atomic contact should be
sufficiently small to achieve a long enough lifetime of the upper An-
dreev state, hence sharp spectroscopic lines.

Before discussing possible solutions, it is useful to point out the basic
elements that any setup must contain (see Fig. 6.12):

• To measure the current in the atomic contact, a Josephson junction
has to be connected in parallel. This junction, with a typical critical
current between 300 nA and 1 µA and a typical size of 1 µm2, has
an intrinsic capacitance CJ ≃ 100 fF [87], and a characteristic plasma
frequency νp ≃ 25 GHz (for aluminum).
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• Slow dc bias and measurements lines are needed to measure the I(V )
characteristics of the contact, to determine its transmissions, and to
detect the voltage appearing at switching. The bias line includes a
resistor R ≃ 200Ω as shown in Fig.5.9, while large resistors are added
on the measurement lines. In a crude approximation, the ensemble
of these lines can be simply modeled as a single resistor R0 = 250 Ω
in parallel with the junction (corresponding to R in series with the
heavily attenuated 50 Ω bias line).

As seen from the atomic contact, the impedance Zbare(ω) of this minimal
environment is:

Zbare(ω) =

(
1

R0

+ jCJω +
1

jLJω

)−1

(6.27)

Using typical values for the Josephson junction, it appears that the dis-
sipative part Re [Zbare(ω)] is higher than 1 Ω in all the frequency range
[5− 20 GHz] corresponding to accessible Andreev transition frequencies
(see also Fig. 6.13 described further in text). This setup thus clearly does
not meet the criterion on dissipation of Eq. (6.6) because the contact is
not isolated from the resistor in the relevant frequency range.

6.2.1 Environment

Analysis of the previous setup

In the setup presented in Chapter 5 and sketched in Fig. 6.12(1), a large
on-chip parallel capacitor Ce = 20 pF≫ CJ is connected in parallel with
the junction. In this case, the impedance seen from the atomic-sized
contact is:

ZC(ω) =

(
1

R0

+ jCeω +
1

jLJω

)−1

(6.28)

Note that, in order to avoid the losses due to the spurious resistor r
represented in Fig. 5.9, we have fabricated on-chip capacitors with su-
perconducting aluminum electrodes. We therefore neglect r hereafter.
This large capacitor has several functions:

• From the point of view of the atomic contact, it shunts the resistance
of the measurement lines at large frequency.

• It filters spurious noise from the measurement lines.
• It reduces the plasma frequency of the junction at about 1GHz, which

ensures that switching occurs in the thermal regime.
• As a consequence, it also shunts the resistor R0 in the range of acces-

sible Andreev frequencies [5− 20 GHz], diminishing the dissipation.
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However, as shown in Fig. 6.13, this setup fulfills only marginally the
criterion on the dissipation of Eq. (6.6), and a better design is needed.
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Fig. 6.12. Top: The atomic-sized contact is loaded by an impedance Z(ω). In order to mea-
sure the current-phase relation of the contact, this impedance consists at least of a Josephson
junction and of a measurement and bias line, which is represented in a simple model by a
resistor R0 = 250 Ω. Considering the Josephson junction as the parallel combination of an
inductor LJ and the intrinsic capacitance CJ , the simplest case is the impedance Zbare(ω).
Bottom - Left: Previous setup presented in Chapter 5 corresponding to an impedance
ZC(ω), where the capacitor loading the junction is increased with a large extra capacitor
Ce (left). Bottom - Right: New proposed setup corresponding to an impedance ZLC(ω),
where an inductance Le is added between the Josephson junction and the capacitor Ce to
decouple the superconducting loop from the outside world at high frequency.

New setup

Inspired by the work of the group of Olivier Buisson in Grenoble [126,
127, 128, 129], we consider now a new setup presented in Fig. 6.12(2), in
which an inductance inserted between the large shunting capacitor and
the junction reduces the dissipation seen from the atomic contact over a
wide frequency range. In this case, the impedance of the environment is:

ZLC(ω) =




1

jLJω
+ jCJω +

1

jLeω +
(

1
R0

+ jCeω
)−1




−1

(6.29)
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This inductance enhances the high-frequency filtering provided by the
large capacitor Ce, and the environment now presents two clearly sepa-
rated modes:

• A high-frequency mode which is essentially the bare plasma frequency

of the junction, thus close to (LJCJ)
−1/2, slightly modified by the

inductance of the environment. The corresponding frequency is

νhigh ≃
1

2π

√√√√ 1

( 1
Le

+ 1
LJ

)−1CJ
. (6.30)

• A low-frequency mode corresponding to the LC-oscillator formed by
Le and Ce, slightly modified by the inductance of the Josephson junc-
tion:

νlow ≃
1

2π

√
1

(Le + LJ)Ce
(6.31)

As can be seen in Fig. 6.13, in the frequency range of interest, this circuit
allows to considerably reduce the real part of the impedance of the envi-
ronment, down to below a mΩ, thus fulfilling the criterion on dissipation
of Eq. (6.6). We have thus chosen to implement this new setup, in which
dissipation due to the environment is expected to be reduced by at least
one order of magnitude compared to the previous one.

6.2.2 Excitation

The population of the excited Andreev states has to be achieved through
a modulation of the phase difference across the contact at the Andreev
frequency in the range [5− 20 GHz]. Two methods are possible:

• As discussed in Chapter 5, a bias-current excitation ∆s cosωexct can
be applied to the Atomic SQUID, which should result in a phase
excitation. However, the large capacitor Ce connected in parallel with
the sample (see Fig. 6.12) shunts the Atomic SQUID at the relevant
Andreev frequencies.

• A phase excitation can be obtained by adding an ac modulated flux
∆ϕ cosωexct to the dc flux through the loop, as in [129]. The induced
high-frequency current flows essentially in the superconducting loop
provided that the environment presents a large enough impedance at
that frequency. This is the case for the new setup with inductive lines.

In conclusion, to solve both the relaxation and the excitation problems
we implemented a setup with an on-chip LC filter and a flux microwave
antenna.
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of the sample, but have very poor microwaves properties. In our new
setup we clamp the sample on one side with two SMA launchers, and
bend it from the other side, as shown in Fig. 6.14. These changes re-
quired to completely redesign the bending mechanism and the sample
fabrication, as discussed in Chapter 7.
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Fig. 6.14. Top: New setup for an Atomic SQUID experiment as compared to Fig. 5.9 (see
text for details). Bottom: The new sample holder and bending mechanism (right) allows
to properly contact the sample at all frequencies using SMA connectors, compared to the
previous system (left). More details are found in Chapter 7.

6.3 Probing the new on-chip environment with a
standard SQUID circuit

In order to test this two-mode electromagnetic environment, we per-
formed an experiment on a sample (Sample SQUID) containing, in place
of the Atomic SQUID, a dc-SQUID with two identical Josephson junc-
tions (see Fig. 6.14). Because the loop is very small, this SQUID behaves
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essentially as a single tunable Josephson junction [120], but the SQUID
geometry has two important practical advantages:

• It allows to test the effect of the on-chip antenna, which is designed
to couple through an induced flux.

• Applying a dc flux through the SQUID loop allows to tune its criti-
cal current, and thus to reduce its plasma frequency. Since it was not
obvious before performing the experiment that the plasma frequency
of the Josephson junction could be accessed with our microwave cir-
cuitry, limited below 25 GHz, this possibility ensured that the plasma
frequency could be tuned within the accessible range.

6.3.1 Sample SQUID parameters

The parameters of Sample SQUID are presented in Fig.6.15 and summa-
rized in Table 6.1. The junctions, with an area S ≃ 1.4× 0.65 = 0.9 µm2

and a nominal capacitance of about 0.09 pF2 each, have a normal state
resistance of 400Ω at low temperature, corresponding to an expected crit-
ical current of 780 nA (see Eq. B.94). The inductance Le was obtained
using thin 1µm-wide and 400µm-long aluminum wires with normal state
resistance Rwire = 125Ω at low temperature, similar to those in [127, 129].
The origin of the inductance of this wire is twofold:

• The geometric inductance, which for a wire of length l is Lgeo ≃ µ0l.
The two lines had a length of 380µm, resulting in a total nominal ge-
ometric inductance Lgeo ≃ 1.0 nH. More refined formulas yield almost
the same value.

• The kinetic inductance, which is due to the inertia of the Cooper pairs,
can be calculated using Eq. (3. 125) in [58] which gives the complex
conductivity of a superconducting wire. The expression for the kinetic
inductance is

Lkin =
~

π

Rwire

∆
(6.32)

which results in a total nominal kinetic inductance of the two lines
Lkin ≃ 0.1 nH.

One thus expects a total nominal inductance Le ≃ 1.1 nH. The large
capacitor Ce has been designed on-chip with a nominal value of 55±5pF
(measured at room temperature at 100 kHz).

From its geometry, the nominal inductance LL of the loop is of the
order of 25 pH, much smaller than the typical inductance LJ = 0.3 nH of
one Josephson junction, as estimated from its normal resistance. In this

2 we supposed here that the junction capacitance per unit area is 100 fF/µm2 [87].
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Fig. 6.15. Top: Schematic of the setup. A SQUID of two Josephson junctions of critical
current I0 ≃ 0.75 µA each is connected to an inductive environment made of Le and Ce. An
on-chip antenna is realized with a wire placed close to the loop, which is able to induce a
flux at high frequencies. Bottom: Pictures of Sample SQUID, taken at large scale with a
binocular (top left) and at smaller scale with an optical microscope (bottom right) or a SEM
(top right). The bottom left panel shows the sample holder.
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Parameters Nominal Measured / Estimated

Junction RJ 400 Ω
Junction I0 785 nA (AB) 750 nA
Junction CJ 0.09 pF 0.07 pF
SQUID bare plasma frequency 26 GHz 28.5 GHz
Environment Ce 55 pF 55± 5 pF
Wire Rwire 125 Ω
Environment Le 1.1 nH 0.7 nH
Environment bare frequency 0.65 GHz 0.8 GHz
Loop inductance LL 25 pH 20 pH
Loop inductance asymmetry η 0.25
I0 asymmetry α 0 0.01

Table 6.1. Parameters of the Sample SQUID presented in this section.

limit3 the SQUID behaves as a single flux-tunable Josephson junction,
as presented in Fig. 6.16. If the two junctions are identical, the critical
current of the equivalent junction is simply:

IS0 = 2I0

∣∣∣∣cos
(
ϕ

2

)∣∣∣∣ (6.33)

where I0 is the critical current of one junction.

6.3.2 I(V) characteristics

An I(V ) characteristics of Sample SQUID is shown in Fig. 6.17. This
curve was taken at a flux value which maximizes the supercurrent branch
at zero-voltage. The sizable sub-gap current and the gap back-bending
behavior, typical of aluminum junctions, are discussed in the Appendix
A.1.

6.3.3 Escape rate

Switching current & SQUID parameters

We measured the modulation of the switching current of the SQUID
using the technique presented in [20] and in Chapter 5. One measures
the escape probability as a function of the flux, and monitors the value
Isw corresponding to a constant escape probability P = 0.6. The resulting
modulation curve is shown in Fig.6.17. The switching current range from

3 More precisely, using the notations of [120], one defines the parameter b = LJ/LL. For
large b, the two-dimensional potential of the SQUID reduces to a one-dimensional situation
[120]. This is the case here, since b ≃ 10.
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Fig. 6.16. Top: Complete nominal description of the setup in terms of lumped-element
model. This includes asymmetries between critical current and capacitors of the junction,
and asymmetries between the inductance of the two arms of the SQUID. Bottom: Simplified
circuit that was considered here, under the assumption that the asymmetries in critical
current and junction capacitors are small, and that the inductance of the loop is negligible
compared to the Josephson inductance. The system reduces to a simple Josephson junction
of flux-tunable critical current with a resonant circuit in parallel.

-400 -200 0 200 400

-2

-1

0

1

2

VJ HÐVL

I J
HÐ

A
L

-0.5 0 0.5
0

0.5

1

1.5

j � 2Π

I s
w
HÐ

A
L

Fig. 6.17. Left: I(V ) characteristics of the SQUID for a flux ϕ = 0 that maximizes the
size of the supercurrent branch. Right: Measured switching current Isw (corresponding to
an escape probability P = 0.6) as a function of the reduced flux (dots) and fit of the
experimental result with Eq. (6.35), using Imax

sw = 1.355 µA (solid line).

Imax
sw = 1.355 µA to almost zero for some values of the flux.4 Although

the switching current differs from the critical current, it is well accounted

4 Below 50 nA, the switching process is overwhelmed by spurious noise, and the switching
current was no longer measurable with our setup.
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for5 by the expression:

Isw = Imax
sw

∣∣∣∣cos
(
ϕ

2

)∣∣∣∣ . (6.34)

as seen in Fig. 6.17.
This good agreement between the simple modulation formula (6.34)

and the measured values of the switching current is a first hint that the
SQUID behaves as a single junction with fully tunable critical current.

We also measured the switching current for both positive and negative
bias pulses. The difference ∆Isw = I+

sw− I−sw between these two switching
currents is shown in Fig. 6.18. The theoretical description of switching
in a dc SQUID can be found in [120]. This work shows that, in most
circumstances, the difference in switching current is equal to the differ-
ence in critical current. Moreover, this difference in critical current can
be calculated numerically as a function of three parameters α, LL, and η
which correspond respectively to the asymmetry in critical current, the
total inductance of the loop, and the asymmetry in inductance between
the two arms of the SQUID (see Fig. 6.16). We neglected here the asym-
metry in capacitance β between the junctions, since it is expected to be
extremely small [120, 129]. The experimental curve of Fig. 6.18 is well
fitted using LL = 20 pH, η = 0.25 and α = 0.01, and no other good com-
bination of parameters can be found. This fitting procedure thus yields
a determination of the parameters of the superconducting loop, and con-
firms both that the asymmetry in critical current is small and that the
loop inductance is negligible as compared to the Josephson inductance,
which validates the one-dimensional hypothesis.

