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Motivation and goals

Motivation of this topic for the talk is inspired by the sentence from first
announcement of the workshop "We are organizing a workshop to bring
together experimentalist and theorists to share ideas about
interpretation of currently available experimental measurements, and

working out ways for the most effective experiments in future..... :

Therefore | decided to discuss several theoretical results, which have
experimental (or/and numerical) consequences

Although there is no developed theory of quantum turbulence (QT) so
far, rather the isolated modest separate fragments exist, they bear a
series predictions which can serve as ideas for experimental and
numerical proposals.



Plan of talk

Kinetics of vortex loops and the theory of quantum turbulence.

Hydrodynamics of the superfluid turbulence(coarse-grained.
Hydrodynamics) and its applications.

Spectrum of Vortex Line Density (VLD) <OL(w)OL(-w)>.
Thermal equilibrium state.

Quasi-classical Turbulence (E as function of L).
Rotating turbulence.

3D Energy spectrum.



QT as a Kinetics of vortex loops

This model describe quantum turbulence as a network of splitting and merging vortex
loops. Each of loops has a random walking structure with elementary step &£, connected

with the interline space 6§ = £-12. In this formalism all inner degrees of freedom
are ignored. They are immersed in the random walking model. Motivation
for this 1s that due to huge number of reconnections, the inner dynamics
doesn’t have time to be developed.
Interaction = collisions

Then, the only degree of freedom, which is the length / of the loop. The corresponding
problem has the complete analytic solution on the base of the Boltzmann type “kinetic
equation” for the distribution function (/) of number of loops with length /. (Copeland, E.
J.; Kibble, T. W. B. & Steer, D. A. Evolution of a network of cosmic string loops Phys.
Rev. D, 1998, )



Distribution of loops over their sizes

One of the key predictions following from theory concerns the distribution of
vortex loops sizes 7(/), which 1s the basis for various applications

n(l) = 152 4 |
S0
Parameter Cy7p ~ 1. 8 x 1072, The law /> was frequently obtained (from
thermodynamics) for the distribution of one-dimensional topological defects in
other fields of physics (cosmic strings, (Copeland, 1998), or lines of darkness in
nonlinear optics (O Holleran, 2008)
There are numerical results that the distribution of loops in QT obeys a power
law n(/) « /7%, but with @, nearly 1 + 1.5 cite: Araki2002, cite: Kondaurova2005.
It 1s possible that the disagreement between the numerical results and
n(l) « % could be associated with the artificial elimination of very small loops in
a numerical algorithm, which reduces the number of loops of very small lengths /
and makes the distribution more gradual.

The determination of the distribution law n(/) 1s very important, and
1s still an open numerical (and expeimental?) problem.




The determination of the size distribution of the loops n(7),
constituting the VT from monitoring of the emitted vortex loops P().




Distribution of the emitted vortex loops

Knowing (From the Boltzmann type “kinetic equation™) the density of the loops
n(l.x,1), the average velocity V;(/) of the loops, and the free path A(/) (all quantities are /
-dependent), we can estimate the spatial flux of loops of size / (see for details

cite: Nemirovskii2010), radiated by layer at point x of the VT.

Yrad = 510, )Vi(0) exp(=x/A(D))

# (J radiation) |

Supposing for simplicity the full uniformity of vortex tangle (inside domain), and
integrating out over solid angle dfdp and over position of loops @R we obtain the flux of

loop through the domain boundary
D N S P
J = A In(l:xo,t)( )dl,

(1) = N(I)/ j N(dl « -3

# (J total) |




Example of application of stated approach - comparison with work by
Nakatsuji, A.; Tsubota, M. & Yano, H., Phys. Rkv. B. 2014, 89, 174520
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Top. The PDF of the length of emitted vortex loops obtained in cite: Nakatsuji2014. Lower
line 1s the PDF from the upper picture depicted in logarithmic coordinates.The upper curve
is the analytical PDF is Pr,,(/) = 50/~ obtained from theoretical consideration.




Rate of reconnection
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Quantity V; = k/&, 1s (I-independent) characteristic velocity of the approach of elements
of the line, b,, and b, are numerical constants of order of unity.

