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Turbulence theory challenges our understanding of what is a
(smooth) function in the sense of Leibnitz and how to deal with
the lack of smoothness of turbulent velocity fields that seems to be
observed. Two different ways of dealing with this question:

- assume that the velocity field is continuous but non differentiable
function of position like the Weierstrass counter-example.

- Follow Leray’s idea (1934) and look at possible singularities of
the Euler and/or Navier-Stokes equations that are local in space
and time.



- What are self-similar solutions of Euler equations? A schema to
derive them explicitly.

- How can singularities be observed (indirectly) in time records of
velocity fluctuations at a single point in a turbulent flow (Modane
wind tunnel)

- How to put the singular solutions in a coherent schema for
understanding turbulent flows: the example of structure functions.



Weierstrass counter example (1872) and turbulent velocity

field.1

Weierstrass (1872) example of a period-2 continuous function of t
but non differentiable almost everywhere (original notations)

f(t) = X, b" cos(a’rt),

v set of positive integers.
f(t) is continuous (non trivial) and non differentiable (easier)
almost everywhere if a positive integer and

ab>1+37/2.



Weierstrass counter example (1872) and turbulent velocity

field.2

Application to turbulence: If K41 scaling holds true

du(x) ~ (6x)Y/3. Therefore du(x)/dx ~ (6x)~2/3 and u(x) is
continuous and non differentiable as in Weierstrass
counter-example. This is inconsistent with the idea of a nowhere
differentiable solution of NS or Euler equations:

drdu(x, t) ~ Su(x)Viu(x) ~ ((6x)1/3)2/(6x) ~ (6x)1/3, then
Su(x,t + A) ~ A(6x)~Y/3, A small. This is inconsistent with the
starting point (K41 scaling)

The same reasoning imposes a smooth velocity field almost
everywhere:

If du(x) ~ (0x)" > n <1 and if one imposes

Orou(x, t) ~ du(x)Vdu(x) one finds n = 1 (differentiable velocity
field).



The fundamental question of turbulence theory

Do flows of incompressible fluids in 3D at large or infinite Reynolds
number (namely at small or zero viscosity) display finite time
singularities localized in space, or are they continuous and non
differentiable almost everywhere as Weierstrass counter example?
Single-point records of velocity fluctuations display correlations
between large velocities and large accelerations in full agreement
with scaling laws derived from Leray-like equations (1934) for
self-similar singular solutions to the fluid equations (Euler-Leray
equations). Conversely, those experimental velocity - acceleration
correlations strongly contradict Kolmogorov scaling laws.

Moreover the so-called structure functions for the acceleration
display a remarkable transition at increasing power of the
fluctuation, well explained by supposing the flow made of individual
Leray-like singular events (almost) independent of each other.

No cut-off of singularities at small scales by viscosity in the usual
meaning.



Leray's singularities

The Euler-Leray equations for self-similar singular solutions of an
inviscid incompressible fluid are derived from the Euler equations.
The similarity exponents take into account either Kelvin's theorem
of conservation of circulation or energy conservation (if energy is
finite)

1) What are Euler-Leray equations? + strategy for an explicit
(analytical) solution.

2) Amazing agreement between predictions of Euler-Leray with
intermittency seen in velocity fluctuations in Modane wind tunnel.
Dissipation by localized singularities in other settings: shock waves
in compressible fluids, white caps of gravity waves, NLS focusing
equation (next talk by Christophe Josserand).

Challenge (+ work in progress): put localized (space and time)
dissipation in a coherent statistical framework. Same transition in
structure functions as exponent increases seen both in turbulent
data and in numerical studies of focusing NLS.



Derivation of Leray's equations.1

In 1934 Jean Leray (" Essai sur le mouvement d'un fluide visqueux
emplissant I'espace”, Acta Math. 63 (1934) p. 193 - 2438)
published a paper on the equations for an incompressible fluid in
3D. He introduced many ideas, among them the notion of weak
solution and also what problem should be solved to show the
existence (or not) of a solution singular at a point after a finite
time with smooth initial data.