The SQUID is hereafter treated as a single Josephson junction, for
which the predictions for the switching out of the zero-voltage state pre-
sented in Chapter 2 apply.

Escape rate

Using the nominal parameters of the SQUID, the plasma frequency at
ϕ = 0 is expected to be νp0 = 28.5 GHz at zero bias, corresponding to a
crossover temperature TCO = 220 mK. At a fridge temperature of T =
20mK, switching of the SQUID is thus expected to be due to Macroscopic
Quantum Tunneling [51]. We have investigated both regimes:

• A first measurement of the escape probability as a function of the bias
current was performed at 300mK, a temperature higher than TCO, but

5 The absolute value of the flux threading the loop is not known, but the zero has been
adjusted manually to compensate offsets.
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Fig. 6.18. Dots: Difference in switching currents ∆Isw = I+
sw − I−sw measured for opposite

signs of the bias current. Solid line: Best fit of the experimental result using numerical
prediction for the difference in switching current (calculation presented in Appendix) that
appears to be extremely similar to the difference of the critical current. This yields the values
LS = 20 pH, η = 0.25 and α = 0.01.

still low enough for the critical current to have its zero temperature
value, as shown in Appendix B.6. In the thermal regime, the environ-
ment weakly affects the escape rate, since it only enters its prefactor.
Fitting this curve with the procedure presented in Section 4.4.1 and
the expression (2.30) for the escape rate, one obtains I0 = 1.505 µA.
We also checked that the critical current follows the prediction:

I0(ϕ) = I0

∣∣∣∣cos
(
ϕ

2

)∣∣∣∣ . (6.35)

• At lower temperature, the escape proceeds through MQT. The escape
rate is expected to be strongly affected by the low-frequency mode of
the environment, as described in Section 2.2.2 and in the Appendix of
[64]:

Γq(T ) = Γq(0) exp

{
−Bq

LJ
Le

[
5

2
− 15

kBT

~ωp

]}
(6.36)

in a perturbation approach assuming LJ
Le
≪ 1, ~ωp ≫ kBT ≫ ~ωe

and for a sufficiently large quality factor for the low frequency mode
of the environment. There are thus two combined effects : on the
one hand, the environment modifies the quantum dynamics of the
phase, which yields a first correction to the bare exponent Bq. On the
other hand, the environment is also responsible for thermal noise at
finite temperature, which induces fluctuations of the potential, and
brings a second correcting term proportional to temperature. In this
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experiment, the nominal value of the inductance Le is 1.1 nH, while
the Josephson inductance of the SQUID LJ = ϕ0

I0
√

1−s2 is about 0.5 nH

at s = 0.9 and ϕ = 0, and reaches much larger values when the
critical current is reduced by applying the flux. Equation (6.36) is
valid only well below the crossover temperature and for LJ

Le
≪ 1. At

this temperature and for such a low inductance Le, the effect
of the environment is probably not a perturbation of the
MQT regime, and the expression (6.36) might not be valid
for our whole range of parameters. In Fig. 6.19, we present the
escape probability as a function of the reduced bias current for four
different temperatures, at ϕ = 0 (largest critical current and minimal
inductance LJ). The fit of these curves with Eq. (6.36), considering
I0 = 1.505 µA and CSJ = 0.14 pF, yields an inductance Le = 1.5 nH,
reasonably close to our rough estimate 1.1 nH. However, experiments
described below and probing the high frequency mode indicate that
the actual inductance is smaller, and not larger, than our estimate. We
attribute this discrepancy to the fact that the corrections to the escape
rate arising from thermal fluctuations of the low-frequency mode of
the environment are not accurately described by Eq. (6.36).

Although it was not possible to completely characterize the escape rate, it
appeared that the reduced switching current ssw = Isw/I0 was practically
constant (∼ 0.9) for all values of flux. Therefore, the switching current is
proportional to the critical current, consistent with the good fit appearing
in Fig. 6.18.

6.3.4 Frequency response under a flux excitation

In this section, we present results concerning the frequency response of
our dc-SQUID, under a flux excitation.

Predictions

The resonance modes of the circuit, calculated assuming the SQUID is
a tunable inductor, are the zeros of the total admittance Ytot(ω) as seen
from the bias line. Using Eq. (6.29) and modeling the SQUID as the
parallel combination of LSJ and CSJ , this admittance Ytot(ω) is:

Ytot(ω) = (ZLC(ω))−1 =
1

jLSJω
+ jCSJ ω+

1

jLeω +
(

1
R0

+ jCeω
)−1 (6.37)

and the two modes are given from Eq.(6.30) and Eq.(6.31) by:
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Fig. 6.19. Dots: Measured switching probability using a pulse length τ = 1 µs for four
different temperatures (T = 35 mK (circles), 55 mK (squares), 65 mK (triangles) and 75
mK (diamonds)), at ϕ = 0 where the critical current is maximum. Solid lines: Fits using
Eq. (6.36), considering I0 = 1.505 µA, CJ = 0.14 pF, Le = 1.5 nH, and the temperatures T
= 93 mK, 111 mK, 121 mK and 131 mK.





νhigh ≃ 1
2π

[
( 1
Le

+ 1
LSJ

)−1CSJ

]−1/2

.

νlow ≃ 1
2π

[
(Le + LSJ )Ce

]−1/2
(6.38)

that differ from the bare plasma frequency νp0 of the SQUID and the
bare frequency of the environment νe:




νhigh ≃ 1

2π

[
LSJC

S
J

]−1/2
.

νe ≃ 1
2π

[LeCe]
−1/2

(6.39)

The flux-modulation of the Josephson inductance:

LSJ (ϕ) =
ϕ0

2I0

∣∣∣cos
(
ϕ
2

)∣∣∣
, (6.40)

leads to the flux-modulation of the two mode frequencies νlow and νhigh

shown in Fig. 6.20. The high frequency mode, which corresponds to the
actual plasma frequency of the SQUID, is strongly affected by the in-
ductance of the environment. When the critical current drops at ϕ = π,
the inductance of the Josephson junction strongly increases and the bare
plasma frequency of the SQUID goes to zero. But the actual high fre-
quency mode of the full circuit does not follow this behavior because of
the inductance of the environment. The actual plasma frequency of the



198 6 Towards Andreev states spectroscopy

system is always larger than 1
2π

√
1
LeCSJ

≃ 16 GHz. This frequency corre-

sponds to a crossover temperature TCO = 120 mK. As a consequence, at
the lowest fridge temperature the escape rate of the SQUID should be
dominated by MQT, whatever the flux.
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Fig. 6.20. Left: Low frequency mode νlow of the SQUID at s = 0.9 (orange solid line),
compared to the bare resonant frequency of the environment νe (blue dashed). Right: High
frequency mode νhigh of the SQUID at s = 0.9 (orange solid line) compared to the bare
plasma frequency νp0 of the SQUID (blue dashed).

Experimental protocols

In order to probe the frequency response of the system to a flux excita-
tion, we have measured the escape probability following two protocols:

• A constant flux-excitation at fixed frequency is applied, and the bias
current of the dc-SQUID is modified to tune its modes.

• A constant bias current is applied, and the frequency of the flux-
excitation is swept. This protocol could however be used only at low
excitation frequency, because the transmission of the microwave line
varies too much with frequency above a few GHz.

According to the phenomenon of resonant activation [59], one expects
an increase of the escape probability when the excitation frequency ap-
proaches an eigenfrequency of the system. A similar experiment was per-
formed in [127], and results of numerical simulations comparing flux exci-
tation and bias-current excitation are shown in Appendix B.2, confirming
this simple idea. Let us stress here that most of our experiments were per-
formed at modulation amplitudes yielding an escape rate order of mag-
nitudes above the thermal equilibrium value (in absence of excitation).
Therefore, they cannot be described quantitatively by the well-known res-
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onant activation theory [61], and in particular by the frequency response
function of Eq. 2.39.

Flux line calibration

The mutual inductance between the antenna and the SQUID was mea-
sured, with 200 µA square pulses 4 µs long, to be:

Mφ = 0.8 pH. (6.41)

In practice, this is enough to explore a flux range of about ∆ϕ = π/5
without exceeding the critical current of the antenna.

High-Frequency mode

Following the first protocol presented above, the escape probability was
measured as a function of the bias current in presence of a microwave
excitation, at four different frequencies, and for a flux ϕ such that
IS0 (ϕ) = 0.67 µA. The variations of the escape probability are shown
in Fig. 6.21. Compared to a reference curve obtained without microwave
excitation, the switching probability curve displays a broad peak around
a current IRA(νexc) smaller than the switching current. Above this cur-
rent, the escape probability recovers the behavior in absence of excitation.
One observes that the value of IRA(νexc) decreases when the excitation
frequency νexc is increased.

We attribute this broad peak to the excitation of the high frequency
mode of the circuit, which agrees with the observed decrease of IRA(νexc)
with νexc. This measurement, performed at large power, cannot be quan-
titatively compared with the resonant activation theory presented in [61],
and we suppose that IRA(νexc) corresponds to the situation where the ex-
citation frequency matches the local value of the high frequency mode.
The poor transmission of the bias-current line prevented us from per-
forming standard resonant activation experiments as detailed in [61].

The frequencies measured in this way are plotted in Fig. 6.22 as a
function of the reduced bias current, and compared with the predicted
frequency νhigh. From the best fit, we obtained the values Le = 0.7 nH
and C0 = 0.14 pF . The figure also shows that the bare plasma frequency
that would be expected in absence of the environment for the same ca-
pacitor, or even by adjusting the capacitor, would not fit the data. This
comparison supports the fact that the high frequency mode is strongly
pushed upward in frequency by the inductance of the environment.

In order to complete this description, we performed a measurement of
the switching probability as a function of both the bias current and the
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Fig. 6.21. Evolution of the switching probability when a microwave flux excitation is added
through the antenna, taken a ϕ = 0.35 corresponding to IS0 = 0.67 µA. Different curves
correspond to different frequencies (circles: no excitation, squares : 23.7 GHz, triangles:
22.7 GHz, diamonds: 21.7 GHz, hexagons : 20.7 GHz). Vertical grid lines correspond to the
supposed frequency matching condition, whose positions are reported in Fig. 6.22.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

s

f
HG

H
zL

With Env t : Νhigh

Without Env t : Νbare

ΝbareHCJ
S
L

Fig. 6.22. Dots: Values of the local reduced bias current s and the frequencies corresponding
to the bumps presented in Fig. 6.21 for ϕ = 0.35 resulting in IS0 = 0.67 µA. Solid line:
Best fit for the high-frequency mode of the system, yielding CSJ = 0.14 pF, and Le = 0.7 nH.
Dashed blue line: Prediction for the bare plasma frequency with same parameters. Dashed
orange line: Best fit for the bare plasma frequency using the junction capacitance as a fitting
parameter, and yielding CSJ = 0.07 pF.

flux under a microwave excitation at 24.3 GHz. The results are shown in
Fig. 6.23.
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Fig. 6.23. Escape probability as a function of the flux and the bias current, when a constant
microwave flux excitation at frequency 24.3 GHz is added on the antenna. The transition
between P = 0 (dark) and P = 1 (bright) appears at the switching current Isw already
presented in Fig. 6.21. The bright spots below this transition correspond to the typical bumps
shown in Fig. 6.21. White solid line: Predicted current-flux locus where the switching
probability is P = 0.5 in absence of microwaves. Orange solid line: Predicted current-flux
locus where the high-frequency mode matches 24.3 GHz. Blue dashed line: Locus where
the bare plasma frequency matches 24.3 GHz.

The transition between P = 0 and P = 1 corresponds, as before, to
the unperturbed switching current Isw. In addition, one observes, below
the switching transition line, spots corresponding to the bumps appearing
in Fig. 6.21, where the excitation frequency matches the high-frequency
mode of the system. This figure also shows the locus where the high-
frequency mode is expected to match the excitation frequency 24.3 GHz,
considering again Le = 0.7 nH and C0 = 0.14 pF. The good agreement
between this line and the position of the bumps further supports that the
bumps are associated to the high-frequency mode of the circuit. For the
sake of comparison, the line corresponding to the resonance condition for
the bare plasma frequency is also shown.
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In the range of flux close to ϕ = 0, the effect of the microwave excita-
tion is not limited to the single bump visible in Fig. 6.21. As can be seen in
Fig. 6.24, multiple bumps can be observed around the expected value for
νhigh. This feature is not understood presently, but might be due to the si-
multaneous excitation of the high-frequency mode and the low-frequency
modes, yielding different peaks at frequencies νhigh, νhigh + νlow,. . .
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Fig. 6.24. Symbols: Escape probability without (circle) and with (squares) microwave
excitation at 24.3 GHz. Close to ϕ = 0, the curve does not present just a single bump as in
Fig. 6.21, but several distinct bumps. Dashed line: Predicted position in bias current where
the excitation frequency matches the high-frequency mode, using the parameters extracted
from Fig. 6.21.

Low frequency mode

The activation of the low frequency mode could be directly performed
using the second protocol, in which the frequency is swept, because the
microwave transmission of the flux line was roughly constant in the rele-
vant frequency range. In absence of any excitation, the current was tuned
to yield an escape probability P = 0.1. Then, the escape probability is
monitored while a microwave excitation with varying frequency is applied
to the flux modulation line, as shown in Fig. 6.25. A strong increase of
the escape probability appears in the vicinity of 600 MHz.

This position of the peak, which can even be a double peak, is mod-
ified by the flux, as shown in Fig. 6.26 which reproduces the same mea-
surement for all values of the flux. We attributed the peaks to the low
frequency mode of the system, and compared it to the predicted values
for the parameters I0 = 1.505 µA, Le = 0.7 nH, Ce = 55 pF. Although
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Fig. 6.25. Symbols: Measured escape probability under microwave excitation as a function
of frequency. For three values of the flux (ϕ = 0.2 (circles), ϕ = 0.35 (triangles) and ϕ =
−0.45 (squares)), the bias current is fixed in absence of microwave excitation to obtain
P = 0.1. The excitation is then switched on, and the escape probability is monitored at the
same bias current while sweeping the excitation frequency at constant power. Dashed line:
Predicted maximum position of the low frequency mode with I0 = 1.505 µA, Le = 0.7 nH,
Ce = 55 pF.

