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1 Introduction

In a turbulent flow, the number of degree of freedom & can be gigantic, scaling
as the 9/4 power of the Reynolds number. In the atmosphere, this number
may reach N ~ 10'%, devastating our hope to implement, all scales of the
climate system onto a computer. This juggling with numbers illustrates the
well known challenge posed by turbulent flows: is there a way to simulate,
or describe a turbulent flow, without taking into account all degrees of free-
dom? A similar question has been asked in the past by founders of statistical
mechanics. Specifically, it has been the kind of challenge met by Boltzman
and co-workers to describe the behavior of a gas made of billions of particles.
Of course, in the case of turbulence, an additional difficulty arises because
a turbulent, flow is necessarily driven out of equilibrium by the energy input
mechanisms. Therefore, none of the well-known recipes of classical statistical
mechanics apply. Yet, we may learn something from our glorious ancestors by
closer inspection of their protocol: in a gas, the number of particles is so huge
that it is just hopeless trying to follow each of them individually. Whatever
our power of measurements, there will remain individual particles which we
will be unable to follow. Instead of starting an endless race towards finer and
finer measurements, aimed at decreasing their corresponding number, why
not accept this inherent ignorance, and replace it by something mimicking
its action, and which will be easy to handle? This is precisely the reasoning
followed by Langevin, upon modeling the Brownian motion by a simple Gaus-
sian white noise. Such simple rule achieved many successes. Can it be simply
translated to turbulent, flows? This possibility is discussed in the present short
review. Additional point, of view about this may be found in the contribution
by Friedrich in these proceedings.
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2 Langevin models of turbulence

2.1 Framework

Consider a turbulent flow, with velocity field v;(x,t), and introduce an {arbi-
trary) filtering procedure so as to separate it into a large-scale field U; = %;
and a small-scale component u; = v; — U;. Such small-scale motion varies
over time scale ¢, while large scale vary over time scale T. In any reasonable
turbulent flow, the ratio of the typical time scale of the two components varies
like a power of the scale ratio, as t/T ~ (I/L)(U/u) ~ (I/L)%/3. Therefore,
amall scales vary much more rapidly than large scale. From the point of view
of the largest scales, the small scales may then be regarded as a noise. Hence
the idea to simply replace them by an a priori chosen noise, with well-defined
properties. One classical way is though a generalized Langevin equation:

U = Ay + &, (1)

where A is a generalized friction operator, and £ is a noise. In the sequel, we
explore various models characterized by different value of A and £.

2.2 Obukov model

The simplest model one can imagine is to take A = 0 and £ as a Gaussian
white noise, isotropic and homogeneous in space, with short time correlation:

< &(x, )& (@', 1) >= 248,;8(t — ). (2)

This model has been first introduced in 1959 by Obukhov. It leads to a number
of interesting properties.

Richardson law and Kolmogorov spectrumn

Consider for example a cloud of passive scalar particles, embedded in such a
flow. After a time ¢, this cloud of particles will have evolved into a situation
where its velocity distribution obeys a Gaussian statistics, with variance scal-
ing like square root of time: éu = V<42 > — < u >2 ~ t'/2. In parallel, the
cloud of particles experienced a spread by a factor r ~ V< 22 > — < & >2 ~
3/2. This last law is nothing but the famous Richardson law, an empirical
law describing the dispersion of passive tracers in the atmosphere. Moreover,
we may combine the two simple relation to obtain that du ~ 71/3, implying
a velocity spectrum F{k) ~ % %/3, i.e. the Kolmogorov spectrum. We see
that with virtually no effort, Obukhov maodel reproduces the two more robust
experimental results obtained so far in turbulence!
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Limitations

Richardson law and Kolmogorov spectra are representative of velocities which
do not differ from the mean by a large amount. The actual range of validity of
the Obukhov model arises when considering higher moments, involving rarer,
but more violent events. Bince velocities in this model are Gaussian, their
moments obey a simple scaling relation :< 42" >~< 42 >", at variance with
the intermittency observed in real turbulent flows. This simple hierarchy law
disappears as soon as one allows for spatial or temporal correlation, as recently
proved in the Kraichnan model of turbulence.

2.3 Kraichnan model

The Obukhov model is frictionless in essence. The Kraichnan model can be
viewed as the opposite limit, with a very large friction Ay = —vdy;, v € 1,
and a noise with spatial correlation

< &z & (@, 1) >=24y;(=, ' )o{(t — ). 3)

Due to the large friction, the inertial term in the Langevin equation becomes
negligible and the velocity adiabatically adjusts to the noise as: u; ~ ~&;. The
Kraichnan maodel is thus made of small-scale delta-correlated Gaussian white
noise, with spatial correlation.