Leray assumed a solution of 3D Navier-Stokes (NS) blowing-up in
finite time at a point, following self-similar evolution for smooth
and uniformly bounded initial velocity field. Unknown yet if this
solution exists, either for Euler and/or NS.



Derivation of Leray's equations.2

Euler equations (inviscid, incompressible, 3D):
diu+u-Vu=—-Vp,

and
V-u=0,

Leray looked (with viscosity added, Navier-Stokes equations) to
self-similar solutions of the type:

u(r, t) = (t* — )" U(r(t* — t)7P),

where t* is the time of the singularity (set to zero), where o and /3
are positive exponents to be found and where U(.) is a numerical
function to be derived by solving Euler or NS equations.

That such a velocity field is a solution of Euler or NS equations
implies 1 = a4 3. The conservation of circulation in Euler
equations implies 0 = « — 3, and « = = 1/2. If one imposes
instead that a finite energy in the collapsing domain is conserved,
one must satisfy the constraint —2a + 33 = 0, which yields

o =3/5 and 8 = 2/5, the Sedov-Taylor exponents.



Derivation of Leray's equations.3

No set of singularity exponents can satisfy both constraints of
energy conservation and of constant circulation on convected
closed curves. o = 3 = 1/2 if there are smooth curves invariant
under Leray stretching. Same exponents found by Leray for NS.
Otherwise one has to take the Sedov-Taylor scaling, assuming that
1) the collapsing solution has finite (or logarithmically diverging as
here) energy,

2) no closed curve is carried inside the singular domain while
keeping finite length and remaining smooth.

Important remark: unknown if there is a single set of values of
exponents. A possible interpretation of experimental data is that a
spectrum of values of exponents, including with a negative «
between 0 and (—1). The velocity is continuous but not the
acceleration if « is in this range. However this can be also
understood as an effect of viscosity: otherwise the conservation of
energy imposes the Sedov-Taylor scaling.



Derivation of Leray's equations.4

Introduce boldface letters such that R = r(—t)~5. The Euler
equations become the Euler-Leray equations for U(R):

—(aU+p8R-VU)+U-VU=-VP,
and
V-U=0

A general time dependence can be kept besides the one due to the
rescaling of the velocity and distances by defining as new time
variable 7 = —In(t* — t). This maps the dynamical equation into

oU
5 —(aU+R-VU)+U-VU = -VP,

V-U=0

Equivalent to the original Euler equations.



Explicit solution of Euler-Leray equations: an outline.1

Euler-Leray equations in axisymmetric geometry with swirl and
possibly periodic dependence on 7 (work in progress + Pomeau-Le
Berre in arXiv):

1) Start from a localized solution of steady localized Euler
equation by solving Hicks equation(1898). Because this has finite
energy one takes Sedov-Taylor exponents.

2) Because steady Euler equations are invariant under arbitrary
dilations of amplitude or argument (being homogeneous of order 2
and invariant under dilation of coordinates) one can assume that
the solution of Hicks equation has very large amplitude.

3) This makes the (linear) streaming term added by Leray
arbitrarily small compared to the leading order term which is
quadratic.

4) Solving Euler-Leray by perturbation one meets two solvability
conditions because of the two dilation symmetries of the steady
Euler equations. They can be satisfied either by adding two small
oscillations with arbitrary amplitudes or by tuning free coefficients
of the unperturbed solution of Hicks equation.



Explicit solution of Euler-Leray equations: an outline.2

A few points on this solution of Euler-Leray equations:

- The expansion of the solution at higher orders is formally well
defined because at each order one can add to the base solution a
contribution belonging to the 2D kernel of the linearized problem.
- Solutions of Euler-Leray show a divergence of vorticity, because
vorticity scales like 1/(t. — t), so there is (well hidden) vortex
stretching in this solution.

- Hicks equation reads:

0? 0% 10
G2t 52 7o

0z or ror
with H(.) and B(.) arbitrary functions of the stream function W for
the flow in the (r, z) half plane (without boundary conditions).
One can choose (as did Hicks) H and B to make Hicks equation
linear and decompose in Fourier transform along the z— direction.
This leaves a free weight function of the wavenumber along z.
- Historical point: Hicks tried to find a kind of Schrodinger-like
equation for Kelvin's vortex model of atoms.