Fig. 6.26. Escape probability as a function of the flux and the excitation frequency. Solid
line: Current-flux locus where the low-frequency mode matches the excitation frequency, for
the same parameters as used in Fig. 6.25.
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no quantitative comparison could be achieved, the peaks fall close to the
predicted frequency for the low frequency mode. A tentative explanation
for the splitting of the peaks at some values the flux, and for the overall
behavior of the peaks, is to consider a coupling to modes of the large
scale electromagnetic environment (typically the metallic box in which
the sample is enclosed, which has a typical size of a few centimeters due
to the large mechanical elements needed for the bending of the sample
in experiments on atomic contact, see Chapter 7 for details).

6.3.5 Conclusion

Using a conventional SQUID geometry, we have characterized the pa-
rameters of the electromagnetic environment proposed for an Atomic
SQUID experiment with a new design. We accessed the superconducting
loop parameters using the difference in switching current for positive and
negative bias current. From measurements of the switching rate of the
system in the MQT regime in which the escape rate is strongly affected
by the environment inductance, we obtained an estimated value for this
added inductance Le. Finally, we probed the two modes of this SQUID
with a flux excitation fed trough the on-chip antenna. This SQUID exper-
iment sets the stage for a new Atomic SQUID experiment aiming towards
the spectroscopy of Andreev states, and operated in the quantum regime
for the phase across the contact.
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Chapter 7
Sample Fabrication

Most of the techniques used to fabricate the samples measured during
this thesis are standard, based on optical/e-beam lithography and metal
evaporation. However, the design of capacitors deserves some description,
as well as the fabrication on bronze or plastic substrates, used in the
experiments on atomic contacts. For completeness, we give in this chapter
the detailed recipes that we employed in the fabrication of the samples
for two types of experiments, noise detection (samples JJD) and atomic
contacts (samples AC and SQUID).

7.1 Samples JJD for noise detection experiments

7.1.1 Large scale patterns

Samples JJD1 and JJD2 were fabricated on 2-inches, thermally oxidized
high resistivity silicon wafers (103 to 104 Ω cm), with nominal oxide thick-
ness of 500 nm.1 Using a high resistivity wafer avoids unwanted capaci-
tive coupling between large electrode through the wafer. On this wafer,
photo-lithography is used to define on-chip large contact pads, capacitors
and resistors, using the masks shown in Fig. 7.1. For capacitors, we used
a technique developed in the group by François Nguyen [130], in which
each capacitor is obtained by two electrodes overlapping the same third
electrode buried below a thin dielectric layer (silicon nitride). As a re-
sult, one obtains two capacitors in series. Mask B1 is used to define the
bottom electrodes, fabricated out of Al. Silicon nitride is then sputtered
on the whole wafer, and top electrodes are defined with mask C1. In a

1 We measured 545 nm by interferometry, using a Filmetrics F20.
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last step, resistors are fabricated using mask D6 and evaporation of thin
chromium films.

50 mm

Cg
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Cg
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C R R

R2

CgCN R3
R1

6.5 mm

Fig. 7.1. Masks used for the photo-lithography for the Samples JJD1 and JJD2. Colored
regions are transparent in the mask, while white areas are opaque. B1 defines the bottom
electrodes of capacitors, C1 the large size electrodes and alignment marks for e-beam lithog-
raphy, and D6 the resistors (Sample JJD2 only). Bottom panels represent the design at the
scale of individual chips.

Masks fabrication

The masks for large scale patterns did not need to have a very high
resolution, we therefore used a cheap method to obtain them: all masks
are printed at once2 using a high resolution laser printer (12000 dpi) on
an A4 transparency foil, with an effective resolution of the order of 10µm.
The pattern is then transferred on a chromium coated glass:

• the part of the transparency corresponding to one mask is sandwiched
between a transparent glass and a glass coated with chromium and a
positive optical resist (Clariant AZ5206);

• the sandwich is UV-exposed during 25 s using the MJB3 mask aligner
(see Sec. 7.4.1);

2 by MKM Electronique.
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• after 50 s development in MF319, the chromium layer is etched chem-
ically (50 s in chromium-etch) to remove it in the exposed regions;

• the remaining resist is removed in acetone, and the mask is cleaned
with isopropanol.

First step: capacitors and large contact pads

• Using Mask B1, 30 nm-thick bottom aluminum electrodes are de-
posited with an electron-gun evaporator.

• The complete wafer is covered with a ≃ 30 nm-thick dielectric layer,
silicon nitride (εr = 7.5), using magnetron sputtering [130].

• Using Mask C1, 30 nm-thick aluminum electrodes are deposited, defin-
ing an overlap with the bottom electrodes at places where capacitors
are required. A 3 nm-thick gold layer is added on top to protect alu-
minum from oxidation, therefore facilitating further contacts to this
layer. Alignment marks for e-beam lithography are defined at the same
time.

The capacitance per unit area obtained using this method is

CS = 2.35± 0.2 nF/mm2. (7.1)

It is measured at 100 kHz using a RLC-meter (see [130] for more de-
tails). The sum A of the areas of the two overlaps forming each capaci-
tance shown in Fig. 7.2 is given in Table 7.1 (the capacitance is CSA/4).
This technique produces very reliable and reproducible capacitors (±10%
spreading of the capacitance value and for 95% of them a leakage resis-
tance larger than 5 MΩ).

Capacitor Area (mm2)

CJ 0.00216
C1 0.388
C2 0.588
Cg 0.234
CN 0.318

Resistor Area (mm2) Squares

R1 0.55× 0.45 0.8
R2 0.24× 0.48 2
R3 0.55× 0.45 0.8

Table 7.1. Left: Total overlap area of the capacitors produced in Samples JJD1 and JJD2
Right: Dimensions of the on-chip chromium resistors on Sample JJD2.

Second step: resistors

In Sample JJD1, the wafer was then prepared for electronic lithography
and diced into chips. It is only after junctions were fabricated that SMC



210 7 Sample Fabrication

resistors were glued on the sample using silver epoxy, in order to im-
plement R1, R2 and R3. As shown in Appendix A.2, the experimental
measurements indicated that the thermalization of the resistors was not
sufficient, and we decided to use a different technique for sample JJD2.
We added a lithography step to fabricate the resistors with chromium
thin films. Using Mask D6, a 10 nm-thick chromium layer was deposited
by Joule evaporation at 0.4 nm/s, yielding a sheet resistance of the order
of 215± 20 Ω/� at room temperature, 250± 20 Ω/� at 4.2 K

7.1.2 e-beam lithography

6.5 mm

280 µm

96 µm

a b

c d

350 µm

35 µm

JJD1 JJD2

Fig. 7.2. e-beam lithography design (green) of the samples JJD1 and JJD2. (a) Overview
at the scale of the whole chip; (b) zoom on the capacitor CJ , defined by the overlap with the
red bottom aluminum electrode covered with silicon nitride; (c) junctions design of Sample
JJD1, at the scale of the ×1000 writing field of the electron microscope; (d) junctions design
of Sample JJD2, with gold quasiparticle traps (violet).
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To prepare for e-beam lithography, the wafer is covered with a bilayer
of electro-sensitive resist (MMA-MAA and PMMA) (see recipes in 7.4).
A 7 nm-thick additional layer of aluminum is added on top of the resist to
avoid charging effects during alignment on the aluminum marks, which
requires a large current3 (200 pA at 25 kV). The wafer is then diced.

Sample JJD1

Design The pattern shown in Fig. 7.2 is drawn in the resist by e-beam
lithography. The exposure dose is 250 µC/cm−2, except in two zones:

• the boxes defining the junctions, where the dose is 350 µC/cm−2;
• the so-called "undercut boxes", where the dose is reduced, typically

down to 90µC/cm−2. In these regions, the dose is sufficient to expose
the MMA, which is more electrosensitive that the PMMA. During
development, the MMA is dissolved below the PMMA, which remains
overhanging. This allows subsequent evaporation of metals under large
angles.

The aluminum layer is removed during 1 min 30 s in KOH. The sample is
then cleaned with isopropanol, developed for 35 s to 40 s in MIBK, and
finally rinsed for 50 s in isopropanol.

Junction fabrication The PMMA bridge formed with e-beam lithogra-
phy is used to form Josephson junctions using the shadow mask evapo-
ration technique:

• a layer of 20 nm of aluminum is deposited at 1 nm/s at an angle +25◦;
• the layer is oxidized at 30 mbar during 10 min in a mixture Ar/O2

(80/20);
• a second layer of 80 nm of aluminum is deposited at the opposite angle,
−25◦.

The resulting overlaps are shown in Fig. 7.3. Using this procedure, it
is possible to obtain junctions with areas S of the order of 1 µm2 that
have a resistance RJ ≃ 500 ± 50 Ω × S/µm2. This value increases by
5% after two weeks at room temperature, and by 10% if the sample is
placed during 90 min at 80◦C. The resistance is more sample-dependent
on smaller junctions, where edge effects probably play a significant role.

3 Such a large current is needed to distinguish the aluminum pads below the resist.
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On-chip resistors Resistors R1, R2 and R3 are Surface Mount Compo-
nents (Vishay P0603, series P, reference P0603Y2000 DB, with dimen-
sions 1.52×0.75×0.5mm3). They are glued on the sample with a conduc-
tive epoxy glue (Epotek EE-129-4) that reticulates at room temperature
in 24 h. However, this glue appeared to be not sufficiently conductive and
we added silver paint on top of it to improve the electronic conductivity.4

2 µm 2 µm

Undercut 
boxes 
(0.4)

1.5

1.5

1

1

1.5

1.5

300 nm

300 nm

600 nm 1.35 µm

0.55 µm

2.2 µm

Fig. 7.3. Sample JJD1. Left: Noise source junction design (top) and micrograph (bottom).
Numbers in the design indicate the relative exposure doses. Right: detector junction.

Sample JJD2

On Sample JJD2, we added quasiparticles traps to the previous design.
Two e-beam lithography steps were thus needed:

• in a first step, the violet pattern of Fig. 7.2(d) is exposed, together
with new alignments marks. This pattern is used to define the 30 nm-
thick gold quasiparticles traps (a layer of 2 nm of Ti is deposited prior
to gold to improve sticking). The sample is then covered again with a
bilayer of MMA and PMMA, but thanks to the good contrast of the

4 A better solution is to use the silver epoxy from CircuitWorks, that performs much better.
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gold alignment marks, no additional aluminum had to be deposited
on top;

• in a second step, the green area of Fig. 7.2(d) are exposed after align-
ment with the previous pattern, and the junctions are fabricated as
for sample JJD1. One thus obtains large overlaps of the aluminum
electrodes near the junctions and the gold quasiparticle traps.

7.2 Samples AC1 and AC2 for atomic contacts
experiments

7.2.1 Wafer preparation

Atomic contacts are obtained by bending the substrate on which a sus-
pended bridge was designed (see Chapter 5). The samples therefore need
to be fabricated on a flexible substrate: silicon wafers cannot be used. For
samples AC1 and AC2, we used commercial 0.3 mm-thick bronze plates
(chrysocal, CuSn3Zn9), cut into 3-inches wafers. In order to allow micro-
fabrication on it, the wafer must first be polished then planarized with
a 2 µm-thick polyimide layer (for details, see [45]). It is then covered
with a bilayer of MMA and PMMA. Since the wafer is conducting, no
additional layer is needed here to perform the e-beam lithography.

7.2.2 Lithography

The whole design of the samples was defined by e-beam lithography.

e-beam lithography The design of samples AC1 and AC2 is presented
in Fig. 7.4. On Sample AC1, the large scale patterns were designed in a
first step, and realized with gold thin films: we deposited 30 nm of gold
over 2 nm of Ti in the pattern shown in blue in Figs. 7.4(a,d,e). The
sample was then covered again with the bilayer MMA/PMMA and an
additional layer of 7 nm of aluminum to allow alignment with the second
e-beam step (green in Fig. 7.4). On the contrary, sample AC2, for which
all the electrodes were made out of aluminum, could be made in a single
step. The metallic films were deposited with a two-angle evaporation:

• a 40 nm-thick layer of aluminum is deposited at a rate of 1 nm/s under
a +20◦ angle;

• it is oxidized at 15 mbar during 10 min in a mixture Ar/O2 (80/20);
• a 60 nm-thick layer of aluminum is deposited at a rate of 1 nm/s under

a −20◦ angle.
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The Josephson junction had an area of 1.2 µm2. Using this procedure,
we obtain for junctions with areas S of the order of 1 µm2 a resistance
RJ ≃ 700± 70 Ω× S/µm2.

After the two angle evaporations of Al, one obtains two parallel images
of the bridge. However, the window in the PMMA mask gets partially
plugged during the first evaporation, and most of the time the second
metallic bridge does not come out completely. Even if it does, only the
last of the two bridges to break would be relevant anyway.

Etching To suspend the bridge, the polyimide underneath is etched in a
reactive ion etcher (RIE). The sample is maintained at 200◦C during the
etching, by placing it on a hot, large metallic block before pumping the
chamber of the RIE machine. This increases the etching rate and makes
it more isotropic. The etching conditions are:

• flow of 50 sccm of O2 and 2 sccm of SF6 at a total pressure of 0.25 mbar;
• auto-polarization voltage close to 40 V.