Reconnection rates for the merging A(/;./,,/) and the sphtting B(/.7,./,) oﬂ' vortex
loops are interesting because of their dependence on the sizes /./;. /5.

The full rate of reconnectionsFull rate of reconnections.

. /2
inec = Crec KL~ s |

where C,.. one more constant of the order 0.1 — 0.5. This result agrees with the recent
numerical investigations cite: Tsubota00, cite: Barenghi2004. cite: Kondaurova2014.




The cascade-like fusion and the cascade like breakdown
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FIG. 5. Pictures illustrating flux of length (or energy, see Ref.
32) in space of the loop sizes. This flux is just redistribution of total
length (energy) among the loops of different sizes due to recombi-
nation process. (a) Negative flux, or direct cascade appears due to
consequent breakdown resulting in formation of smaller and smaller
loops. (b). Positive flux or inverse cascade describes consequent
fusion of loops leading to formation of larger and larger loops.



Flux of length (energy)

The total length (per unit volume), or the vortex line density £(7) 1s
defined as follows:

L(t) = [L(t,0)dl = 1% n(1, 1)dl. |
# (VLD definition)

Conservation of the vortex line density can be expressed in the form of
continuity equation for the length density Z(/,7)
oL(l,t)  OP(l)

A+ -

ot ol
This form of equation states that the rate of change of length 1s associated
with ”flux” of length in space of sizes of the loops. Term flux” here means
just the redistribution of the length among the loops of different sizes due to
reconnections.

0. | # (continuity equation)

Pyt = P.—P_ = |CplcL2] “
Cr ~ (2.22b,, — 3.926¢3(1)b). |

# (Feynman constant)




The low temperature quantum turbulence Cr < 0

The negative flux appears when the break down of loops prevails
and the cascade-like process of generation of smaller and smaller
loops forms. There exists a number of mechanisms of
disappearance of the vortex energy on very small scales. It can be
e.g. the acoustic radiation, nonlinear Kelvin waves, loop escape
etc. These dissipative mechanisms balance the grow of the line
length due to the mutual friction. As a result, fully developed
turbulence with the flux of energy in direction of small scales is
formed, what implies highly chaotic picture of the vortex tangle.




The high temperature quantum turbulence Cr > 0

The case with inverse flux is less clear. The inverse cascade
implies the generation of larger and larger loops. Unlike the
previous case of the direct cascade, there is no an apparent
mechanism for disappearance of very large loops. The probable
scenario is that the parts of large loops are pinned to the walls.
Finally, a state with few lines stretching from wall to wall with poor
dynamics and rare events is realized, this is a degenerated state
of the vortex tangle. Some numerical investigators Schwarz1988,
Aarts, report on this situation. This observation can be an
alternative explanation for a phenomenon discovered in Helsinki
group (Finne2003), who observed transition to sup :Hd"—"?:?

turbulence governed by the temperature. )}(/
TN
/(:"‘




Hydrodynamics of the superfluid turbulence (HST), or the

coarse-grained hydrodynamics and its applications

As it 1s written in famous book by Donnelly (1991) "Almost all probes of
superfluidity are hydrodynamic, and those of us interested in superfluidity,
particularly quantum turbulence, have had to learn a good deal of fluid
mechanics"

To describe correctly all hydrodynamic phenomena, we need equations of
motion of superfluids in presence of the vortex tangle. These equations have to
take into account the mutual influence of both velocity field on VT and VT on

velocity and temperature field. In other word they decribe the back

reaction, 1.e. coordinated spacial temporal change of all variables
The hydrodynamics of superfluid turbulence (HST), the theory which unify
Vinen equation with the classical Landau two-fluid model

HST | J VE, Landau Hydrodynamics




The essence of HST

The main aim of formulating the HST 1s to combine Vinen’s equation and the classical
two fluid Landau Khalatnikov hydrodynamic equations. (Nemirovskii and Lebedev
cite: Nemirovskii1983, Yamada et al. cite: Yamadal989, Guerst cite: Geurst1992)