W —rP—_ 4+ B— =0,



Is it possible to "observe” Euler-Leray singularities?.1

Our motivation for working on Euler-Leray singularities is their
possible connection with the phenomenon of intermittency in high
Reynolds number flows. This raises several questions:

1. What is specific to Leray singularities compared to other
schema for intermittency?

2. What would be specific of an Euler-Leray singularity in time
records of single point velocity in a large Reynolds number flow ?
3. What are precisely the consequences of the occurrence of
Leray-like singularities on the statistics of a turbulent flow?



Is it possible to "observe” Euler-Leray singularities?.2

Point 1 : If intermittency is caused by Leray-like singularities, they
should yield strong positive correlation between singularities of the
velocity and of the acceleration. This is what is observed.
Compared to scaling prediction derived from Kolmogorov-like
exponents this correlation is a strong indication of the occurrence
of singularities near large fluctuations. Moreover Kolmogorov
theory extended to dissipative scales excludes exponents of the
singularity of the velocity fluctuations vs distance which is less
than 1/3: otherwise dissipation is divergent everywhere in space,
clearly impossible.

The only way-out is to have dissipative events at random points in
space and time instead of being always spread everywhere (as
singularities of the derivative in the counter example of
Weierstrass).



Euler-Leray singularities and intermittency.1

Kolmogorov K41 theory is based upon the idea that turbulent
fluctuations at very large Reynolds number (where the effect of
viscosity is formally small) depend on the power dissipated in the
turbulent flow per unit mass, e.

K41 is successful for predicting the spectrum of velocity
fluctuations (Kolmogorov-Obukhov spectrum k—>/3) but is
contradicted by intermittency. Because of it the fluctuations fail to
satisfy the relationship predicted by Kolmogorov between the
velocity fluctuation and the distance between two points of
measurement. Using the scaling law with ¢, one finds

< (u(ro + r,t) — u(ro, t))® >~ (er) when the distance r is in the
(wide) range between the largest scales and the length scale short
enough to make the viscosity relevant. If applied to arbitrary power
n this predicts that, as r gets smaller and smaller, the amplitude of
the velocity fluctuation decreases, not what is observed. K41
scaling fails badly as soon as n > 4.

Statistical theory based on random occurrence of Leray-like
singularities (see later).



Euler-Leray singularities and intermittency.2

We have very long and high quality records of velocity fluctuations
in the high-speed wind tunnel of Modane in the French Alps,
obtained by hot-wire anemometry (Yves Gagne et al. 1998), and
all sorts of correlations can be studied.

Suppose the observed large bursts of velocity are due to
Euler-Leray singularities. It means that u(r, t) scales like (—t)™¢
as t tends to zero (0 taken arbitrarily as the instant of the
singularity). The acceleration v (time derivative of Eulerian u)
scales like (—t)~(1+9) as t tends to zero. Therefore near the
singularity both the velocity and the acceleration diverge, this
latter the most strongly and in this large burst u> is of order « if
conservation of circulation is taken:

ud ~ Ty

The multiplicative constant is of the order of a "typical” value of
the circulation. With the Sedov-Taylor exponents, on has instead:

U8 ~ E,.Y3

where E is the energy inside the collapsing domain.



burst from Modane 2014; ~(t) (red); u(t) (blue)

v/g = 56000 ; ( Maximum ratio /g = 10° for Modane-2014 ;
and /g = 6000 for Modane-1998) g acceleration of gravity.



Gaussian Statistics?

Non Gaussian acceleration Slightly non Gaussian velocity
Common situation due to the presence of short time fluctuations.
Velocity is the time integral of the acceleration, therefore, by
adding random short time fluctuations of the acceleration, one
finds the observed quasi-Gaussian velocity field.



Scaling relations : u® = 'y or uy ~ €?
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units: rms of the fluctuations.
Scalings Leray/circulation: u3 =T+~ ;
Scaling Kolmogorov uy ~ e: invalid



Circulation scaling vs Sedov-Taylor scaling vs Kolmogorov

scaling

<6v3sly <6v3>8197y
1.0

Scalings / circulation (left red): u® ~ Iy

Scalings / energy: Sedov-Taylor (left blue) 18 ~ E~3
Kolmogorov Scaling (right) uy ~ €

Notice: Taylor frozen turbulence does not apply because the large
velocity fluctuations and mean velocity are of the same order.



