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3. Recent visualization experiments (2006-)

4. The new simulation for the inhomogeneous
normal fluid flow (2013-)




Main messages of my talk (1)

We revealed inhomogeneous QT in a square channel.

Homogeneous QT Inhomogeneous QT

3 (,W =1 ;% ‘::_V’ .
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H. Adachi, S. Fujiyama, M. Tsubota, S. Yui, M. Tsubota, Phys. Rev. B91,
Phys. Rev. B81, 104511(2010) . 184504(2015).



Main message of my talk (2) i ™

We study boundary layer of QT and found the well-known log-law.
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1. Introduction

A Vortex tangle B
Heater . = bl S
-( ----------
%Q (----%---.?
AT 7
TR s T ( ---------
Normal flow Superflow

QT has been long studied chiefly in thermal

counterflow.



A Vortex tangle B

Heater . el S T
: > - = % _____
% @ S Y e =
AT I
= ( ---------
Normal flow Superflow

1980s K. W. Schwarz Phys. Rev. B38, 2398 (1988)

Performed a direct numerical simulation of the three-dimensional
dynamics of quantized vortices and succeeded in quantitatively
explaining the observed temperature difference AT .



2. Previous simulation for the homogeneous normal fluid flow

Vortex filament model (VFM)

S o S(E,1)
A vortex makes the superflow of the Biot-Savart law, and moves with
this local flow. At a finite temperature, the mutual friction should be
considered.

=8y s (¥, )8 x[§x(v, -4,

The approximation neglecting the nonlocal term is called the
LIA(Localized Induction Approximation).

p

S, = ES, xs"+v_(s)



Simulation for the homogeneous normal fluid flow

K. W. Schwarz, Phys. Rev. B38, 2398
(1988).

-Obtained a statistically steady state by the
vortex filament model (VFM) under the
localized induction approximation (LIA).

Simulation under LIA Periodic boundary conditions for

all three directions
o -



Schwarz’ s simulation(1) PRB38, 2398(1988)

Schwarz simulated the
counterflow turbulence by the
) )| vortex filament model and
obtained the statistically

< : ' steady state.

However, this simulation had

nontrivival serious problems.

1. Vortex reconnections were
modeled artificially.

FIG. 4. Case study of the development of a vortex tangle in a
real channel. Here, a=0. 10, corresponding to a temperature of
about 1.6 K, and v, =75 into the front face of the channel sec-
tion shown. Upper left: 7,=0, no reconnections; upper right;
t,=0.0028, three reconnections; middle left: t,=0.05, 18
reconnections; middle right: ¢, =0.20, 844 reconnec tions; lower
left: t,=0.55, 12128 reconnections; lower right: ?,=2.75,
124 781 reconnec tions.



Reconnection of quantized vortices (1)

In the field of classical fluid dynamics, N
vortex reconnections are believed to occur \ —>

by the viscous diffusion of vorticity.

Can quantized vortices reconnect? The vortex filament

model (VFM) cannot answer the question.

The simulation of the Gross-Pitaevskii model shows
reconnection. J. Koplik and H. Levin, PRL71, 1375 (1993)



Reconnection of quantized vortices (2)

Reconnections in VFEM are modeled with an \
algorithmical procedure. However, this \ —

procedure is more or less arbitrary.

Schwarz reported that the statistically steady state 1s

independent of the detail of the procedure.
K. W. Schwarz, PRB38, 2398 (1988)




Schwarz’ s simulation(2) PRB38, 2398(1988)

S
s
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FIG. 8. Mapping of various vortex configurations into the
computational volume, showing the appearance of the unit cell
when all space is filled by the repetition of these objects. The
end points of the lines represent equivalent points in the unit
cell. Top row: closed loops; middle row: parallel infinite lines
characteristic of a dead-end fluctuation; bottom row: infinite
lines after randomizing procedure designed to reestablish
three-dimensional behavior. The illustrations are intended to be
purely schematic.

However, this simulation had

nontrivial serious problems.

