Superfluid turbulence near the intervortex scale

Sergey Nazarenko Warwick

Collaborators:

G.Boffetta, L. Boué, A.Celani, R. Dasgupta, D.Dezzani, J.Laurie, V.L'vov, Y.Nagar, M.Onorato, A.Polyalov, D.Proment, O.Rudenko, I. Procaccia & R.West

THE UNIVERSITY OF

SHREK SUPERFLUIDE À HAUT REYNOLDS EN ECOULEMENT DE VON KÁRMÁN

ENSL, CEA/SBT, CEA/SPEC, I. NEEL, LEGI, Luth ET SYSTÈMES COMPLEXES

SHREK Collaboration

CEA/SBT: Rousset, Girard, Diribarne, ... NEEL: Roche, Gibert, Hebral,Rusaouen LEGI: Baudet, Bourgoin,.... ENS Lyon: Chila, Chevillard, Salort CEA/SPEC<u>: Dubrulle</u>, Daviaud, Gallet, Moukharski,Braslau Luth: Lehner

THE UNIVERSITY OF WARWICK

SHREK – FeliSia campaign: SuperFluid Helium Turbulence near intervortex scale

SHREK Collaboration + SN, Golov, Lvov

Superfluid Turbulence at T=0

Vortex tangle described by Biot-Savart equation

$$\frac{d\mathbf{r}}{dt} = \frac{\kappa}{4\pi} \int \frac{d\mathbf{s} \times (\mathbf{r} - \mathbf{s})}{|\mathbf{r} - \mathbf{s}|^3}$$

Circulation quantum $\cancel{k} = h/m$. Rotating turbulence: Hänninen et al (2007) Numerical method of Schwarz (1985)

Superfluid turbulence

Formation and decay of vortex tangle in GP model (Proment et al, 2015)

Interpretation of measurements in superfluid turbulence, CEA Saclay, Sept 2015

Classical turbulence at scales > ℓ

Energy injection N 6 6

Viscous dissipation

Richardson cascade Kolmogorov spectrum $E(k) = C \varepsilon^{2/3} k^{-5/3}$

Same picture for ST at scales larger than inter-vortex separation *2*?
There is no viscosity in ST. What happens when cascade reaches scale *2*?

At scale *l* : reconnections.

(a) t = 0.0 (b) t = 0.1 (c) t = 0.2

Numerics of GP: Koplik & Levine (1993). Analytics of GP: SN & West (2003). Helium experiment: Lathrope et al (2008).

Interpretation of measurements in superfluid turbulence, CEA Saclay, Sept 2015

Below *l*: Kelvin Waves

Waves on vortex lines
Nonlinear wave-wave interactions transfer energy to smaller scales
< 1.

GPE simulation, Proment et al (2010)

Interpretation of measurements in superfluid turbulence, CEA Saclay, Sept 2015

Below *l*: Kelvin Waves

Waves on vortex lines
Nonlinear wave-wave interactions transfer energy to smaller scales
< \laphi.

GPE simulation, Proment et al (2010)

THE UNIVERSITY OF

Kelvin Wave Turbulence

$$\frac{d\mathbf{r}}{dt} = \frac{\kappa}{4\pi} \int \frac{d\mathbf{s} \times (\mathbf{r} - \mathbf{s})}{|\mathbf{r} - \mathbf{s}|^3} - \text{Biot-Savart}$$

$$\frac{d\mathbf{a}_k}{dt} = \frac{\delta H}{\delta a_k};$$

$$H = \int \omega_k a_k^* a_k d\vec{k} + \int d\vec{k}_1 \dots d\vec{k}_6 \delta_{1,2,3}^{4,5,6} W_{1,2,3}^{4,5,6} a_1 a_2 a_3 a_4^* a_5^* a_6^*$$

Hamiltonian description of weakly nonlinear KW's: Kozik & Svistunov (2004); Correct expression for W: Laurie, Lvov, SN, Rudenko (2009)

THE UNIVERSITY OF

Statistical description of KW turbulence

Wave Turbulence approach: Peierls (1929), Litvak (1959), Zakharov (1965) ...