Vortex line density £ — £(r.7) 1s considered as field and new variable to v;.v,.S. p

5E0 = &yp dr #(dE OfL)
On the ground of conservation laws (Nemirovskii and Lebedev 1983)) it is derived
% + V(L) = ap |ve| £3* — By L2 # (HSTL)
Pyv.ij=o, # (HST rho)
dj; , dly _ :
v i 0, # (HST )
S V. [S v, +S(v,-v)] = L [KLvh+erpr?]
dt n L » T ns ‘ >
# (HST S)
ps{";’; F (v, V)V, + vy} ~ b Vey — SE b VT | [EESTVS)
» ‘Y}?S ~»~3/2
= KL v,, + €y aj | L4
Vs




Applications of HST

Interaction of vortices with the second sound
dry friction, action like == V,,./V,,;

VLD fluctuations

slow decay

Propagation of intense second sound pulses generating vortex lines and
interacting with them

Turbulent fronts and plugs
boiling, cooling with superfluid helium,

more 77?9



Interaction of vortices with the Isecond sound

vortex tangle
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The study of ST using acoustical methods, primarily second sound, 1s one of the most
used, widely applied experimental method. The main 1dea is to take advantage of the extra
attenuation of second sound waves resulting from the friction force due to the interaction
between the normal component and the VT. The corresponding relation for this damping,
which 1s very much larger than the viscous damping, even for very small VLD, obtained by
Vinen cite: Vinen1956 is

Ty = Bk Ly/6 # (attenuation)




dispersion law (k) of a monochromatic second sound wave
6T « expli(wt— kix — k;z)], propagating in counterflowing
turbulent Hell with a VLD L, is (Nemirovskii & Lebedev 1983)
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are damping coefficients in the x and z directions, and

tr = 2Bv/(aivi)




Slow decay of the vortex tangle, HST consideration

After switching off the heater, the field of
velocities does not vanish instantaneously.
But this, in turn, implies, that the

1 generating (first) term in the Vinen

| equation is not zero (although it decreases
| in time), therefore the total decay of the VT
1 should be slower..

| The quantity 1/L(t) calculated from a set of
HST equations (Kondaurova, 1993). The
1 straight line corresponds to VE.

1 2 3 &4 5 6 7 8
t[s]



Slow decay of the vortex tangle, Dresner equation
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The HST equations govern both a slow variation of the hydrodynamic variables
due to dissipation related to the vortex tangle and fast processes of the first and
second sound propagation. Using |multi-scale perturbation analysis we show how one
can eliminate the fast processes to derive the evolution equation for the slow
processes only. We then demonstrate that the long-term evolution of a transient heat
load of moderate intensity obeys the nonlinear heat conductivity equation, referred to
as the Dresner equation.
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Dry. frictions

Kondaurova, L.; L’vov, V.; Pomyalov, A. & Procaccia, I. Phys. Rev. B, 2014, 89, 0145029

18°

(2) The anisotropy indices [y, I, Iy, and I, are practically
independent of Vi, 1.e., & VI0 see Eqgs. (4), Fig. 11, and
Table IV; Iy, I, =20.7+0.9, I, 0.5, I;; =0 (because of
the axial symmetry).

Schwarz, K. W. Phys. Rev. B, 1988, 38, 2398-2417

!Adachi,_ H.; Fujiyama, S. & Tsubota, M. Phys. Rev. B, 2010, 81, 104511
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Figure 5(a) shows the anisotropy as a function of
vps and T. The anisotropy is almost independent of
Une and is dependent on T, in agreement with experi-




Dry friction F « -V, /7,



Dry friction Sign

d‘rS T ' r — [ o L
ps{ T+ (s V)\5+Vu} bVey — SLbHVT 4
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= K L vy + Signey arp

Nemirovskii and Lebedev, 1983 Sign 1S +

Based on Feynman’s scenario that VT takes the kinetic energy from main flow
and returned it in the form of entropy.

Yamada et al.,1989 , S1g1 18 -

Based on the Schwarz’s vision that both the growth of VT and its decay is due
to mutual friction

Guerst, 1992. S1gn 18 undetermined (coincides with drift
of VT wrt the supertluid component)

Based on variationl principle.