The vertical etching depth is monitored by laser interferometry. Etching
1µm in the vertical direction is sufficient to free the metallic bridge from
the surface, and suspend it over l = 2 µm. Note that the junction was
designed wide enough not to get suspended during this step.
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7µm

14µm

96 µm

Fig. 7.4. e-beam lithography design for Samples AC2 (a,b,c) & AC1 (a,d,e), at large scales.
For AC1, the design is performed in two steps (first step in blue, second step in green). The
junction is obtained on the left arm of the loop, the suspended bridge on the bottom arm.
When bent, the sample elongates in the horizontal direction.

d e

2.5 µm

300 nm 600 nm

100 nm

Fig. 7.5. Design of sample AC2: left: junction; right: metallic bridge
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7.3 SQUID sample

7.3.1 Wafer preparation

Sample SQUID was fabricated on a chip prepared with the same large
scale design of samples for Andreev-states spectroscopy. The goal is to
achieve a good coupling of the microwaves to the flux line. We therefore
designed a 50 Ω coplanar waveguide (seen on the bottom of Fig. 7.7(b))
with a central conductor that at the edge of the sample is large enough
to match the central pin of a SMA launcher (see Fig. 8.3). This was only
possible on an insulating substrate: it is not possible to obtain a 50 Ω
coplanar waveguide with such a wide central conductor on the metallic
substrate used for samples AC1 and AC2, which had only a 2µm-thick
dielectric. As a consequence, we moved to 500 µm-thick Kapton wafers
(Kapton HN from DuPont), an insulating plastic material with εr = 3.2.

Kapton plates are first cut into 2 inches wafers. The wafer is polished
using a polisher P320 MECAPOL from PRESI. To do so, the wafer is
first glued with wax on a large metallic block:

• A rough polishing is then performed using Nylon disks and diamond
paste with a 9µm-large grains, during 30 min at 150 rpm. This removes
the largest scratches, and diminished the thickness of the wafer by
typically 50 µm.

• Three fine polishing steps (6 µm, 3 µm, and 1 µm) follow, with soft
disks at 150 rpm. The local residual rugosity is eventually of the order
of 50 nm, with some deeper scratches.

Planarization is improved using a polyimide layer. We used a solution of
pure PI2610 (HD MicroSystems). This solution is spun at 3000 rpm after
a slow ramp of 30 s, terminated by 3 s at 6000 rpm to avoid edge effects.
The wafer is baked 1 h in an oven at 180◦C (baking on hot plate creates
bubbles in the layer), and cured for one hour at 350◦C in a vacuum
chamber under a residual pressure of 10−6 mbar. The final thickness of
the layer is typically 2.5 µm. This process reduces the local rugosity to
less than 5 nm, and fills most of the scratches.

7.3.2 Photo-lithography

Four masks5, shown in the top half of Fig. 7.7, are then used to fabricate
(on seven chips 14 mm×14 mm per wafer), the capacitors (masks 1, 2
and 3), the quasiparticle traps (mask 4), the on-chip antenna and the
large contact pads (mask 3). The chips are here significantly larger than

5 Chromium masks fabricated on quartz by Toppan Photomasks.
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samples AC1 and AC2 because their size is determined by the two SMA
connectors making the contacts (see Fig. 8.3).

In this SQUID experiment, an LC environment is fabricated on-chip.
The inductance is obtained with thin and long wires connected to capac-
itively coupled pads. In order to make the capacitors, we did not use the
same method as described in section 7.1.1 because we were concerned
with the mechanical response of silicon nitride when bending the sub-
strate. The geometry of the capacitors remains the same: two electrodes
overlap a common bottom electrode buried under the dielectric. We chose
to use 5 to 10 nm-thick aluminum oxide (AlOx) as a dielectric. This is
in principle thick enough to prevent any significant Josephson coupling.
In practice the dielectric was obtained by depositing a stack of several
1.5 nm-thick layers, oxidized one-by-one. A difficulty with this method is
that the edges of the bottom electrode are not completely covered with
the thin AlOx layer, creating possibly short circuits with the top elec-
trode. To circumvent this difficulty, we chose to coat the wafer with a
new polyimide layer after the deposition of AlOx, and define openings on
the bottom capacitor electrodes using mask 2, so that the edges remain
covered with polyimide. In a last step we then deposit the top electrodes.
Theses steps are illustrated in Fig. 7.6.

UV 1 2RIEUV
Mask 2

1 2RIE

ResistResist

PIAl (bottom electrode)
AlOx

3 4

Kapton

Al (top electrode )3 4Al  (top  electrode )

Fig. 7.6. Scheme for the fabrication of capacitor Ce for the SQUID sample. Red: bottom
electrode (Al); grey: dielectric (AlOx); green: polyimide layer to protect the edges; blue:
top electrodes (see text for details).

Mask 1: bottom capacitor electrodes

• The pattern of mask 1 is exposed on the resist bilayer LOL-S1805
(see recipe in section 7.4.1) to define the geometry for the 40 nm-
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1 2
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a b

c d
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 m

m 14 m
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235 µm 100 µm

Fig. 7.7. Masks (1, 2, 3 and 4) used for Sample SQUID. Colored regions are transparent
in the mask, while white areas are opaque. (a) Result of the overlap of the 4 patterns; (b)
single chip; (c) capacitor Ce, with bottom electrode (red) and opening in polyimide (green)
visible only between the two top electrodes (blue); (d) central region where the SQUID and
the on-chip inductors are fabricated using e-beam lithography. The magenta squares are gold
quasiparticle traps.



7.3 SQUID sample 219

thick aluminum electrodes (deposition at 1 nm/s). To diminish the
grain size, the films is deposited on the wafer held at low temperature
(≃ −150◦C) using a liquid nitrogen flow cooling. After warming up to
room temperature, it is oxidized during 15 min at 800 mbar in Ar/O2

(80/20).
• Four 1.5 nm aluminum layers are deposited at room temperature, at

a rate of 0.1 nm/s, each oxidized at 200 mbar during 5 min in Ar/O2

(80/20).

Mask 2: openings in polyimide layer The next step is the deposition
of the polyimide protecting layer: the polyimide layer is prepared with a
solution of PI2610 and N-methyl-2-pyrrolidone mixed 1:1. This solution
is spun for 60 s at 6000 rpm a using a slow starting ramp, then baked
and cured as described in section 7.3.1. The final thickness, as measured
by interferometry, is 150± 20 nm. It turns out that, after this procedure,
the wafer slighlty shrinks by ∼ 0.1 to 0.2% (which represents 5 to 10 µm
on the diameter), which makes further alignment steps very delicate.

Using Mask 2 and the S1813 recipe, which gives a thicker resist
(1.4 µm), windows are opened in the resist, then transferred in the poly-
imide layer by reactive ion etching in oxygen, until almost 900 nm of
the resist is etched. Since the resist layer is much thicker than the poly-
imide layer, but is etched only twice as fast, this completely removes the
polyimide layer. The remaining resist is eventually removed in acetone.

Mask 3: top electrodes and connections pads Using the third mask
and the LOL+S1805 recipe, we deposited a new aluminum layer which
defines the top electrodes of the capacitors and the large scale contact
pads.

• Prior to the deposition of aluminum, the dielectric layer is made
thicker: four 1.5 nm thick layers of aluminum are deposited at room
temperature, at 0.1nm/s, and oxidized at 500 mbar during 5 min each;

• the 30 nm-thick aluminum layer is deposited at 1 nm/s at room tem-
perature;

• to avoid the oxidation of this layer and facilitate the connection to
it, we deposit on top of it a 3 nm-thick gold buffer layer at 0.5nm/s.
This technique however was not satisfactory: spurious contact resis-
tances between this layer and the next one were frequently found.
We suspect the formation of a gold-aluminum intermetallic with poor
conductivity.

With this technique, the capacitor Ce = 55 ± 5 pF (corresponding to
5.5 ± 0.5 nF/mm2) was obtained with a good reproducibility. However,
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several capacitors presented a significant leakage (between 100 kΩ and a
few MΩ). This leakage is nevertheless low enough to play no role in the
experiment.

Mask 4: quasiparticle traps The last mask is used by applying the
recipe LOL2000+S1805 to deposit quasiparticle traps (30 nm-thick gold
layer on 2 nm of titanium).

7.3.3 e-beam lithography

The wafer is then prepared for e-beam lithography by deposition of a
standard MMA/PMMA bilayer, plus a 10 nm-thick aluminum layer. This
metallic layer is necessary to prevent charging effects on this insulating
substrate. The substrate is then cut into samples using a guillotine. The
design presented in Fig. 7.8 is exposed to obtain the SQUID loop and
the inductive lines connecting to the capacitor:

• The two 380 µm-long, 1 µm-wide lines form the inductor Le. At reg-
ular spacings, the lines are made wider. The reason is that, in the
planned experiment with atomic contacts, the last fabrication step is
the etching of the substrate to free the bridge. Since the lines forming
the inductances are very narrow, they also get suspended: wider areas
allow to anchor them on the substrate. A similar design was used in
Ref. [44] for long resistive lines. This pattern is exposed with a dose
of 400 µC/cm−2.

• The loop containing the two junctions is aligned on the quasiparticles
traps visible in Fig. 7.7(d).

Here, the exposed chip is developed for 50 s in MIBK:isopropanol 1:3. A
two-angle evaporation is then performed:

• 20 nm of aluminum are deposited at 1 nm/s under an angle of +25◦;
• oxidation follows at 6 mbar during 7 min in Ar/O2 (80/20);
• finally, 80 nm of aluminum is deposited at 1 nm/s under an angle of
−25◦.

In the SQUID sample that was measured, the Josephson junctions had
an area of 1.2 µm2 and a resistance RJ ≃ 400 Ω.
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Fig. 7.8. E-lithography pattern of Sample SQUID.

7.4 Lithography recipes

The fabrication of the samples required both photo-lithography and e-
beam lithography. The principle of the lithography relies on the use of
resists coatings, sensitive either to UV light or to the electron beam. In
both cases, multi-layers were used, first to improve the quality of the
lithography, but also to allow angle evaporations. The exposed regions
are dissolved in a development step, leaving cavities where metal can be
deposited by evaporation. The remaining resist is then removed (lift-off
process), and the metallic design is revealed. We give in this chapter the
parameters of the various recipes that we used.
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7.4.1 Photo-lithography

Resist-spinning

Prior to resist deposition, a primer (Shipley Microposit) is deposited on
the wafer, and after 30 s waiting time, spun 60 s at 3000 rpm.

LOL2000 + S1805 recipe Filtered Shipley resist LOL2000 is poured and
spun at 3000 rpm during 60 s , then baked at 155◦C on a hot plate for
5 min, resulting in a thickness of typically 200 nm. Shipley resist S1805
is then poured and spun at 2000 rpm during 60 s, then baked at 120◦C
on a hot plate during 60 s. The layer thickness is 500 nm.

S1813 recipe Shipley resist S1805 is poured and spun at 4000 rpm during
60 s, then baked at 120◦C during 60 s. The layer thickness is 1.4 µm.

Exposure

The wafer is then exposed through a chromium mask using a mask
aligner. Two different mask aligners were used :

• A MJB3-SUSS Aligner (lamp with power density 5 mW.cm−2). The
exposure time is 15 s.

• A MJB4-SUSS Aligner (lamp with power density 25 mW.cm−2). The
exposure time is 3 s.

The wafer is developed using MF-319 (Shipley): 40 s for LOL2000+S1805,
90 s for S1813.

Lift-Off

After metal deposition, the resist is removed in acetone and ultrasonic
bath during 2 min. In the case of LOL2000, the wafer is then dipped
between 5 and 10 min in R1165 remover (Shipley).

7.4.2 e-beam lithography : MMA/PMMA bilayer

A scanning electron microscope is used to expose the pattern of a future
mask on an electro-sensitive resist.

Resist spinning

• A bottom layer of meta-acrylate/meta-acrylate acid (MMA/MAA
(8.5) EL 11 from MicroChem) is spun at 2000 rpm during 60 s, then
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baked at 170◦C on a hot plate for 60 s. This step is performed twice
to obtain a thickness of 900 nm.

• A top layer of polymethyl-meta-acrylate (PMMA A6 950 from Mi-
croChem) is deposited and spun at 5500 rpm during 60 s, then baked
at 170◦C during 15 min, yielding a typical thickness of 250 nm.

Additional conducting layer

In case of an insulating wafer (SQUID sample) or when one needs a
large current to see aluminum alignment crosses below the resist (sam-
ples JJD), the wafer is covered with a few nm of Al, typically 10 nm
deposited at 0.1nm/s, to avoid charging effects. After exposure, this layer
is removed in a bath of KOH during 90 s, then cleaned with isopropanol.
This additional layer does not change significantly the electronic lithog-
raphy procedure, except in two cases:

• When the exposure current is large (above few tens of nA), the alu-
minum sometime gets damaged during the lithography and cannot be
removed easily after exposure, which creates defects in the geometry.

• When the sample is left for too long in KOH (above two-three min-
utes), the PMMA gets slightly developed.

Exposure & Development

The sample is exposed in a Philips XL30 SFEG microscope using Elphy
Quantum from Raith. The electron beam is steered on the areas of the
resist that are to be removed. The time spent on each zone depends on
the current, and is fixed to yield a typical charge density of 250µC/cm−2

(fine details are exposed with a density increased by a factor up to 1.6).
The exposure is performed with a beam current in the range of 15pA for
the smaller details, and up to 70 nA for coarse patterns (such a current
results in a loss of resolution which is then unimportant).

The sample is then developed in methyl-iso-butyl keton (MIBK) di-
luted 1:3 in volume with isopropanol for 35 s to 55 s depending on the
design (a longer development time allows larger undercut). This devel-
opment removes both the exposed PMMA and the MMA/MAA. After
this development step, the sample is dipped for 50 s in isopropanol.

7.4.3 Metal deposition and lift-off

Metals used in these experiments were deposited using two very simi-
lar electron gun evaporators (fabricated by PLASSYS). Pressures in the
chamber are between 10−7 and 10−6 mbar depending of the evaporator.
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The deposition rate is monitored through the resonant frequency of a
crystal, typically 0.1 nm/s to 1 nm/s. The sample holder is carried by a
rotating arm which allows to perform the evaporation at an angle. For
details, see Ref. [36]. When needed, oxidation is performed by closing the
loadlock containing the sample. A mixture of 80% argon, 20% oxygen
is then let in the loadlock for ∼ 10 min. After deposition, the resist is
removed in a hot acetone bath (65◦C) during 20 min.