2. All calculation was performed
by the LIA.

- He used an artificial mixing
procedure in order to obtain
the steady state.




Simulation by the full Biot-Savart law

H. Adachi, S. Fujiyama, M. Tsubota,
Phys. Rev. B81, 104511(2010) .

0.00sec

BOX (0.1cm)’ T'=1.6K
I'ns = 0.367cm/s

Periodic boundary conditions for
all three directions

The statistically steady states
were obtained without the
artificial mixing procedure.



Comparison between LIA and full Biot-Savart
Full Biot-Savart  7=16K LIA

Vortices become anisotropic,
forming layer structures.

We need intervortex interaction.



Comparison between the LIA and full BS calculation

Vortex Line Density Anisotropic parameter
1
_ 1 _ (s )2
L_ﬁﬁﬁ =g [ - e
2500 0.95
2000 | LIA 09 * LIA
— 085 | ‘\ﬂ
NE 1500 - ~ 0.8 y ” *'|, ‘
S 2 VA
™ 1000 |- . = :
r full Biot-Savart :
- i Blotsava 0.7 | full Biot-Savart
510 .
0.65 | Isotropic
0 06 tangle
0 10 20 30 40 50 0 10 20 30 40 50
t (s) t (s)

The LIA calculation 1s quite different from the full Biot-Savart one.

The LIA 1s not good.




Quantitative comparison with observations
An important criterion of the steady state is to obtain

1/2
L = )’V s L: Vortex density, v relative velocity in counterflow
100 = T=l3 K vy (s/cm?) y(s/cm?)
: ;Z: 3 IIZ ) Our calculation Experiment
K0 e 7=2.IK . .
§ 60 * * : o 1 .3 K 54 59
S S 16K | 109 93
- s * A u
R 19K | 140 133
0L w 2.1K 157 (154)
0 0.2 0.4 0.6 0.8 l

T Childers and Tough, Phys. Rev. B13,
v {em/s) 1040 (1976)

The parameter y agrees with the experimental observation quantitatively.



3. Recent visualization experiments (2006-)

Visualizing quantized vortices and the profile
of the normal fluid flow

lallahassee, Maryland, Prague

Tracer particles
* Hydrogen particles M m
* Metastable He,” molecules nm



Visualization using metastable He,” molecules reveals the

profile of the normal fluid flow.

W. Guo, S. B. Cahn, J. A. Nikkel, W. F. Vinen, D. N. McKinsey, Phys. Rev.Lett. 105,
045301(2010)

Metastable He," molecules
eExcited by laser light. The lifetime 1s 13s.  The size is Inm.

*They are not trapped by vortices above 1K, following the normal flow.

When the heat flux 1s large,
He,* molecules obey
turbulent diffusion.

--> The normal fluid 1s
Vn t=0ms t=40ms t=80ms turbulent.

1.95K Square channel



Marakov et al. observed a novel
profile of the normal fluid flow,

namely

A. Marakov, J. Gao, W. Guo, S. W. Van
Sciver, G. G. Thas, D. N. McKinsey, W. F.
Vinen, Phys. Rev. B 91,094503(2015).

1 No heat flux 2 No flow
2 Poiseuille flow

3,4 Tail-flattened flow
5,6 Turbulence

Such tail-flattened flow
has never been observed
even 1n a classical fluid.




Marakov et al. observed a novel
profile of the normal fluid flow,
namely

Importance of this work
1. Effect of the normal fluid
2. Inhomogeneous

turbulence affected by the
channel walls




4. The new simulation for the inhomogeneous

normal fluid flow

4-1. Counterflow quantum turbulence of He-II 1n a
square channel: Numerical analysis with nonuniform
flows of the normal fluid

S. Yui and M. Tsubota, Phys. Rev. BO1, 184504 (2015):
arX1v: 1502.06683

4-2. Logarithmic velocity profile (the log-law) of
quantum turbulence of superfluid “He
S. Yui, K. Fujimoto and M. Tsubota, arXiv:1508.01347



What 1s lacking in the previous simulations?
Most previous numerical works suppose

e Periodic boundary for all three directions

e Prescribing the homogeneous profile of the normal fluid

In order to understand these
phenomena, we should suppose solid
boundary condition in a channel and
couple the superfluid and the normal
fluid properly.