Wave spectrum:

$$\langle a(\vec{k},t) a^*(\vec{k}',t) \rangle = n_k(t) \,\delta(\vec{k}-\vec{k}')$$

THE UNIVERSI

$$\frac{dn_k}{dt} = \int d\vec{k_1} \dots d\vec{k_5} |W_{k,1,3}^{4,5,6}|^2 \,\delta_{k,1,3}^{4,5,6} \,\delta(\omega_k + \omega_1 + \omega_2 - \omega_3 - \omega_4 - \omega_5) \\ \times n_k n_1 n_2 n_3 n_4 n_5 \left(n_1^{-1} + n_2^{-1} + n_3^{-1} - n_4^{-1} - n_5^{-1} - n_6^{-1}\right)$$

Kinetic Equation for interacting KW sextets: Kozik & Svistunov (2004)

Sergey Nazarenko

LECTURE NOTES IN PHYSICS 825

Wave Turbulence

Wave energy cascade

Reconnections & crossover

Phonon radiation

THE UNIVERSITY OF

WA

Kolmogorov-Zakharov spectrum; Zakharov (1965). For KW's– Kozik-Svistunov spectrum (2004):

$$E_{k} = C_{kw} \Lambda \left(\kappa^{7} \epsilon / \ell^{8} \right)^{1/5} k^{-7/5}; \qquad \Lambda = \ln \frac{\ell}{a}$$

Matching the classical and quantum ranges

$$\begin{split} E_{k} &= C_{hd} \epsilon^{2/3} k^{-5/3} & \text{at scales} > \ell, \\ E_{k} &= C_{kw} \Lambda \left(\kappa^{7} \epsilon / \ell^{8} \right)^{1/5} k^{-7/5} & \text{at scales} < \ell. \end{split}$$

•Effective viscosity measured by turbulence decay rate. Stalp *et al* (2000).

Assume that K41 extends down to *l*. Vicinity of *l* contains most vorticity (hence vortex line density).

•Turbulence decays like classical with effective viscosity:

$$v' \sim \frac{\epsilon \ell^4}{\kappa^2} \sim \kappa$$

Bottleneck crossover at 2

$$E_{k} = C_{hd} \epsilon^{2/3} k^{-5/3} \quad \Leftarrow \neq at \ \ell \implies$$
$$E_{k} = C_{kw} \Lambda \left(\kappa^{7} \epsilon / \ell^{8} \right)^{1/5} k^{-7/5}$$

•Kolmogorov and KW spectrum cannot be joined continuously at $1/\ell$. •Wave turbulence is less efficient than strong hydro turbulence and cannot cope with Kolmogorov cascade \rightarrow bottleneck. Lvov et al (2007). •"Warm cascade" solution. Connaughton & SN (2004): $E_k = k^2 [2.2 \epsilon k^{-11/2} + T^{3/2}]^{2/3}$ $v' = \Lambda^{-5} \kappa$ Reduced effective viscosity

Interpretation of measurements in superfluid turbulence, CEA Saclay, Sept 2015

THE UNIVERSITY OF WARWICK

Effective viscosity in experiment

FIG. 5: Color online. Comparison of the experimental, numerical and analytical results for the temperature dependence of the effective kinematic viscosities: Blue triangles – Manchester spin-down experiments¹⁹; Green empty circles – Manchester ion-jet experiments²⁰; sea-green diamonds with error-bars – Prague counterflow experiments¹⁵; cian crosses with error-bars – Prague decay in grid co-flow experiments¹⁶; Magenta empty squares – Oregon towed grid experiments²⁶;Pink right triangles–Oregon towered grid experiments²⁷. Solid green line – experimental results⁶⁶ for the normal-fluid kinematic viscosity $\nu_n = \mu/\rho_n$ (normalized by the normal-fluid density); Dashed green line – He-II kinematic viscosity $\nu \equiv \mu/\rho$, (normalized by the total density) – see also Tab.[]. Thin black dash line – effective viscosity for the random vortex tangle ν'_{rnd} , estimated by Eq. (31); Thick dot-dashed black line – the Vinen-Niemela estimate¹⁰ of the effective superfluid viscosity, ν'_s , given by Eq. (32). Blue solid line – $\nu'(T)$ at T < 1.1 K from numerical solution of Eqs. (51b) for the one-fluid differential model of gradual eddy-wave crossover; Red solid line – $\nu'(T)$ at T > 0.9 K from numerical simulations in Sec.[]][B] of gradually damped two-fluid HVBK Eqs. ([]) in the Sabra shell-model approximation ([33]).

Interpretation of measurements in superfluid turbulence, CEA Saclay, Sept 2015

WARWICK

Nonlocality of KS. New 4-wave theory

KZ spectra *only valid if local* (i.e. RHS integral in KE converges). KS spectrum is nonlocal: Laurie, Lvov, SN & Rudenko (2009). *Two k's in sextet is << other four k's*.