Chapter 8
Low-Noise Measurement Techniques

8.1 Sample Holder & Bending Mechanism

8.1.1 Samples JJD1 & JJD2

Samples JJD1 and JJD2 were glued with silver paint on a printed circuit
board mounted on the sample holder shown in Fig. 8.1. Connections are
done using aluminum wire-bonding. Copper brade is used to thermally
connect the sample holder to a plate thermally anchored to the mixing
chamber of a dilution refrigerator with a base temperature T = 20 mK.

3 cm

Fig. 8.1. Sample holder for the Samples JJD1 and JJD2.
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8.1.2 Samples AC1 & AC2

For Samples AC1 and AC2, we used the mechanically controllable break
junction technique (MCBJ) presented in details in [44, 45], based on the
three point mechanism briefly presented in Chapter 5.

8.1.3 Bending mechanism

Sample SQUID was mounted in a new bending mechanism that we de-
signed for further experiments on atomic contacts. Photographs and
schematics views of the setup are shown in Figs. 8.2 and 8.3. The sam-
ple is held on one side by two screws pressing the sample against two
SMA launchers. A pusher, seen on the left side of Fig. 8.3(b), pushes the
opposite end of the sample downwards.

To dc
motor

coil
connections

precision
screw

guiding
groovegroove

threaded
rod

pusher

SMA 
connectors

coil
chuck sample launchers

Fig. 8.2. Setup for sample holder, coil holder and bending mechanism. Transparent parts
are all screwed on the same copper plate, attached to the mixing chamber of the fridge. On
the left, the bending mechanism: a precision screw, driven by a room temperature dc motor,
makes a threaded rod move up or down along a guiding groove, which prevents the rod from
rotating. A second screw attached to the rod holds a Kapton pusher (grey), which presses
at the free end of the sample (green) held on the other side by the two SMA launchers. A
superconducting coil with 5 mm inner diameter (only the coil holder is shown) is placed less
than 1 mm above the sample. It is screened by a thin metallic cup (transparent).
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Sample

Coil

Pusher
z

c d

ba

e

1 cm

Fig. 8.3. Sample holder designed for Andreev states spectroscopy and used for the measure-
ments on sample SQUID. (a,b) The sample (14 mm×14mm, 500µm-thick Kapton substrate)
is held tightly against two SMA launchers, by pushing with two screws a small piece of cop-
per, also visible in (d) and (e), on the back of the substrate. A small superconducting coil
is placed in a copper electrostatic shield placed immediately above the sample (the coil is
absent in (b)). In (a), the sample is not yet bent, in (b) it is noticeably strained. (c) SMA
Launcher, without sample; one of the pushing screws shows out on the bottom left; (d)
SMA launcher with sample: the pin contacts the central line of the coplanar waveguide on
the sample; (e) sample in position (coil and pusher removed) The right launcher connects
to the current bias line. The left to the microwave antenna.
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8.2 Cryostat wiring

All the experiments were performed in an Oxford Instruments Kelvinox
300 dilution refrigerator. Electrical connections are performed using:

• for low-frequency measurements, four lossy twisted pairs connections
acting as RC distributed filters above a few MHz. Each of theses
lines was equipped, at the lowest temperature stages, with a micro-
engineered RC distributed low pass (below a few MHz) filter [131, 132]
and inductive filters (see in [36]).

• for pulses and microwave excitations, three large bandwidth coaxial
lines (-20 dB at 20 GHz in absence of additional attenuators). Various
MiniCircuits LC filters reduce the bandwidth to the desired range.

A large attenuation (typically 50 to 60 dB) is necessary to reduce the
amplitude of the Johnson-noise associated to the room temperature
impedances [131] and make it comparable or smaller than the noise of the
impedances placed at 20 mK. Large amplitude signals are therefore used
at room temperature, and thermally anchored attenuators are placed at
each stage. The wiring used for each experiment is presented schemati-
cally in Figs. 8.4, 8.5, and 8.6.
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temperatures, as indicated. The microwave line feeding the on-chip flux antenna is only
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8.3 Room temperature connections and instruments

8.3.1 Biasing

Current pulses are synthesized with an arbitrary waveform generator
Agilent 33250A. The signal is attenuated at room temperature by 30 dB.

In the experiments on samples JJD1 and JJD2, the tunnel junction
acting as the noise source was kept floating from the ground and con-
nected to a stabilized dc voltage source Yokogawa 7651 through two very
large resistors RL, either 1.5 MΩ or 4.9 MΩ depending on the desired
current range.

8.3.2 Microwave excitation

In the SQUID experiments, microwave signals were generated using a
Rohde & Schwarz SMR20 microwave source for frequencies below 20 GHz
and an Anritsu MG3694B for frequencies above 20 GHz.

8.3.3 Amplification and measurements

The small voltages measured with the lossy twisted pairs are ampli-
fied by low noise voltage preamplifiers NF LI75A (1.2 nV/

√
Hz, 1 MHz

bandwidth, ×100 gain), followed by Stanford amplifiers SR560 with se-
lectable gain and bandwidth. The I(V ) characteristics are registered with
a Nicolet Pro 44 high-resolution digital oscilloscope. The switching volt-
age pulses are counted using two PM6680 counters (Fluke or Philips).
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Appendix A
Additional measurements

A.1 Back-Bending in the I(V ) characteristics of
Josephson junctions

The theoretical I(V ) characteristics of a Josephson junction within the
RCSJ model is sketched in Fig. A.1, and compared with a typical I(V )
characteristics of one of our Al-AlOx-Al Josephson junctions (Sample
JJD1 presented in Chapter 4).
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Fig. A.1. Comparison between a theoretical I(V ) characteristics of a Josephson junction
(left) and an experimental I(V ) characteristics of Sample JJD1 (presented in Chapter 4)
(right).

As can be seen on this figure, our Al-AlOx-Al Josephson junctions
present two unexpected features:

• When the voltage approaches |V | ≃ 2∆/e, the transition to the dis-
sipative regime does not appear as a vertical branch. The voltage
across the junction decreases when the current increases. There is
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a reduction of the apparent superconducting gap: we call this fea-
ture "back-bending". In some samples, the behavior can be even more
complicated, as presented below.

• When the voltage across the junction is smaller than twice the su-
perconducting gap |V | < 2∆/e, the current is not zero everywhere.
In this junction, current peaks can be seen; in other samples, a back-
ground current is found. This sub-gap current is commonly attributed
to pinholes in the tunnel barrier, which correspond to well transmitted
channels, or to inelastic tunneling of Cooper pairs through the barrier,
the energy 2eV being transferred to modes in the electromagnetic en-
vironment [133] or in the junction itself if it is long enough to stand
resonant modes [3].

In the following, we present a brief overview of the back-bending.

A.1.1 Experimental facts

The shape presented in Fig. A.1 is not universal, but based on the nu-
merous experiments performed on Josephson junctions, it is possible to
draw some general trends:

• The back-bending is not visible in the I(V )’s shown in [3]. In this
reference, the junctions have large critical currents (of the order of
1 mA and more), and are made with various metals (Sn, Pb, Nb,...)
but not in aluminum which has a low critical temperature (therefore
increasing the cryogenic constraints). In contrast, for small aluminum
junctions with areas ranging from 0.1 µm2 up to few µm2, and with
critical currents from a few nA up to a few µA, the I(V ) character-
istics presents a back-bending, as observed in the Quantronics group
as well as in several other groups worldwide. Remarkably, the back-
bending is NOT observed on junctions obtained with Al atomic con-
tacts, in which the I(V ) accurately agrees with theory [44, 112]. The
back-bending behavior is found systematically in small criti-
cal current Josephson junctions with overlapping aluminum
electrodes.

• The temperature dependence of the back-bending is shown for the
noise source of Sample JJD1 in Fig. A.3. At T ≃ 570 mK, the back-
bending has almost disappeared, with a total apparent gap which is
reduced according to the BCS theory. One should note here that due
to the low critical temperature of aluminum, junctions with aluminum
electrodes are commonly measured in dilution fridges at a few tens of
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Fig. A.2. Comparison of I(V ) characteristics of Josephson junctions made with different
fabrication processes. Top: large area Niobium Josephson junction made at HYPRES show-
ing no back-bending. Bottom: Aluminum Josephson junctions with sub-µA critical current
made in Quantronics group (left) and in Institut Néel (right).

mK, therefore much lower than the critical temperature, while junc-
tions in niobium are often measured at 4.2K, which is only half of
the critical temperature. The back-bending disappears when in-
creasing temperatures.

• For two junctions fabricated with exactly the same procedure, the
shape of the back-bending is similar. Figure A.4 compares the junc-
tions of Samples JJD1 and JJD2 presented in Chapter 4. The left
panel shows the large junctions (∼ 1 µm2) that are used as detectors,
the right panel shows the small junctions (∼ 0.1 µm2) used as noise
sources. All junctions have very similar large scale electrodes, but dif-
fer in the overlap size. In the case of JJD2, quasiparticle traps are
placed in contact with the electrodes (see Fig. 4.23), and this does not
seem to tremendously affect the back-bending. In all cases, the slope
presents strong variations, with nose-like features both at the bottom
and at the top of the curve. In some cases, a bistable behavior is found
(see junctions of Sample JJD2). One observes that the two types of



238 A Additional measurements

380 390 400 410

0

2

4

6

8

10

12

V HÐVL

IH
nA
L

20 mK
240 mK

570 mK

Fig. A.3. Temperature dependence of the back-bending in the noise source of Sample JJD1.

junctions (large and small) have very comparable characteristics, but
that the difference in voltage between the bottom and the top of the
branch is much larger in the larger junctions, where the current is also
larger.
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Fig. A.4. Shape of the I(V ) characteristics at V = 2∆/e for samples JJD1 and JJD2
presented in Chapter 4. Left: Large critical current detector junctions. Right: Small critical
current junctions used as noise sources.

• A curious feature is found in SQUIDs, where the back-
bending is systematically not monotonic, as shown in Fig. A.5:
voltage oscillations are observed as the current increases. Such a fea-
ture has been observed in SQUIDs fabricated in the Quantronics
group, at Institut Néel [129], and at T.U. Delft [134]. Note that this
structure is not very sensitive to the flux through the SQUID loop.
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Fig. A.5. I(V ) characteristics of SQUIDs. Left: I(V ) characteristics of the SQUID presented
in Chapter 6. Right: I(V ) characteristics of a SQUID in the PhD thesis of J. Claudon [129].

A.1.2 Theoretical description

A tentative explanation of back-bending is that the current flowing
through the junction at V = 2∆/e creates quasiparticles at a rate I/e,
and that these quasiparticles yield a reduction of the gap similar to that
observed when temperature is increased1, and thus a reduction of the
voltage. This scenario agrees with the effect being larger in junctions
with larger critical currents, but no quantitative explanation is available,
and it does not fit with all experimental facts:

• why should the effect appear for junctions with aluminum electrodes
only? Is it due to the metal, in which case the quasiparticle recom-
bination rate should be computed to explain the difference, or to the
temperature at which the measurement is performed?

• how can the slope of the I(V ) have a non-monotonous dependence in
the current?

• why should the effect be particularly strong and non-monotonous in
SQUIDs?

Some efforts done presently by Alfredo Levy Yeyati and Sebastian Berg-
eret give a first possible description: a self-consistent calculation of the
local superconducting gap for a junction voltage-biased close to twice
the bulk superconducting gap can yield more than one solution [136].
The back-bending behavior might thus be due to averaged transitions
between metastable values of the gap. However, no definitive theoretical

1 In intrinsic Josephson junctions present in high-Tc materials, back-bending is systemati-
cally observed, but the explanation seems to be related with the change of resistivity with
temperature of highly resistive layers [135], not with a change of the gap.
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microscopic model has been proposed to account quantitatively for the
back-bending. We think that such a model should consider quasiparticle
recombination and quasiparticle diffusion in the junction electrodes. If
the explanation outlined above is correct, one expects back-bending to
be more pronounced in junctions with narrow connecting wires made of
a superconductor with a larger gap than the junction electrodes, and less
pronounced in devices when large normal electrodes are contacted close
to the junction.

A.2 Heating effects in switching measurements

In the experiments described in Chapter 4 aiming at measuring noise
with a Josephson junction as a detector, sequences of bias-current pulses
were applied to the junction through a resistor R1 = 200 Ω placed on-
chip. It appeared that electron heating in this resistor was large enough to
increase the effective escape temperature, an effect probed experimentally
and evaluated here.
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Fig. A.6. Rise of the effective escape temperature with the measurement time. Temperature
is calculated from a local escape probability (obtained from the density of escape events in
a period of time corresponding to 100 measurement pulses).