Ditference between solid- and periodic boundary conditions

Periodic

A vortex ring that comes
out of the right enters the
system from the left again.

Solid boundary

- (

A vortex ring moving to the right
reconnects with the solid wall.

> Solid walls can work as an
absorber for vortices.



Full formulation of the two-Huid model
D. Kivotides, PRB76, 054503(2007)

Superfluid --> VFM =

Normal fluid --> Navier-Stokes equation

ov 1 2 Vs / .
“+(v -V)v =——Vp+vVv —— | dEs x(v -S§
S RIUREEE 5 fasn(n 9
+V*3* fd&s'x[s'x(vn—S)]
c LNV
Both ways

> ,
VEM < Normal fluid



Full formulation of the two-Huid model
D. Kivotides, PRB76, 054503(2007)

Superfluid --> VFM =

Normal fluid --> Navier-Stokes equation

ov 1 2 Vs / .
“+(v -V)v =——Vp+vVv —— | dEs x(v -S§
e (v, V), t Jaesx(v, -9
+V*3* fd&s'x[s'x(vn—S)]
c LNV,

Almost all simulations are “one way”.

VEM < Normal fluid




4-1. Counterflow quantum turbulence of He-II in a square channel: Numerical

analysiswith nonuniform flows of the normal fluid S. Yui and M. Tsubota.

Phys. Rev. B91, 184504 (2015)
e Square cross section Imm xX1mm
e Computational volume 1s Imm X1mm X Imm

e Periodic B. C. along the x-axis, and solid smooth B. C. for
other walls.

e T=1.3K, 1.6K and 1.9K Full Biot-Savart calculation

Tmm






Inhomogeneous normal flow causes an interesting effect.

The case of uniform normal flow psvs + ppvn =0 2 v =-T1y

In a laboratory frame v, = vV,, — Vs X W
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When the normal flow is Poiseuille-like, V, depends on temperature.

/(psvs,a =+ ,On’Un)dS =0

Vps(1) = 0, (1) — Vs More uniform
at higher T

(Uns )b == ... ‘ / =

1.3K 1.6K 1.9K
ps=0.0920 pns=0.1910 pns=0.7376

Aepunaq plos

28



‘ Vortex tangle 1n a square channel ‘
QU s 1 .4cm/§ - T=19K

1. Vortices expand from the center toward the walls, trapped by the
walls.

2. Vortices are denser near the walls than the center.

3. At higher temperatures, the strong mutual friction grows the vortices
fast and dense.



Statistically steady states are obtained despite large fluctuation.

140
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Local vortex line density

Uns = 1.4cm /s

T=1.9K s

T=1.6K

T=1.3K
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L(y): Local density
7 :Average of L(y)

Vortices are dense near the walls.
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(2) Tail-flattened flow in a rectangular channel

How to make the flow profile?

Combining the Poisuille flow v} (r) and the flat flow v} (0)

v, (r)=u,max[v’ (r), kv’ (0)]

Parameter &
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Increasing 4 makes the flow profile more uniform.



Time development of the line length density L for different
values of & T=19K,v_=0.5 cm/s

All the following ealculations are performed for 4=0.7..
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The behavior of L 1s saturated for 4 >0.8, almost equivalent
to the case of the uniform normal fluid flow.




Tail-flattened flow with A=0.7 Poiseuille flow
1=19K, v_=0.5cm/s 1=19K, v =0.7cm/s

> "ns

Vortex tangle is more homogeneous in tail-flattened flow
than in Poiseuille flow.




Distribution of the line length density L(y, z) for the tail-flattened flow

At z=0
1.2 | | | | |
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The distribution is uniform compared with that of the Poiseuille flow.



What causes the tail-flattened fow?