Thus, the study of the effects connected to the dry friction term
supplies important information:

1. on the macroscopic dynamics of the VT (the explicit form of the
Vinen equation)

2. as well as on the microscopic processes describing the stochastic
behavior of the whole vortex tangle.

Therefore experimental study of the described effect is extremely
important for understanding of counterflowing quantum turbulence



Attempts to observe dry friction effect, Stamm et al. PRB, 1993,

To assess the experimental possibility to study the described effect, consider now the
solution of a simple model describing the evolution of a second sound pulse which
propagates through such the VT with VLD equal to £ ; taking into account dry friction:
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Spectrum Vortex Line Density (VLD) < 0L(w) 0L(—w) >

The important question of the different arrangement of QT, namely whether it is a
set of vortex bundles, Vinen disordered state, or mix of these two forms can be
experimentally checked from the study of fluctuations of the Vortex Line Density

(VLD) < 6L(®) 6L(-®) > in turbulent flows. T he different forms of
arrangement of the vortex tangle give various dependencies of

these quantities on frequency @. This conclusion may serve as a basis for
the experimental determination of what kind of the turbulence is implemented in
different types of generation of QT.



Vinen Equation case

Let us study the reaction of the vortex line density in a fluctuating flow of normal
velocity supposing that the dynamics of £(7) obeys the Vinen equation:

cL
ct

1;: 12,
= ay |Vas| L’ - [7,{ L=

Linearization of this equation (wrt fluctuation o [lb leads to

coL _
ot

= ay £ L35V~ PraLordL.

Ps

#(VE1) |

# (vial0) |

Equation (ref: viaL0) shows that the evolution of the fluctuating part of the vortex
line density 0 £ bears the relaxation-type character with a characteristic time

Ty = 2/(BrLo),

Performing Fourier transform, we obtain the spectrum (6 L(f)o L(—f))

# (tau v) |

(OLHNOL(H) =

Aav/Br)® (57)Loova(£)ova(-1))

1 + 2nfrr)?




HVBK case
In terms of HVBK dynamics, the vorticity field @(r,7) obeys the following equation
(see cite: Khalatnikov1965)

% = V x [VL X (D]_. VZ:C([&X(VM - Vs)]
In the stationary case, the coarse- grained superfluid velocity coincides with the
normal velocity in the bundle v. = v,,, and the steady value Ly of the vortex line

density in the bundle 1s

Los = |V x v,k #(@LO0Db) |
Linearization of the HVBK equation (wrt fluctuation 6 £) leads to
c(oL)

-

- a[:(_)bv X 5"'.;;5 - aﬁ{)bv X 5‘7;2 - %051.‘/.

where the relaxation time 7, of the vortex lines population inside the bundle 1s:

T = Gr— # (time bundle) |

azﬁéb( ;f_. )sz (271']7{.;2)2<5vn(f)5vn(_f)>
1+ (27fTs)? '

< 8L(f) SL(~f) >=




Comparison

Vinen Equation case HVBK case
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These results may serve as a basis for the experimental determination of what kind of
the turbulence 1s implemented 1n different types of generation.



~A/2
Energy grows as 3
In the disordered, Vinen turbulence £ o« L. In the quasi-classical case the energy per unit mass
E, contained in the inertial interval can be evaluated from spectrum

Ex(k) = Ce?* k5, # (eq-Kolmogorov) |

In vortex bundles conception the intervortex distance 6 and the flux &. are not independent
quantities, they relate to each other. To show this, let us evaluate the vorticity at the scale 6 (see
paper by L’vov, Nazarenko & Rudenko 2007). This can be done with the use of Equation

(ref: eq-Kolmogorov), and by observing that the energy per unit mass (in the & space) is related to
the squared vorticity as £(k) = (viv_y) = (@ ®_y )/k>. Then

- 1/8 " /2 ~_A/
(@?*) ~ j KE(k)dk ~ 23675, # (omega at crossover) |
Taking the value of vorticity from Eq. @ = £ they obtained that ¢ ~ x°6 . To find how the

energy scales with the VLD £, let us use the estimate for the energy £ ~ Ce?? D written above,
and the expression for the dissipation rate via an intervortex space £ ~ k- 6. The comparison leads

fo:

E ~ CD¥3x2043, #(E(L)CT) |

Thus, energy as a function of the VLD £ grows faster than for the disordered state (where £ « L),
and slower than for the solid-body rotating case (where £ « £?). This observation would be of
interest for the experimental study of the quasi-classical behavior of QT.