Sketch of a statistical theory based on the random

occurrence of Leray singularities.1

Sn(r) = /dq Vs(q)/d3ro/dt (as(r + ro, t|q) — as(ro, t|q))"

where S,(r) =< (a(r + ro) — a(ry))"” > with as(r, t|q) acceleration
Leray-like solution singular at t = r = 0. Parameter q is for
symmetries, and possibly a whole spectrum of solutions of
Euler-Leray, vs(q) is the density of singularities in space-time. Two
sources of dependence with respect to r: the phase-space part (i.e.
the volume d3rpdt at small r) and the singular dependence of as.
If nis less than a critical value depending on the exponents of the
Leray-like solution, Sp(r) tends smoothy to zero whereas it
diverges at r — 0 if n is larger than a critical value. This is in very
good agreement with Modane’s data. This sharp dependence of
Sn(r) near r = 0 is a direct consequence of the existence of
singular solutions in real turbulent flows.



Sketch of a statistical theory based on the random

occurrence of Leray singularities.2

<[a(n-a(0)*k > Nk

blue: n =8

purple: n =4

red: n=2

Notice the very sharp difference between the behavior of S,(r) for
small r as n gets bigger.



Sketch of a statistical theory based on the random

occurrence of Leray singularities.3

The explanation of this transition in behavior as n increases relies
on the estimate of the contribution of singular events to S,(r),
assuming first that those events follow a Leray-like law of
self-similarity and then that the solution of the Euler-Leray
equation is linearly stable, or equivalently that Leray-like
singularities have a nonzero basin of attraction in phase space of
initial conditions (perhaps a too strong condition-see remarks
below and coming arXiv paper). If one makes the first assumption,
one finds that near r = 0:

Sn(r) ~ r3+1/ﬁ_n(a+1)/ﬁ

The first contribution to the exponent comes from the volume of
physical phase space d3rydt, the other, proportional to n, from the
divergence of the self-similar solution at r = t = 0. As n increases
the exponent, as observed, changes from positive (decay of S,(r)
as r tends to zero) to negative (growth as r tends to zero, except
for a possible round-off by viscosity very near, r =-0).



Sketch of a statistical theory based on the random

occurrence of Leray singularities.4

However, compared to the experimental values of the exponents
the estimated exponents, when positive, are too big. This can be
explained in three ways (not incompatible):

1) the parameter q related to the dilation invariance of the Euler
equation depends on time 7 and ultimately on viscosity, which
amounts to add a contribution to us decaying like a power of 7.
This takes into account that at very short distances viscosity
becomes relevant and could explain why the Euler-exponent
overestimates the growth of S,(r) at small r.

2) « could belong to a continuous spectrum and takes negative
values. This is consistent with the fact that the short distance
distance behavior of the structure fundtion is dominated by the
smaller values of the coefficient of n in the law for S,(r). This
goes against conservation of energy by Euler-Leray equations that
gives the exponents their Sedov-Taylor value.

Point 3 on next slide



Sketch of a statistical theory based on the random

occurrence of Leray singularities.5

3) After the singularity the fluctuation remains big and so
contributes to the structure function, including at r small.

Last point: S,(r) tends (quickly) to a constant as a function of r
as r increases because it is made of the contributions of
statistically independent singularities. This implies short distance
correlation of the acceleration originating from independent
localized singularities.

Local singularities explain three non trivial features of Sy(r): its
large and small distance behavior and its dependence with respect
to n.

Last point: viscosity makes disappear the singularity with the
circulation exponents (the ones of Leray), but this is not so clear
with Sedov-Taylor exponents because the local Reynolds number
increases near the singularity time. Possible evolution toward a
singularity with viscosity included. Rounding of the singularities by
mechanisms other than viscosity (Burnett higher order effects in
the Enskog expansion with fractional derivatives- YP PhD thesis)



Thank you for your attention!