Intermittency and conservation laws

Contrarily to Obukhov model, Kraichnan model leads to intermittency for the
high order moments. The physical reasons have been recently reviewed in [1].
They are rooted in the spatial correlation, which induce a memory effect onto
lagragian trajectories, and lead to the apparition of conservation laws within
sets of lagrangian particles. Since the moment of order 2n is associated with
conservation laws of sets of 2n particles, and since conservation laws of sets
of particles of different, sizes are not simply related, this induces a breaking of
the hierarchical structure of the moments.

Turbulent transport

Another less well known property of Kraichnan model concerns turbulent
transport. Suppose we focus on the evolution of the vorticity in such a model.
In classical turbulence, the vorticity obeys the equation

G 8 = =k O 82 + 0k + vOROR LY, (4)

where v is the molecular viscosity, and v is the sum of the large scale com-
ponent ¥/ and the {small-scale) noise. Because of the presence of noise, eq.
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{(4) admits stochastic solution, whose dynamic can be fully specified by the
probability distribution function. Ignoring the viscosity and using standard
techniques [2], one can derive the evolution equation for P(€, ,t), the prob-
ability of having the field £ at point x and time ¢:

WP = —Urdh P — (OkU;)0q, [$2: P + Ok [Bu O, P] (5)
+ 20q, (k001 P]
+ #ij10a,[$2;00, (13 P)]

For simplicity, we assumed homogeneity of the fluctuations and we introduced
the following turbulent tensors:

Br = () (6)
gk = (uidiu;)
ikt = (aju*a;u")

Due to incompressibility, the following relations hold: ey = tim = pijae = 0.
To illuminate the signification of this complicated equation, lef us consider
the first moment of eq. (5), obtained by multiplication with {2; and integration:

8(1;) = —UrB (%) + (OkU;) (8%} — 20000k (1) (7)
+ Buddr {82}

In addition to the standard vorticity advection and stretching by the large
scale, one recognize two additional effect: one proportional to «, resulting in
large-scale vorticity generation through the AKA instability [3]; one propor-
tional to £, akin to a turbulent viscosity. Within the Kraichnan model, one
therefore naturally recovers the well-known formulation of turbulent trans-
port, without resorting to scale separation [4]. In this very simple model,
where the viscosity has been ignored, one can show that the tensor 3 is al-
ways posgitive: the turbulent viscosity always enhances turbulent transport. In
actual viscid flows, the turbulent viscosity tensor is actually fourth order, and
can be negative [4].

Limitation

This digression about turbulent transport shows that the way we prescribe
velocity correlation in Kraichnan model somehow determines the turbulent
transport properties of the flow. It is a kind of adjustable parameter. In that
respect, it would be nice to devise a model devoid of this freedom of choice, by
ensuring for example that the turbulent transport somehow adjusts itself to
the way energy is injected and dissipated, as in real turbulence. In the sequel,
we present a maodel where the noise is dynamically computed at each time
scale, thereby removing the arbitrariness of the Langevin maodel.
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2.4 Stochastic RDT model
Description

Our method is based on the observation that small scales are mostly slaved
t0 large scale via linear processes akin to rapid distortion. This observation is
substantiated by various numerical simmulations and is linked with the promi-
nence of non-local interactions at small scale [5]. Specifically, let us decompose
our small-scale velocity field into wave packets, via a localized Fourier trans-
form:

iz, k) = f Rz — o) Dy (o !,

where h is a filtering function, which rapidly decays at infinity. Using in-
compressibility and non-locality of interaction, one can derive the following
equation of motion for the wave-packet, [5, 6]:

£ =U;
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s —Vtkz‘lﬁi +‘l£};65 (2 U — Um) +&;. (8)
Here »; is a turbulent viscosity describing the local interactions between
small-scales, and £ is a forcing stemming from the energy cascade. Its ex-
pression only involves large-scale non-linearities (in fact the aliasing) via
& = 95 (UsU; — UiU;). By eq. (8) the wave-packet is transported by the
large-scale flow, its local wavenumber is distorted by the large-scale veloc-
ity gradients, and its amplitude is modified through the action of local and
non-local interactions. The equation describing its amplitude evolution is a
generalized Langevin equation, with friction generated by turbulent viscosity
and with both multiplicative and additive noise stemming from interaction
with large scale. Because these two noises are of same origin, they are corre-
lated. One can show that this correlation is responsible for a skewness in the
probability distribution of the small scale [5]. Note also that in some sense,
our Langevin model can be viewed as a generalization of Rapid Distortion
Theory equation, with inclusion of turbulent viscosity and stochastic forcing.
No wonder, interesting analytical properties will be available in precisely the
same case where Rapid Distortion Theory is the most, useful, namely rotating,
or stratified shear flows (see below).