Langevin and Fokker -Planck statement of the problem.

Chaotic vortices in the thermal equilibrium

The Langevin approach is a powerful method allowing the

treatment of various types of statistical dynamics, ranging from
thermal equilibrium to a fully non-equilibrium turbulent state. These
options are achieved by properly choosing a random (stirring) force
correlator.

Although our workshop is devoted to quantum turbulence, | would
like to attract attention to another case of chaotic vortices - namely
vortex filaments in thermal equilibrium state. Particular importance of
such a formulation gives the fact that it has a complete analytic
solution. This allows us to understand the mechanisms of
emergence and development of various structures in the chaotic set
of vortex filaments, such as, for example, vortex bundles or
anisotropy



Langevin and Fokker-Planck equation
In case of nonzero counterflowing velocity v, = vy — vs equation of motion (in
Langevin statement) of vortex line element reads

§ = B() +v: + (ZS'(.';") X (Vas — B(E)) + (ZS(.';:) X S(";:) X (Vs — B(&)) + (o, 1).

The corresponding Fokker-Planck equation probability distribution functional (PDF)
’P({S("f)} f) = <5(S(f) —s(,0))) 1s

= = 7 "(F . — V. — = ) D —
P+ [de 58 B + v+ 05'Q) x (va = Ve = BE@)] + F52 §P = 0

0s(&)

We assert that this dynamics also has equilibrium solution and our goal now is to
find the analogue of Gibbs distribution in this case.

AL
PUSO0 = Nexp- )

Here the Hamiltonian /7 {s( 5)} 1s

H=E{5(£)}—PL(Va = Vs).

where energy £{s(&)} and P ; the so called Lamb Impulse are defined as (see, e.g.
cite: Batchelor1967)

. S — sK - F oo e
E{s(d)} = SE H |s(c)1s|((g ) déde, PL=prs(¢:)><S(¢:)d¢:-




The partition function

The partition function (below g = 1/kzT ) 1is
dw S (‘*1) S (*") d"'

_ 21 avn| _ P =
Z(_fps(*}e"p[ B( s(€1) = s(&) 7 [s0xste )d)]

The similar quantity was studied in series of work on the role of the string-like objects

(dislocations, vortices etc.) in the phase transition physics(see for details
cite: Kleinert1990.cite: Edwards1979, cite: Copeland1991. cite: Chorin1994).

In spite of its formidable form, it can be evaluated, therefore the problem of chaotic
vortex filament has the complete analytical solution.
That allows to follow all details of the chaotic vortex dynamics.



Rotating turbulence

Rotating turbulence We have described a number of effects that arise in the

combined flow when rotation and quantum turbulence coexist (see subsection
(<ref>rotating</ref>)). This topic has not been very much studied. As for numerical
simulations, there is only result when the axial counterflow superimposed on the
rotating vortex lattice (see <cite>Tsubota2003, Tsubota2004</cite>). To our
knowledge the "opposite" case of the rotation of the pre-prepared QT has not been
studied numerically. It is also of interest to explore the theoretical prediction on
nonlinear period shift and the extra dissipation predicted by Egs. (<ref>period shift</
ref>)-(<ref>exta dissipation</ref>).



Instead of Summary

So we made several proposals for experimental studies
on dynamics of quantum turbulence based on theoretical
models.

It is understood that is not always the predicted
theoretical predictions come true.

| understand as well that not all will rush to perform the
suggested proposal.

Thus, this exposition can be regarded merely as a
certain style of presentation of the theoretical results



Thank You'!