 → Effective 4-wave interaction on vortex line with large-scale (random) curvature:

New Spectrum of weak KW turbulence

Local spectrum of the 4-wave theory. Lvov & Nazarenko (2009):

Interacting wave quartets on a randomly curved vortex line

Bio-Savart simulations of KW turbulence

FIG. 2: (left) Amplitude spectrum A (arbitrary units) vs wavenumber k (cm⁻¹). The dashed line is the computed line of best fit corresponding to $A \sim k^{-3/7}$. (right) The corresponding compensated spectra: $A(k)k^{3.66}$ (solid line), $A(k)k^{3.4}$ (dashed line), $A(k)k^3$ (dot-dashed line). The amplitude of the forcing $\mathcal{F} = 0.1$ cm/s.

A. Baggaley and J. Laurie, 2012

Corrections and extensions of the bottleneck description

- Nonlocality of KW does not change the bottleneck prediction
- KW and HD motions coexist gradual transition with milder bottleneck (Lvov, Nazarenko, Rudenko, 2008). 1-fluid model, blending function. Equi-partition of the KW energy.
- Finite-T suppression of KW and bottleneck. 1-fluid model with an effective viscosity term.
- Polarization enhancement of the bottleneck effect via suppression of reconnections (e.g. in presence of external rotation).

Finite-T suppression of KW and bottleneck. 1-fluid model with an effective viscosity term (Boue et al 2015)

1-fluid and 2-fluid models (Boue et al 2015)

Reconnections are the main mechanism for dissipation via mutual friction. Normal and superfluid components get unlocked during fast reconnection dynamics. Thus Vinen-Niemela model (with still normal component) gives good description at high T.

FIG. 5: Color online. Comparison of the experimental, numerical and analytical results for the temperature dependence of the effective kinematic viscosities: Blue triangles – Manchester spin-down experiments¹⁹; Green empty circles – Manchester ion-jet experiments²⁰; sea-green diamonds with error-bars – Prague counterflow experiments¹⁵; cian crosses with error-bars – Prague decay in grid co-flow experiments²⁶. Solid green line – experimenta results⁶⁶ for the normal-fluid kinematic viscosity $\nu_n = \mu/\rho_n$ (normalized by the normal-fluid density); Dashed green line – He-II kinematic viscosity $\nu \equiv \mu/\rho$, (normalized by the total density) – see also Tab.[]. Thin black dash line – effective viscosity for the random vortex tangle ν'_{rnd} , estimated by Eq. (31); Thick dot-dashed black line – the Vinen-Niemela estimate¹⁰ of the effective superfluid viscosity, ν'_a , given by Eq. (32). Blue solid line – $\nu'(T)$ at T < 1.1 K from numerical solution of Eqs. (51b) for the one-fluid differential model of gradual eddy-wave crossover; Red solid line – $\nu'(T)$ at T > 0.9 K from numerical simulations in Sec.[]] of gradually damped two-fluid HVBK Eqs. ([1]) in the Sabra shell-model approximation ([33]).

WARWICK

Polarization enhancement of the bottleneck

- Polarization enhancement of the bottleneck effect via suppression of reconnections (e.g. in presence of external rotation).
- Poor man's model: view polarized tangle as a direct sum of an unpolarized and fully polarized components:

$$\frac{\nu'}{\kappa} \simeq (1-P) \, \alpha^{1/3} \Big(\frac{\Lambda}{4\pi} \Big)^{4/3}$$

- This effect is possibly seen in SHREK, which can access spectra (not just the net vortex line decay).
- December SHREK mission dedicated to study of crossover scales FeliSia campaigh.

Summary

• ST is a unique system where gradual transition from the classical to the quantum physics is taking place along the cascade. ST is a rich system: vortices, polarised tangles, bundles, reconnections, waves. •Asymptotically exact theory is available for small-scale ST for T=0. •The bottleneck classical-quantum crossover leads to reduction of v'. •The gradual crossover theory predicts existence of a range where the spectrum is wave dominated but the flux is eddy dominated. •Finite T kills KWs and the bottleneck. Polarisation enhances the bottleneck. •Theory has many (reasonable) assumptions. Accurate numerics needed for turbulence with a wide scale range including those > and <than ℓ . •Experiment is planned at CEA Grenoble SHREK facility to probe the crossover region.