Equation (8) shows that our model is specified by the knowledge of £ and
U;. The latter can be shown by mere filtering to obey the equation:

&U; + U;0;U; = =85 + vAU; + [, (9)

where f; describes the backreaction of small scales onto large scales, and is
obtained through summation over wavepackets:



6 B. Dubrulle, J-F. Laval, end 8. Nazarenko

#0) = [ avd; (TGP + 6o 00 @) + (G e, —h)

The set, of egs. (8) and (9) is a strongly non-linear system of coupled equations,
which defines our turbulence langevin model. In this method, the noises can
be dynamically computed at each time step by integration of the large -scale
equation. In the sequel, we present two application of this: one in which the
system is simplified by prescribing one of the forcing (namely £). This allows
the computation of general scaling laws for turbulent transport in various sys-
tems. One in which £ is numerically computed using the large scale equation.
This allows for fast numerical simulations.

Turbulent transport

We consider here a simplified version of our Langevin model where the func-
tion £ is not computed, but prescribed as a Gaussian delta-correlated white
noise. The advantage of this simplification is that it allows for analytical com-
putation in special situation, where the geometry of the system is so simple
that it allows for explicit solution of the homogeneous (unforced) small-scale
equations. In some sense, our model with prescribed Gaussian model for £
can be viewed as a generalization of Kraichnan model of turbulence. One can
then expect this model to provide "reasonable shape™ for turbulent transport
(see Section 2.3), with "free” parameter induced by the prescribed correlation
function for £. Working out the details, we found out that indeed, our model is
able to provide the scaling of the turbulent transport, as a function of control
parameters, up to a numerical prefactor, controlled by the intensity of the
correlation of the forcing £ (the "free parameter™).

Heat transport in convection

‘When a horizontal layer of fluid is heated from below, a heat exchange from
the top to the bottom occurs. The transport of heat depends on the interplay
between the thermal, viscous and integral scales of turbulence, and thus, on
hoth the Prandtl number and the Reynolds numbers. Our model can he used
to predict both the structure and the scaling laws in thermal convection [7).
In the boundary layer, the velocity profile is logarithmic and the tempera-
ture decays like the inverse of the distance to the wall. This has important
impact onto the heat transport. At low Reynolds numbers, when most of
the dissipation comes from the mean flow, we recover power classical scaling
regimes of the Nusselt versus Rayleigh number, with exponent 1/3 or 1/4.
At larger Reynolds number, velocity and temperature fluctuations become
non-negligible in the digsipation. In these regimes, there is no exact power
law dependence the Nusselt versus Rayleigh or Prandtl. Instead, we obtain
logarithmic corrections to the classical soft {(exponent, 1/3) or ultra-hard (ex-
ponent, 1/2) regimes, in a way congistent, with the most accurate experimental
measurements available nowadays. Example is given in the figure 1, showing
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the comparison between the data of the Castaing group in Helium, versus the
theoretical predictions (lines).
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Fig. 1. Mustration of the three scaling regimes found in convection in Helium
for Nusselt vs Rayleigh. The symbols are experimental measurements by [8]. The
lines are theoretical prediction by [7] using an analytical model of turbulent con-
vection. ”Soft” turbulence regime{mean flow dominated): power law Nu ~ Ral/*
(full line); "Hard” turbulence regime: (velocity fluctustion dominated) Nu ~
Ra'’® }(In{Ra))*'® (dotted line); *Ultra-hard” turbulent regime: (tempersture fluc-
tuations dominated) Nu ~ Ra'/?/(In(Ra))*? (deshed line)

The theory has also been extended to describe turbulent thermal con-
vection at large Prandtl number [9]. Two regimes arise, depending on the
Reynolds number Re. At low Reynolds number, NuPr~1/2 and Re are a
function of Ra Pr—3/2. At large Reynolds number NuPr'/® and RePr are
function only of RaPr?/3 SWithjn logarithmic corrections). In practice, since
Nu is always close to Ral/3, this corresponds to a much weaker dependence
of the heat transfer in the Prandtl number at low Reynolds number than at
large Reynolds number. This difference may solve an existing controversy be-
tween measurements in SF6 (large Re) and in alcohol /water (lower Re). These
regimes may be linked with a possible global bifurcation in the turbulent mean
flow. A scaling theory can be used to describe these two regimes through a
gingle universal function. This function presents a bimodal character for in-
termediate range of Reynolds number. This bimodality can be explained in
term of two dissipation regimes, one in which fluctuation dominate, and one in
which mean flow dominates. Altogether, our results provide a six parameters
fit of the curve Nu{Ra, Pr) which may be used to describe all measurements
at Pr> 0.7
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Momentwn transport in rototing sheor flow