In order to probe this heating effect, we sent a long train of pulses
(16000), and monitored the times of all escape events using a timer. This
allows to determine which pulses give rise to switching. The switching
probability P (t) as a function of time is estimated using the number of
switching events in small subsets of 50 pulses. The probability P (t) con-
verted into an effective escape temperature is shown in Fig. A.6, in an
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experiment performed at the base temperature, with current pulses of
amplitude IJ ≃ 0.4 µA during a time τp ≃ 1 µs, followed by a sustain at
Isus = 0.8 IJ during τsus = 3µs, repeated every tsignal = 9µs. The observed
increase of the escape temperature demonstrates that the current pulses
heat the environment of the Josephson junction, producing a sizable in-
crease of the effective escape temperature ∆Teff ≃ 15 mK from 55 mK to
70 mK. Considering that the resistor R1 is the only one in the environ-
ment of the junction that gets heated by the current, and using Eq. 4.23,
the increase ∆Teff implies an increase of the electronic temperature in
R1:

∆T1 =
R1

R||
∆Teff ≃ 35 mK. (A.1)

This increase can be compared to the prediction given in [137], where the
case of a bias resistor heated by such a train of pulses is explicitly treated.
For the signal used in this experiment, the average power dissipated in
the resistor R1 is

P =
τ

tsignal

R1I
2
J +

tsustain

tsignal

R1I
2
sus. (A.2)

For the experimental values, one obtains P = 1
9
R1I

2
J + 3

9
R1 (0.8 IJ)

2 ≃
5 pW. The prediction for the electronic temperature requires to com-
pare the voltage R1IJ = 80µV to the characteristic temperature TΣ =(
P
ΣΩ

)1/5 ≃ 66 mK, where Σ is the electron-phonon coupling constant

(typically Σ = 2 nW/µm3/K5) and Ω is the volume of the resistor (typi-
cally Ω = 0.01× 200× 1000 = 2000µm3). This temperature corresponds
to the limit when cooling occurs only through the coupling to a bath of
zero-temperature phonons. Here, eR1IJ ≫ kBTΣ, and one predicts that
the average electronic temperature reaches at equilibrium

Te =
(
T 5
ph + T 5

Σ

)1/5 ≃ 70 mK, (A.3)

with Tph the phonons temperature. Taking for the initial temperature of
the resistor the escape temperature at the first pulse, 55 mK, the pre-
dicted temperature change of R1 is ∆T1 ≃ 15mK, half the value given by
Eq. (A.1). Hence, if this theory captures the correct order of magnitude
of the heating, it is not quantitative. One possible interpretation is that
the SMC resistor R1 used in this experiment, which was glued on the
sample with silver epoxy, was not well thermalized, and that the current
pulses heated the resistor as a whole: Tph should not be taken as a con-
stant in the calculation. In the following experiments, the SMC resistor
was replaced with a Cr film evaporated directly on the sample.
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The temperature rise time can also be simply calculated using [137].
The average temperature should be reached after a typical electron-
phonon time τe−ph:

τe−ph =
γ

(ΣT 3
Σ)
≃ 0.2 ms. (A.4)

where γ = (π2/3) k2
BνF is the heat capacity coefficient [137], with νF

the density of states at Fermi energy. The rise time observed in the ex-
periment, 10 ms, is much larger than this estimation, indicating that the
observed heating is probably more than just electron heating, as discussed
previously.

We performed another test using pulses of different duration τp:
Eq. (A.2) predicts that, whatever the mechanism, the temperature in-
crease due to the current pulses depends on the two ratios τp

tsignal
and

tsustain

tsignal
. When changing the pulse duration τp, we adjusted the sustain

time and repetition rate (through tsustain) so that the average power is
constant. Resulting B2/3 plots are shown in Fig. A.7 for three different
values of τp, corresponding to different ranges of switching current. The
alignment between the three sets of point indicates that the escape tem-
perature is indeed the same in the three experiments.
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Fig. A.7. B2/3 function for three pulse durations τp: 0.53µs (blue circles), 3.93µs (orange
squares) and 20.98µs (green triangles). All points are aligned, the effective temperature is
thus similar for all the three sets of data (data taken on Sample JJD2).
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Miscellaneous

B.1 Approximations for the tilted washboard
potential

We present here the cubic approximations for the potential

U(x, s) = −EJ (cosx+ sx) (B.1)

that appears in the description of the dynamics of a JJ [11, 31, 32, 73]
to calculate the escape rate, and in particular the corrective term B3 due
to the third moment of noise.

B.1.1 Cubic approximation

Using x̃ = x−xwell, with xwell the position of a minimum of the potential,
Eq. (B.1) becomes:

U(x, s) = −EJ
[√

1− s2 cos x̃− s sin x̃+ s (x̃+ xwell)
]

(B.2)

which can be approximated, neglecting the constant term, by a generic
cubic potential

Ucubic(x̃, s) = EJα(s)

[
x̃2

2
− x̃3

3x̃b(s)

]
(B.3)

with appropriate parameters α(s) and x̃b(s). The minimum and maxi-
mum of the cubic potential are found at x̃(s) = 0 and x̃(s) = x̃b(s). The
height of the barrier is then

∆Ucubic = Ucubic(x̃b, s) = EJα(s)
x̃2
b(s)

6
(B.4)
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and the plasma angular frequency is:

ωcubic
p (s) = ωp0

√
α(s). (B.5)

B.1.2 Taylor expansion

For 1−s≪ 1, the width of the well, given by xb−xwell = π−2 arcsin (s),
is close to 0, so that x̃≪ 1 in the region of the well. A Taylor expansion
of Eq. (B.2) yields:




αTE(s) =

√
1− s2

x̃TEb (s) = 2
√

1−s2
s

(B.6)

The height of the barrier is then ∆UTE = EJ
4(1−s2)

3/2

6s
. This approxi-

mation for the barrier height deviates from the exact one by more than
1 % as soon as s < 0.95. This partly explains why the first calculation
performed by J. Ankerhold in [31, 32], denoted jFP1 in Chapter 2, is only
valid close to s ≃ 1. However, it yields the correct plasma frequency:

ωTEp (s) = ωp0 (1− s2)
1/4

.
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Fig. B.1. Solid line: Exact potential U(x, s) for s = 0.7. Dashed orange line: cubic
potential denoted UTE in text. Dashed blue line cubic potential denoted UBI , that yields
the correct barrier height at all values of s.

B.1.3 Bilocal interpolation

An effective cubic potential with the correct barrier height at all values
of s is obtained by imposing ∂x̃ Ucubic(0, s) = 0 and ∂x̃ Ucubic(x̃b, s) = 0.
This yields:
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αBI(s) =

3[
√

1−s2−sx̃b(s)]
( 1

2
x̃b(s))

2

x̃BIb (s) = 2 arctan
√

1−s2
s

.
(B.7)

This approximation has been used by K. Glaum [73] to calculate the
function jFP2 presented in Chapter 2, which is therefore valid for all
values of s. The plasma frequency is however slightly ill-estimated in this
approximation.

B.2 Resonant activation through the modulation of
the critical current

Resonant activation in a Josephson junction [59], introduced in Chap-
ter 2, consists in the increase of the switching rate when a small AC
modulation of the bias current is applied at a frequency slightly below the
plasma frequency. A related phenomenon occurs when the flux through a
SQUID is ac-modulated, as used experimentally in Chapter 6 and thor-
oughly exploited in [127, 129]. In Chapter 6, the SQUID is operated in
a regime where it behaves as a single Josephson junction with a critical

current modulated by the flux IS0 (ϕ) = 2I0

∣∣∣cos
(
ϕ
2

)∣∣∣, where ϕ is the re-

duced dc applied flux (see Chapter 6 for notations). The current-phase
relation of the SQUID is given by:

IS(γ) = IS0 (ϕ) sin (γ) (B.8)

where γ is the phase difference across the SQUID. We consider here a
RCSJ model for the SQUID. The equations describing the two cases are:

• In presence of an ac modulation of the bias-current IRF cos (ωexct), the
equations for the phase dynamics are:

{ 1
ϕ0
V = γ̇

CJϕ
2
0γ̈ +

ϕ2
0

R
γ̇ + ESJ [sin γ − s] = ϕ0δI (t) + ϕ0IRF cos (ωexct)

(B.9)
where δI(t) is the thermal noise current in the shunt resistor and
ESJ = ϕ0I

S
0 .

• In presence of a harmonic modulation of the applied flux through the
SQUID loop φRF

2π
cosωexct, the equations of the phase dynamics take

a slightly different form:




1
ϕ0
V = γ̇

CJϕ
2
0γ̈ +

ϕ2
0

R
γ̇ + ϕ0 × IS0

(
ϕ+ φRF

2π
cosωexct

)
× [sin γ − s] = ϕ0δI(t).

(B.10)
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In this last set of equations (B.10), the flux excitation yields an excitation
term analogous to the current excitation found in (B.9) together with
other terms. Practically, one can see the flux modulation as a modulation
of the critical current of a simple junction. One can wonder whether
the response function of a Josephson junction under a critical current
excitation is similar to that observed for a current-bias excitation.

We have evaluated this response function in the two cases by monitor-
ing the increase of the escape rate in presence of a harmonic excitation on
the bias-current or on the critical current of a Josephson junction, using
the simulation algorithm presented in Chapter 3. We integrated step by
step the equation:

γ̈ +
1

Q0

γ̇ = F + ξ (B.11)

with the forces:



F = − sin γ + s+ exc(t) for the bias current modulation

F = −(1 + exc(t)) sin γ + s for the critical current modulation.

(B.12)
where exc(t) = A × cos(ft) is the excitation and ξ the random fluctua-
tions. We show in Fig. B.2 that the response function of the switching
rate is very similar in both situations, with a resonant activation curve
that peaks below the plasma frequency and gets sharper at larger quality
factor.
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Fig. B.2. Response function of the resonant activation by a current excitation (blue
circles) or to a flux excitation (orange squares) on a SQUID behaving like a single
tunable junction (large b [120]) for two quality factors as a function of the reduced excitation
frequency f. The amplitudes of each excitation has been set to yield a similar increase of the
escape rate. Vertical grid lines corresponds to the plasma frequency.
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B.3 Moments and Cumulants, and Poisson Process.

In this appendix, we present the distinction between central moments
and cumulants. Since central moments and cumulants don’t differ for the
first three orders, the distinction is not performed along this dissertation.
Details of the derivations presented here are found in [72].

B.3.1 Definitions

Let X be a random variable. The realizations of X are governed by a
probability law.

• If X takes discrete values, the law is defined by the probability mass
function P (X = k) for the variable to take value k;

• If X is a continuous variable, the law is defined by the probability
density function f(x). The cumulative distribution function is defined
by

F (x) = P (X < x) =

x∫

−∞
f(t)dt (B.13)

B.3.2 Average value & moments

• For a discrete variable, the average value of a function λ(x) is defined
as:

E [λ (X)] =
∑

i

λ (xi)P (X = xi) . (B.14)

• For a continuous variable, the average value of a function λ(x) is
defined as:

E [λ (X)] =
∫

R

λ (x) f(x)dx. (B.15)

• The arithmetic mean m is the average value of λ (x) = x, the variance
is the average value of λ (x) = (x−m)2. The moment of order n is

µn = E [Xn] (B.16)

and the central moment of order n is

Sn = E [(X −m)n] . (B.17)

B.3.3 Generating function & cumulants

Moment generating function

One defines the moment generating function as:
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M(z) = E
[
ezX

]
(B.18)

For a continuous variable, one has

M(z) =
∫ +∞

−∞
ezxf(x)dx (B.19)

hence

f(x) ∝
∫ +∞

−∞
e−zxM(z)dx. (B.20)

The probability law is completely characterized by the moment
generating function. Moreover, the exponential term can be expanded
into:

M(z) =
∫ +∞

−∞

∞∑

k=0

(zx)k

k!
f(x)dx =

∞∑

k=0

(z)k

k!

∫ +∞

−∞
xkf(x)dx =

∞∑

k=0

µk
zk

k!
(B.21)

Hence, by a derivation at the order n:

M (n)(z) =
∞∑

k=n

µkk(k − 1) . . . (k − n+ 1)
zk−n

k!
(B.22)

and by taking t = 0, only the term in n = k is kept and one recovers the
moments of the distribution:

M (n)(0) = µn
n(n− 1) . . . (n− n+ 1)

n!
= µn (B.23)

The moment of order n is given by the derivative at order n of the
moment generating function evaluated at zero, and using all moments,
it is possible to reconstruct the moment generating function. Therefore
the probability density function is perfectly characterized by
the moments. However, the moment generating function is not optimal,
especially when two variables X and Y are used:

MX+Y (z) = E
[
ez(X+Y )

]
= E

[
ezX

]
E
[
ezX

]
= MX(z)MY (z) (B.24)

The resulting moment generating function is a product of two polynomial.
Hence, the moments of the sum of the two variables is NOT simply linked
to the moments of each variable. Indeed, if MX(z) = 1+µ1Xz+µ2X

z2

2
+. . .

and MY (z) = 1 + z + µ2Y
z2

2
+ . . . then

MX+Y (z) = 1 + (µ1X + µ1Y ) z +
(
µ1Xµ1Y +

µ2X

2
+
µ2Y

2

)
z2

2
. (B.25)
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The moments of the random variable X + Y are then:
{

µ1(X+Y ) = µ1X + µ1Y

µ2(X+Y ) = 2µ1Xµ1Y + µ2X + µ2Y
(B.26)

The second moment is thus obviously NOT a simple combination of the
second moments of the two random variables X and Y . To solve this
difficulty, it is common to use instead the cumulants generating function.

Cumulants generating function

One defines the cumulants generating function as:

C(z) = ln
(
E
[
ezX

])
= ln (M(z)) . (B.27)

From this definition, the cumulants are given by

C(z) =
∞∑

k=1

κk
zk

k!
(B.28)

therefore
C(n)(0) = κn. (B.29)

Again, the probability density function can be obtained from the cu-
mulants using the Edgeworth series, so that the cumulants perfectly
characterize a probability law. Now, CX+Y (z) = CX(z) + CY (z), so
that the cumulants of X and Y simply add to obtain the cumulants of the
random variable X + Y . The cumulants are obtained by derivation of a
compound function at the order n. The coefficients of such derivation are
calculated by the Faa di Bruno’s formula. This yields for the equivalence
between moments and cumulants:

µn = κn +
n−1∑

k=1

(
n− 1

k − 1

)
κkµn−k (B.30)

therefore: 



µ1 = κ1 = m
µ2 = κ2 + κ2

1

µ3 = κ3 + 3κ2κ1 + κ3
1

µ4 = κ4 + 4κ3κ1 + 3κ2
2 + 6κ2κ

2
1 + κ4

1

(B.31)

The link can also be performed with the central moment generating func-

tion Mc(z) = E
[
ez(X−m)

]
. In this case, all terms in κ1 disappear, so that:




S1 = 0
S2 = κ2

S3 = κ3

S4 = κ4 + 3κ2
2

(B.32)
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which shows that the distinction between central moments and cumulants
has no meaning for the second and third moment.