Vortex tangle made under the
Poiseuille flow

JJJJJJ
{{{{{{
- - -

.r"(
Py

If we turn on the mutual friction from vortices to

normal fluid, the Poiseuille profile may be changed.



How dose the superfluid component mimic the normal
fluid component through the mutual friction?

This interest appears in many contexts of superfluid

hydrodynamics.

Ctf. W. F. Vinen, Phys. Rev. B61, 1410 (2000)
S. R. Stalp, L. Skrbek, R.J. Donnelly, Phys. Rev. Lett. 82,4831 (1999)
W. F. Vinen, W. Guo, in this workshop

We investigated this issue in our situation.

Normal e ) > Super




Superfluid velocity field v, , (y, 2) created by the vortex tangle
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Us = Us,a + Usvortes

Applied veloCity U o Normal
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Velocity made by the vortex tangle
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Superfluid velocity field v, , (y, 2) created by the vortex tangle
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4-2. Logarithmic velocity profile of quantum turbulence
of superfluid “He

S. Yui, K. Fujimoto and M. Tsubota, arXiv:1508.01347

Two well-known statistical laws 1n classical turbulence

Kolmogorov -5/3 law in the bulk Log- law near walls
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Classical turbulence VS Quantum turbulence

m@ o ( Ce235
3 5
Kolmogorov -5/3 = |
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PRL&9, 145301(2002)
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7 | S
= near walls 0.05
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Ly -0.1
-0.15 &
e o s S. Yui, K. Fujimoto and M. Tsubota,

arXiv.1508.01347



Turbulent boundary layer in a classical fluid
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How to derive the log-law (1)

Y
A

Turbulent
boundary layer

X

cf. Landau-Lifshitz: Fluid Mechanics

Averaged velocity Uy — u(y) s Uy = Uz = 0
* Viscosity is not available except near the walls..
* Constant momentum flux O (Reynolds stress)

flows from the bulk to the walls,

« (O dissipates by the viscosity near the walls.

du /dy is determined by the fluid density £ , momentum flux O, distance y.

Dimension [duu/dy] = 1/T. [p] = M/L [o] = M/(L-T?).[y] = L

d—y:

du \/o/p

by

b= (0.417 :Karman constant
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How to derive the log-law (2) M e —
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What determines the width Y0 of the boundary layer ?
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A.W. Baggaley, S Laizet, Phys. Fluids 162, 354

(2011)
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A. W. Baggaley, S. Laurie, JLTP178, 35(2014)

Pure normal flow between two

parallel plates
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Quantum-turbulent boundary layer |GG B CI Sk PR

| |
N Us=0 Yy The averaged velocity of

o L turbulent superfluid flow
| X obeys the log-law !
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Temperature dependence of the log-law Up, =0.9cm/s

1.9K
=

The dilute vortices at
low temperature do not
satisfy the log-law

properly.




Every behavior of quantum turbulence comes from the dynamics and the

configuration of quantized vortices, so does even the log-law.

Can w_e- underStand théw log-law from the ,
behavior of quantized vortices? "
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Configuration of vortices
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Dynamics of vortices
Turbulent

Ry, boundary layer
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How about the Karman constant?

0.2
v
0.15 T q y
v, = — |lo ( ) ' c}
o > /ﬁ)q{ 5 D/
€ 005
w0 T v vi/kq ¢
-0.05
0.1 (K) (s/cm) (s/cm) -
0.15 ¥ 1.9 0.184 0.141 1.46

1.6 0.079 0.070 1.40
1.3 0.025 0.028 1.14

We know v, / k4 from the fitting. Since we have no theory

for ’U; , however, we cannot obtain the Karman constant x q-



1. We review the simulation of VFM 1n mogeneous
counterflow.

2. The recent visualization experiments open the door of the
new era.

3. We discussed the two topics in inhomogeneous case.
3-1. Inhomogeneous turbulence 1n a square channel

S. Yui, M. Tsubota, Phys. Rev. B91, 184504(2015)

3-2. Log-law 1n turbulent boundary layer
S. Yui, K. Fujimoto, M. Tsubota, arXiv:1508.01347