At sufficiently large Reynolds number, the fluid between co-rotating coaxial
cylinders becomes turbulent, and a significant momentum transport occurs
between the two cylinders. In the case with rotating inner cylinder and resting
outer one (the so-called Taylor-Couette flow), detailed measurements show
that the torque applied at cylinders by the turbulent flow is a function of
the Reynolds number £ Within the Langevin model, one can work out an
analogy between the problem of momentum transport and heat transport in
turbulent convection, to compute the torque in Taylor-Couette configuration,
as a function of the Reynolds number [10]. At low Reynolds numbers, when
most, of the dissipation comes from the mean flow, we predict that the non-
dimensional torque G = T'/pv?L, where L is the cylinder length, scales with
Reynolds number R and ratio of inner cylinder to outer cylinder radius n =
7i/re, G = 1.461%/2(1 — )~ 7/4R3/2. At larger Reynolds number, velocity
fluctuations become non-negligible in the dissipation. In these regimes, there
is no exact power law dependence the torque versus Reynolds. Instead, we
obtain logarithmic corrections to the classical ultra-hard (exponent 2) regimes:

nz R2

G = O e R (1 - )R /100

These predictions are found to be in excellent agreement with available ex-
perimental data (see figure 2).

Fasi mnnerical simulations

‘We consider now the case where £ is not prescribed, but dynamically computed
using the large scale equation. In that case, there is no free parameter in the
problem, except for the magnitude of the turbulent viscosity. By comparison
with direct numerical simulation, we found however [6] that, in isotropic case,
the magnitude of this turbulent, viscosity can be prescribed using the DSTA
model of Kraichnan

—4/3 _
i =c(£) /2R, (10

where E is the energy spectrum, k; is a wavenumber in the inertial range
and C; is a constant depending on a parameter # characterizing the degree
of non-locality of the interaction. For the contribution at & of all modes with
wavenumber greater than Sk, it yields:

Ce(8) = /7760 572/3 = 0.3416 5273, (11)

with # depending on the ratio of the largest wave-number of the (resolved)
simulation onto the cut-of wavenumber as § = kpoz fhe-
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Fig. 2. Torque vs Reynolds in Teylor-Couette experiments for different gap widths
7 =10.68, n = 0.85 and 5 = 0.935. The symbols are the data of [11]). The lines are
the theoretical formuls obtained in the soft and ultra-hard turbulence regimes and
computed using the snalogy with convection. Soft turbulence (full line); ultra-hard
turbulence (dotted line). There is no adjustable parameter in this comparison, all the
constants being fixed either by the analogy with convection, or by the comparison
with the data of [12].

With this prescription, we may then see our Langevin model as a parameter-
free model of turbulence. Its formulation is rather complex, but its advantage
lies in the possibility to use a semi-lagrangian scheme of integration for the
small scale, thereby allowing for very large time steps. As a result, we obtain
a fast numerical simulation, with all scales being resolved, but with an inte-
gration time smaller by a factor 10 to 1000 with respect to traditional DNS
[13]! An example is provided on Figure 3 in the case of 2D turbulence.

3 Towards a LES langevin model?

In this short review, we hope to have convinced you of the interest of Langevin
models of turbulence. However, we did not yet fully achieve the goal we fixed
in the introduction: our model still retaing infinitely many degrees of free
dom, symbolized by unrestrained number of wave-packets we use. In some
situations, this feature is more than desirable: a peasant working on his crop
is seldom interested by the weather forecast at the level of his country, and
would like to know the hail forecast at the level of his field! However, in most
applications, one does not neaed such a wealth of details, and one would pre-
fer a Langevin model with very few degrees of freedom. Such a "large eddy
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Fig. 8. Fest 2D numerical simulation. Left panel: vertical vorticity w; = VXu- e
computed using standrad spectral method. This simulation required 3 days to be
completed on our workstation. Right panel: same field, computed using our Langevin
method. This was obtained in only 30 minutes, on the same work station.

Langevin” model remains to be built. We are currently working in that direc-
tion.
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