B.3.4 Examples

Gaussian law

The Gaussian law is governed two parameters m and σ and has a prob-
ability density function given by:

f(x) =
1

σ
√

2π
exp

(
−(x−m)2

2σ2

)
. (B.33)

When calculating the moment generating function

E
[
ezX

]
=
∫ +∞

−∞
ezxf(x)dx, (B.34)

the terms in the exponential are of the form:

− (x−m)2

σ2
+ zx = − 1

2σ2

[(
x− (m+ σ2z)

)2 − 2mσ2z − σ4z2
]

(B.35)

Hence,

E
[
ezX

]
=

1

σ
√

2π

[∫ +∞

−∞

exp

(
−
(
x− (m+ σ2z)

)2

2σ2

)
f(x)dx

]
exp

(
mz +

σ2z2

2

)

= exp

(
mz +

σ2z2

2

)
(B.36)

and the cumulant generating function is

C(z) = mz +
σ2z2

2
. (B.37)

The cumulants are thus κ1 = m, κ2 = σ2 and all higher order cumulants
are zero. Moreover, central moments of order n are zero if n = 2p+ 1 is
odd (p ∈ N). Indeed, using u = X−m

σ
, they are given by:

S2p+1 =
1√
2π

∫ +∞

−∞
u2p+1 exp

(
−u

2

2

)
du = 0 (B.38)

because the integrand is odd.
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Poisson law

The Poisson law is a discrete law, where the probability mass function is
governed by a parameter γ:

P (X = k) =
γk

k!
e−γ. (B.39)

If the variable X corresponds to the number of occurrences during a time
τ ,

P (X = k) =
(Γτ)k

k!
e−Γτ (B.40)

where Γ is called the rate. The moment generating function is obtained
as:

M(z) =
∞∑

k=0

ezk
e−γγk

k!
= e−γ [exp (γez)] = eγ(e

z−1) (B.41)

therefore
C(z) = ln

(
eγ(e

z−1)
)

= γ (ez − 1) (B.42)

and C(n)(0) = γ, so that all cumulants are equal to γ. In particular, the
second and third central moments are equals.

Exponential law The exponential law is governed by a parameter γ, and
f(x) = γ exp (−γx). Moments are µ1 = 1

γ
and µ2 = 2

γ2 , so that S1 = 0

and S2 = 1
γ
.

B.3.5 Poisson Process

A stochastic process is a series of random variables following a given
probability law, indexed by time. More specifically, a Poisson process
defines a series of successive events by the following:

• The time intervals between the different events are independents vari-
ables (memory-less process)

• The probability that an event happens during an infinitesimal interval
[t, t+ dt] is independent of t and is given by Γdt, where Γ is called
the rate.

• Two events can not happen in the same infinitesimal interval dt.
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Number of events in a given time t

Let N(0, t) be the number of events between 0 and T . N(0, t) is of-
ten called the counter process. The moment generating function of N is

Mt(z) = E
[
zN(0,t)

]
. For a time t+ dt:

Mt+dt(z) = E
[
zN(0,t+dt)

]

= E
[
zN(0,t)+N(t,t+dt)

]

= E
[
zN(0,t)

]
E
[
zN(t,t+dt)

]

= Mt(z)
[
(1− Γdt)z0 + (Γdt) z1

]
(B.43)

Hence:

Mt+dt(z) = Mt(z) [1 + Γdt (z − 1)] (B.44)

so that
dMt(z)

Mt(z)
= Γ (z − 1) dt (B.45)

and finally Mt(z) = exp (Γt (z − 1)). This function is the moment gen-
erating function of a Poisson law, so that the number of events during a
time t is given by a Poisson law of parameter Γt.

Times between two successive events

Let dτ denote the time between two successive events. If the number of
events during a time t is given by a Poisson law of parameter Γt, then
the probability that dτ is higher than t is equal to the probability that no
event happens during a time t, given by P (dτ > t) = P (N = 0) = e−Γt

from Eq. (B.40). Such a cumulative distribution function corresponds to
probability density function

f(x) = Γe−Γx (B.46)

Hence, the time between to successive events in a Poisson process is given
by an exponential law of parameter Γ . Conversely, the probability than
an event happens before time t is P (dτ ≤ t) = 1 − e−Γt, which appears
in switching experiments.

Example of the tunnel junction

Let us consider a single channel tunnel junction of transmission τt ≪ 1.
When it is voltage-biased, the transfer of charges are rare and inde-
pendent, so that tunneling events follow a Poisson process. Moreover,
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tunneling happens in both direction, so that the tunnel junction is the
place of two independent Poisson processes. One defines N→ the number
of charges being transferred during a time τ from left to right by the
first process at a rate Γ→, and N←the number of charge transferred by
the other process in the opposite direction at a rate Γ←. The difference
N = N→−N←, which corresponds to the effective transferred charge, fol-
lows a Skellam distribution (the difference of two Poisson distributions).
Calling ∆Γ = Γ→ − Γ← and µΓ = Γ→+Γ←

2
, the cumulants generating

function of N , CN(z), is found as:

CN(z) = CN→(z)− CN←(z) = ∆Γ τ (ez − 1) . (B.47)

Therefore all cumulants are equal to ∆Γ τ . The rates are given from the
detailed balance Γ→/Γ← = exp [eV/kBT ] where V is the voltage on the
junction, one hence recovers the Poisson distribution if |eV | ≫ kBT .

B.3.6 Numerical estimation of the rate

In Chapter 3, the escape rate of a Josephson junction is evaluated through
numerical simulation of the dynamics. The escape rate can be estimated
using the escape time and the escape probability using different methods
already presented in Sec.3.2.1. We present here more details on these
methods, and derive the variance of the two estimators as a function of
the escape probability P .

First method

One defines for each run i the Bernoulli random variable Si of parameter
P as:

Si =

{
1 if the particle escapes, with probability P
0 otherwise, with probability 1− P (B.48)

The expected mean value of the variable Si is just the escape probability
P :

〈Si〉 = P = Ψ1(Γ ) (B.49)

where:
Ψ1(Γ ) = 1− e−Γτp . (B.50)

A straightforward estimator of the escape probability is:

P̂ =
1

N

N∑

i=1

Si (B.51)

and therefore an estimator Γ̂1 of the escape rate is:
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Γ̂1 = Ψ−1
1 (P̂ ) (B.52)

where Ψ−1
1 is the inverse function. Using the central limit theorem when

N →∞ for the mean of Bernoulli variables of parameters P , one obtains:

P̂ ≃ P +
U√
N

√
P (1− P ) (B.53)

where U is a normally distributed variable with zero mean and variance
1. Therefore, the estimator of the rate is:1

Γ̂1 ≃ Γ +
U√
N

√
P (1− P )

1

Ψ ′1(Γ )
. (B.54)

Since

Ψ ′1(Γ ) = − 1

Γ
(1− P ) log(1− P ), (B.55)

where "log" corresponds here to the natural logarithm, the error on the
rate through this estimation is obtained from the variance of the estima-
tor as:

∆Γ̂1

Γ
×
√
N =

1

log(1− P )

P

1− P (B.56)

Second method

In this case, one uses the escape times as a variable. But since the particle
does not always escape, the variable is:

τi =

{
τesc if the particle escapes
τp otherwise

(B.57)

The expected mean value (see Eq. (3.27)) of the variable τi is:

〈τi〉 =
1

Γ
(1− e−Γτp) = Ψ2(Γ ) (B.58)

and the expected variance, calculated the same way, is:

Var[τi] = 〈τ 2
i 〉 − 〈τi〉2

=
1

Γ 2

[
1− (1− P )2 + 2(1− P ) ln(1− P )

]
. (B.59)

A straightforward estimator of the mean escape time is:

τ̂ =
1

N

N∑

i=1

τi. (B.60)

1 Using
(
f−1
)′

= 1/
(
f ′ ◦ f−1

)
.
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A possible estimator Γ̂2 of the escape rate is:

Γ̂2 = Ψ−1
2 (τ̂) (B.61)

where Ψ−1
2 is the inverse function of Ψ2. However, Ψ−1

2 does not have
an analytical expression, therefore this estimator can not be easily used.
Moreover, this error with estimator is not the lowest one, as detailed now.
Indeed, using the central limit theorem when N → ∞ for the estimator
τ̂ , one obtains:

τ̂ ≃ P

Γ
+

U√
N

√
Var[τi] (B.62)

where U is again a normally distributed variable with zero mean and
variance 1. Therefore, one obtains for the estimator of the rate:

Γ̂2 ≃ Γ +
U√
N

√
Var[τi]

1

Ψ ′2(Γ )
. (B.63)

Since

Ψ ′2(Γ ) = − 1

Γ 2
(P + (1− P ) log(1− P )) , (B.64)

the error on the rate through this estimation is obtained with the same
technique as for the first method as:

∆Γ̂2

Γ
×
√
N =

√
1− (1− P )2 + 2(1− P ) ln(1− P )

P + (1− P ) ln(1− P )
. (B.65)

This error with this estimator is presented in Fig. B.3 and compared
to the first one. This estimator has the advantage that it gives a reliable
result (a small error) when P approaches 1, which is not the case of Γ̂1.
However, as explained above, it is very uneasy to use and the error with
this estimator is larger than with the first method as soon as P ≤ 0.73.

To obtain both a reliable and easily implemented estimator, one com-
bines the two variables, escape probability and escape times. Starting
from Eq. (B.58), one uses P̂ as an estimated value of (1 − e−Γτp). This
defines the estimator:

Γ̂3 =
P̂

τ̂
(B.66)

which is indeed a function of two variables. Following L. Tournier [77],
one applies the multidimensional central limit theorem:

Γ̂3 ≃
P + U√

N

√
P (1− P )

P
Γ

+ U ′√
N

√
Var[τi]

≃ Γ
1 + U√

N

√
1−P
P

1 + U ′√
N

√
Var[τi]

P/Γ

≃ Γ

1 +

U√
N

√
1− P
P
− U ′√

N

√
Var[τi]

P/Γ


 (B.67)
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where U and U ′ are two correlated normally distributed variables. Now,
the error of the estimation is obtained by calculating the variance of the
last two terms of Eq. (B.67). In this calculation, the covariance of the
two variables enters [77], which reduces the total error. Finally, the error
simply writes for all values of P :

∆Γ̂3

Γ
×
√
N =

1√
P
. (B.68)

The prediction for the error on the rate obtained for the different
estimators is shown in Fig. B.3. It is clear that Γ̂3 takes the best of both
worlds, and represents a very easy-to-use and accurate estimator for all
values of P . We used this estimator for the simulations presented in
Chapter 3.
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Fig. B.3. Orange line: Error for the estimator Γ̂1 that uses only the escape probability
Black line: Error for the estimator Γ̂2 that uses only the escape times. Blue line: Error
for the estimator Γ̂3 that uses both variables.

B.4 Details on the simulations

B.4.1 Technical specifications

The program in C++ presented in the following section, which calcu-
lates the escape rate of a particle out of a metastable well, has been run
under Ubuntu using a Pentium Xeon E5440 (2.83 GHz), which contains
two quad-core processors. It thus allows to launch eight different jobs
simultaneously, on the same machine.
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The simulation time depends crucially on the escape rate: for a rate
exponent B in the range [5− 12], the predicted mean escape time in units
of the inverse of the plasma frequency, approximately given by

〈τi〉 ≃ 4πeB (B.69)

is in the range [150− 160000] (see Chapter 3 for details). To have a
sufficient escape probability (and therefore a low error), the probing time
τp has to be typically twice as large as this mean escape time. With a time
step of dτ = 0.02 and for N = 104 samples, this corresponds to a number
of iterations nit in the range [150.106 − 160.109]. For a single processor,
neglecting transfer times, 106 iterations take ≃ 0.8 s, so that achieving a
sufficient precision on the escape rate can be crudely summarized in the
form:

B ∈ [5− 12]⇒ [2 min− 20 h] (B.70)

Note that for the simulations probing the effect of Poisson noise, we
sometimes used N = 105 instead of 104.

B.4.2 Example of a program

#include <iostream>
#include <sstream>
#include <fstream>
#include <string>
#include "random.h" // random number generator of J. Houdayer
#include "math.h"
#include "poisson_generator.C" // from Numerical Recipes in C++

using namespace std;
goodrandom Random;

//**** PHYSICAL PARAMETERS ****//
int seed=1; // to initialize the random numbers generator
double Q0=5,s,T=0;
double In=160,e=0.005;
const double gammaEsc=4; // Limit in phase to detect escape
double pi=3.1415927;

//**** SIMULATION PARAMETERS ****//
double dtau=0.02, tauP=250000, N=10000;
double biaslow=0.845, biasstep=0.02, biashigh=0.881;
double bias;
double signe=1;

//**** FUNCTIONS ****//

// B_gaussien() - Gaussian Noise - Returns a normally distributed
// random variable.

inline double B_gaussien(double factor){
return factor*(Random.Gaussian());} // corresponds to Eq. 3.19
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// B_asym() - Asymetric Noise - Returns a random variable
// distributed according to a Poisson law

inline double B_asym(){
long int toto=1110101001; // for initialization of the generator
return e*(poidev(In*dtau,&toto)-In*dtau);} // corresponds to Eq. 3.21

// Escape() - Used to compute the dynamics
// for a given set of parameters and returns the escape time.
// Corresponds to the algorithm presented in Eq. 3.17

double Escape(double* tau, double* gamma){

*gamma=asin(s);
*tau=0; double v=0;
double bruitT=sqrt(2*T/Q0*dtau);
double F1=0,F2=0;
double bruit, dgamma,dv;

while(*gamma>-gammaEsc && *gamma<gammaEsc && *tau<tauP-dtau){
bruit=B_gaussien(bruitT)+B_asym();
F1=-sin(*gamma)+s;
dgamma=v*dtau*(1-0.5/Q0*dtau)+0.5*F1*dtau*dtau+0.5*bruit*dtau;
*gamma+=dgamma;
F2=-sin(*gamma)+s;
dv=-dgamma/Q0+0.5*(F1+F2)*dtau+bruit;

v+=dv;
*tau=*tau+dtau;

};

return 0;
};

// Pswitch - Used to repeat the dynamics N times
// for the same set of parameters

double Pswitch(double *proba, double *rate){

double tau=0.0,gamma=0.0,time=0.0;
*proba=0.0;*rate=0.0;

for(int run=1;run<=N;++run){
Escape(&tau,&gamma);
time+=tau/N;
if(gamma>gammaEsc||gamma<-gammaEsc) *proba+=1/N;
};

*rate=*proba/time;
return 0;
};

// Esse - Used to calculate the escape rate for various bias values.

double Esse(){

ostringstream fichier; fichier<<"..."<<".dat"; // To store into a file
ofstream res(fichier.str().c_str(),ios_base::app);
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for (bias=biashigh;bias>=biaslow;bias=bias-biasstep){
s=signe*bias;
double proba=0.0,rate=0.0;
Pswitch(&proba,&rate);
res<<s<<"\t"<<proba<<"\t"<<rate<<endl;
};

return 0;
};

/* ################################### */
// MAIN: RATE FOR VARIOUS BIAS VALUES.

int main(){
Random.Seed(seed);
Esse();
};

/* ################################### */

B.5 The Andreev Levels Qubit

In this section, we detail the calculation of the matrix element of Eq. (6.3)
between Andreev state presented in Chapter 6, and derive the relaxation
rate to recover the results of Desposito and Levy Yeyati [101].

B.5.1 Hamiltonian and eigenstates

In absence of any perturbation, the "free" Hamiltonian in the basis
{|←〉 , |→〉} is:

H0
|⇄〉 = ∆

(
cos δ

2
r sin δ

2

r sin δ
2
− cos δ

2

)
(B.71)

= ∆

[
cos

δ

2
σ̂z + r sin

δ

2
σ̂x

]
(B.72)

with r =
√

1− τ , where we used the Pauli matrices in the basis
{|←〉 , |→〉}:

σ̂z =

(
1 0
0 −1

)
and σ̂x =

(
0 1
1 0

)
. (B.73)

To diagonalize, one introduces the angle θ as

tan θ =
r sin δ

2

cos δ
2

= r tan
δ

2
. (B.74)
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The rotation matrix Rθ =

(
cos θ

2
sin θ

2

− sin θ
2

cos θ
2

)
performs a rotation (see

Eq. (22) p. 421 in [125]) to the basis {|+〉 , |−〉} with



|+〉 = cos θ

2
|←〉+ sin θ

2
|→〉

|−〉 = − sin θ
2
|←〉+ cos θ

2
|→〉 (B.75)

and the Hamiltonian in this basis becomes

H0
AS =

(
E+ 0
0 E−

)
(B.76)

where {|+〉 , |−〉} are obviously the eigenstates of the Hamiltonian with

eigenvalues E± = ±∆
√

1− τ sin2 δ
2
. One should note the relation:

∂ |+〉
∂δ

=
θ′

2
|−〉

∂ |−〉
∂δ

= −θ
′

2
|+〉 (B.77)

where we defined

θ′ =
∂θ

∂δ
=
r

2

1

1− τ sin2 δ
2

. (B.78)

Using the Pauli matrices σ̂ASz and σ̂ASx in the eigenbasis {|+〉 , |−〉}, the
free Hamiltonian is

H0
AS = E+σ̂

AS
z . (B.79)

B.5.2 Matrix element for the transition

In presence of a perturbation dδ(t) around a value δ0, the Hamiltonian
can be written in the linear perturbation approach:

HAS(δ) = H0
AS(δ0) +

∂H0
AS

∂δ
dδ(t) (B.80)

where
∂H0
AS

∂δ
is proportional to the current operator:

ÎAS =
1

ϕ0

∂H0
AS

∂δ
. (B.81)

Using Eq. (B.79), the current operator in the basis of the Andreev states
is:

ÎAS =
1

ϕ0

[
∂E+

∂δ
σ̂ASz + E+

∂σ̂ASz
∂δ

]
. (B.82)
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Using the relations (B.77), one has

∂σ̂ASz
∂δ

=
r

2

∆2

E2
+

σ̂ASx . (B.83)

The current is thus, in the basis of the Andreev states:

ÎAS =
e∆2

~E+

[
−1

2
τ sin (δ) σ̂ASz + rσ̂ASx

]
(B.84)

which is the expression in [101]. One defines the non-diagonal matrix
element M⊥:

M⊥ = ϕ0

〈
+
∣∣∣ÎAS

∣∣∣−
〉

=
∆r

2
√

1− τ sin2 δ
2

(B.85)

and the diagonal term Mz:

Mz = ϕ0

〈
+
∣∣∣ÎAS

∣∣∣+
〉

= ϕ0I+(δ). (B.86)

Due to the finite matrix-element M⊥ at finite reflection, the Andreev
states are not the eigenstates of the current operator. A phase excitation
will thus induce transitions between the levels.

Relaxation

One considers in the following that the population in the excited Andreev
state αe decays due to relaxation as:

αe ∝ e−t/T1 (B.87)

where T1 is the relaxation time (Γ1 = T−1
1 is the relaxation rate). Denot-

ing Andreev gap the energy difference between the Andreev states ~ΩA,
the relaxation rate is obtained from the Fermi Golden Rule (kBT ≪ ~ΩA)
([123], Eq. 3.29):

Γ1 =
1

T1

=
π

2

(
D⊥
~

)2

Sδ(ΩA). (B.88)

The phase fluctuations Sδ(ω) induced by the environment are related
to the voltage fluctuations SV (ω) across the set of harmonic oscillators
representing the impedance Z(ω) in parallel by ([123], Eq. 3.59):

Sδ(ω) =
1

ϕ2
0ω

2
SV (ω) =

4π

~RKω2
SV (ω). (B.89)

From the quantum fluctuation-dissipation theorem, the noise spectral
density is
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SV (ω) =
~ω

2π

[
coth

(
~ω

2kBT

)
+ 1

]
Re [Z(ω)] ≃ ~ω

π
Re [Z(ω)]H (ω)

(B.90)
at zero temperature, with H (ω) the Heaviside function ([123], Eq. 3.102).
The relaxation rate is thus ([123], Eq. 3.66):

Γ1 =
8π

~

M2
⊥

2∆
√

1− τ sin2 δ
2

Re [Z(ΩA)]

RK
. (B.91)

Using Eq. (B.85), one obtains

Γ1 = π
∆

~

Re [Z(ΩA)]

RK

1− τ
(
1− τ sin2 δ

2

)3/2
(B.92)

which is the term WR obtained in [101].

B.6 Critical current of a Josephson junction with
electrodes having different gaps

We present in this section the expression for the temperature dependence
of the critical current of a Josephson junction formed with electrodes
having different gaps. We had to deal with this issue when treating the
data on sample JJD1, in which the JJ detector had 20 nm and 80 nm thick
Al electrodes. In this range, the gap significantly depends on thickness.
Typically, for a layer ticker than 50 nm, the gap recovers the bulk value
of ∆ = 180µeV for aluminum, while the gap can be increased up to ∆ =
250µeV when lowering the thickness below 10 nm [130]. For our junctions,
the gaps of the two electrodes were thus significantly different. Since the
expressions found in the litterature [3, 138, 139] are not expressed in a
transparent way (or even erroneous [138]), we rederive the results here.

B.6.1 The superconducting gap

The gap as a function of the temperature is obtained numerically from
Eq. (3.52) and (3.53) in [58], yielding at zero temperature the well-known

∆(0) = 1.76 kBTC . (B.93)

B.6.2 Symmetric electrodes

One first starts with the description of the simple case where the two
electrodes have the same superconducting gap ∆(T ).
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Zero temperature

From Refs. [2, 47, 139], one obtains the Ambegaokar-Baratoff formula
for the critical current at zero temperature:

I0(0) =
π

2

∆(0)

eRJ
(B.94)

where RJ is the normal resistance of the junction.

Finite temperature

From [47, 139], the dependence in temperature of the critical current is:

I0(T ) =
π

2

∆(T )

eRJ
tanh

(
1

2

∆(T )

kBT

)
, (B.95)

therefore

I0(T )

I0(0)
=
∆(T )

∆(0)
tanh

(
1

2

∆(T )

kBT

)
. (B.96)

B.6.3 Asymmetric electrodes

We now consider the case where the two electrodes have different super-
conducting gaps ∆1 and ∆2. It is assumed without loss of generality that
∆2 > ∆1. One defines ∆ = ∆1+∆2

2
and δ = ∆2−∆1

2∆
. The calculation of the

critical current starts from the prediction of [47, 139]:

I0(T ) =
πkBT

RJ
∆1(T )∆2(T )

∑

l=0,±1,...

[(
ω2
l +∆2

1(T )
) (
ω2
l +∆2

2(T )
)]−1/2

,

(B.97)
where ωl = (2l + 1)πkBT .

Zero temperature

Close to T = 0, the values of ωl = (2l+ 1)πkBT are close one to another.
The summation over l is thus replaced by an integral using x = ωl as a
variable. This yields a critical current at zero temperature2:

I0(0) =
∆(1 + δ)

eRJ
K


1−

(
1 + δ

1− δ

)2

 ≃
δ→0

π

2

∆

eRJ

(
1− 3

4
δ2
)

(B.98)

where K(y) is the complete elliptic integral of the first kind, with K(0) =
π
2
.

2 The corresponding expression in [138] has an incorrect square-root in the argument of the
function K.
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Finite temperature

Assuming δ ≪ 1,

[(
ω2
l +∆2

1

) (
ω2
l +∆2

2

)]−1/2
≃
(
ω2
l +∆

2
)−1


1− ∆

2
δ2

ω2
l +∆

2 +
2∆

4
δ2

(
ω2
l +∆

2
)2


 .

(B.99)

The sum in Eq. (B.97) simplifies to:

I0(T )

I0(0)
=

π

2K
(

1−
(
∆1(0)
∆2(0)

)2
)

tanh
(
∆(T )

2T

)

∆1(0)
2

(
1

∆1(T )
+ 1
∆2(T )

)
(

1 +
δ2

4
u(T )

)

(B.100)
where

u(T ) = −1 +
∆

sinh ∆
T

+

(
∆/T

)2

2 cosh2 ∆
T

. (B.101)

In order to quantify the effect of the difference between the gaps, we
compare the predictions for two sets of parameters which give the same
critical current at low temperature. We take the parameters of Sample
JJD1 (see Chapter 4), with I0 = 0.358 µA at low T and RJ = 900 Ω.
These values are obtained with identical gaps from Eq. (B.94) for ∆1 =
∆2 = 205µeV. The opposite limit is obtained by taking ∆1 = 180µeV,
the lowest (bulk) value for aluminum thin films. Equation (B.98) gives
then ∆2 = 236µeV. The corresponding temperature dependencies3 for
the critical current are shown in Fig. B.4. For the range of temperatures
probed in the experiment (see Fig. 4.20), which correspond to a critical
current reduction of 10 % at most, the two predictions (for symmetric or
asymmetric electrodes) don’t differ significantly, which justifies a fit with
a single gap value even if the thicknesses of the two electrodes forming
the junctions were very different (20 and 80 nm).

3 The precise convergence to 1 at T = 0 is obtained by going one order further in δ2 in
Eq. (B.100).
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Fig. B.4. Solid lines: Josephson junction critical current as a function of temperature for
∆1(0) = ∆2(0) = 205µeV (orange - right) or ∆1(0) = 180µeV, ∆2(0) = 236µeV (blue -
left). Dashed lines: Critical current from Eq. (B.96) for ∆(0) = 180µeV (red - left) and
∆(0) = 236µeV (green - right).

B.7 Attenuators

We present here a simple model for 50 Ω attenuators, which allows to
calculate the attenuation when the output impedance differs from 50 Ω,
but also to quickly identify an attenuator that has lost its label.4

RR RR

r VoutVin

Fig. B.5. Model for an attenuator, with three resistances placed on a T.

An attenuator or a series of attenuators can be modeled by three
resistances R, r and R on a symmetric T-shaped circuit, as shown in
Fig. B.5. For an attenuator with an attenuation a in dB, the constraints
on R and r are that when a 50 Ω impedance is connected at the output

4 When mounting attenuators in the dilution refrigerator, we usually remove the label to
obtain a good thermal contact between the attenuator and a copper clamp placed around
it.
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• the ratio of the output voltage to the input voltage is α = Vout

Vin
=

10−a/20;
• the equivalent resistance seen from the input is 50 Ω;

which imposes 


R = 50 1−α

1+α

r = 100 α
1−α2 .

(B.102)

The corresponding plot is shown in Fig. B.6. Table B.1 gives the values
of r, R, r+R and 2R for standard attenuation values. The two last com-
binations correspond to the resistance measured between one port and
ground, and between the two ports, when the attenuator is disconnected.
They allow to identify an attenuator with a simple ohm-meter.

0 10 20 30 40 50

1.

10.

100.

Attenuation HdBL

R
es

is
ta

nc
e
HW
L

Fig. B.6. Resistance R (blue) and r (orange) as a function of the attenuation a in dB, for
the model given in Fig. B.5.

Attenuation (dB) 1 2 3 6 10 20 30

r (Ω) 433 215 142 67 35 10 3.2
R (Ω) 2.9 5.7 8.5 17 26 41 47
r +R (Ω) 436 221 150 84 61 51 50
2R (Ω) 5.8 11.5 17 33 52 82 94

Table B.1. Parameters for the model given in Fig. B.5 for standard attenuations. The two
last lines give the two combinations that can be measured with an ohm-meter on disconnected
attenuators.
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B.8 Correspondence between names

In this thesis In the lab logbook

Sample JJD1 FCS 7
Sample JJD2 FCS 10
Sample AC1 PASTIS 1
Sample AC2 MAS 39

Sample SQUID PAL 3

Table B.2. Correspondence between the samples names in this thesis and those appearing
in the lab logbook.
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