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Prague flow channels for the study of counter-flow, super- and co-flow. S and N stand for super-fluid

and normal components. Counter-flow is produced thermally by a heater. Super-flow and co-flow are

driven mechanically by a bellows.
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Prague data for the VLD decay L(t)/L(0) in the co-flow, D = 7mm,

T = 1.35K
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T = 1.45K.
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Quantum t−1-fits – green dashed lines, classical t−3/2-fits – black dash-dotted lines.
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Coexistence of the classical (grey) and quantum (cyan) turbulence in co-flow
Classical energy spectrum consists of cascade part EK41

s (k) ∝ k−5/3

. and thermodynamic equilibrium part ETD

s (k) ∝ k2

Quantum energy spectrum of random tangle has 1/k large k-asymptotics
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Prague data for the VLD decay L(t)/L(0), T = 1.45K D = 10mm,

Counter-flow: Quantum t−1-fits – green dashed lines, classical t−3/2-fits – black dash-dotted lines.
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Superflow demonstrates behavior ⇓⇓ very similar to that of counter-flow ⇑⇑
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A way to understand “bump” is to assume delay in the classical-energy supply of quantum tangle
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Normal- (blue) & super-fluid (red) eddies swept by the mean normal- & super-fluid velocities Un & Us

(a) Co-flow, t = −τ (b) Co-flow, t = 0 (c) Co-flow, t = τ
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(d) Counter-flow t = −τ (e) Counter-flow t = 0 (f) Counter-flow t = τ
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Time τ ≃ R2/Uns is of the order of overlapping time of the middle-scale R2-eddies.
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Stationary energy spectra of counter- and pure super-flow turbulence

as a consequence of mutual-friction suppression due to

Counterflow decoupling of the normal- and super-fluid velocities

– Interaction (overlapping) time of scale R-eddies: τint = R/Uns (Uns – Counter-flow velocity)

– Mutual friction coupling time:

kind of the HVBK eqs:
∂us

∂t
+ . . . ≃ ακL

[

Uns + un(r, t)− un(r, t)
]

, (1)

∂un

∂t
+ . . . ≃ −α

ρs
ρn
κL

[

Uns + un(r, t)− un(r, t)
]

, (2)

uns ≡ un − un , Ωmf ≡
αρ

ρs
κL ,

∂uns

∂t
+ . . . ≃ −Ωmf

[

Uns + uns(r, t)
]

. (3)

(4)

– Counterflow decoupling parameter ζ(R) = 1/τintΩmf ⇒ ζ(k) =
kUns

Ωmk
Analytical theory of the coupling-decoupling processes, developed in Ref.[2] results in the equation for

the dimensionless decoupling function D(k), which depends on k via decoupling parameter ζ(k):

D(k) = D[ζ(k)] ≡
Ens(k,Uns)

Ens(k, 0)
=

arctan[ζ(k)]

ζ(k)
. (5)

Here Ens(k, Uns) = 〈us(k) · un(k)〉 is cross-correlation function of the normal- and superfluid velocities
in Fourier k-representation.

D(ζ) = 1− ζ2

3
, for ζ ≪ 1 , D(ζ×) =

1

2
, for ζ× ≈ 2 , D(ζ) =

π

2 ζ
, for ζ ≫ 1 . (6)
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k-dependence of the decoupling function D(k)
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ζmax = ζ(kmax) at the highest value of k,

kmax ≃ π/ℓ.

With ℓ ≃ 1/
√
L ≃ 1/(γLUns) this gives a

simple Uns-independent estimate of ζmax:

ζmax ≃
π

αns κ γ
L

∼ 40 ,

Estimate:

Dmin = D(ζmax) ≃ 0.04 ,
kmax

k×

≃ 20 ,

for T = 1.45K.
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∂Es(k, t)
2 ∂t

+NLs = ακL
[

Ens(k, t)− Es(k, t)
]

≃ −ακLEs(k, t)
[

1−D(k)
]

, (7a)

∂En(k, t)
2 ∂t

+NLn =
ακLρ
ρs

[

Ens(k, t)− En(k, t)
]

≃ −ακLρ
ρs

[

En(k, t)
[

1−D(k)
]

. (7b)

Here NLs,n are nonlinear terms which we do not specified at this stage of the research. For k ≫ k×,

D(k) ≪ 1 and situation become similar to the equation for Es for the superfluid turbulence in 3He,

where mutual friction drastically suppresses the energy spectrum Es(k). Instead of classical Kolmogorov

spectrum E(k) ∝ k−5/3 Lvov, Nazarenko and Volovik (LNV) (JETP Letters, 2004) found the spectra

Es(k) ∝
1

k5/3
[

1

k2/3
±

1

k
2/3
cr

]2 , critical: ∝ k−3, kcr → ∞, subcrititical (with −), supercritical (+).
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Sketch of the superfluid turbulent energy spectra

Counter- & super-flow stationary spectra Late time asymptotics
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After switching off the counter- or super-flow the stationary energy spectrum of super-/counter-flow

(left panel) evolve to the spectrum, shown in right panel, switching on the energy flux toward quantum

vortex tangle after some delay.
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Numerical simulations of the classical turbulence decay by Sabra-shell model

After ensemble averaging over 104 realizations we got time dependence of

Left: total energy (with t−2 asymptotics) Right: Energy flux toward large k (with t−3 asymptotics)
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For K41 initial condition (IC) – solid blue lines there are no

delay in the energy dissipation. For LNV critical (red line)

and sub-critical (blue dashed line) there is clear delay with

sharp switching on, while for weakly localized IC (“exper-

imental” k−2 spectrum (green) and LNV super-critical IC

orange dashed lines) there is smooth switching on.
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Classical source function ηcl(t) and delay function Fdel(t)
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Fit of decay from K41 IC by classi-

cal source function is given by the

classical source function

ηcl(t) =
D2

κ2(t − τ2)3

Introduce delay function

Fdel(t, τdel) = f2
n(t, τdel) ,

fn(t, τdel) =
tn

(tn + τn
del)

,

and delayed source function:

ηcl,del(t) = Fdel(t, τdel)ηcl(t+τdel) .

Fit of the decays from k−2 and LNV supercritical spectra is given by the delayed source

ηcl,del(t) =
tn

(tn + τn
del)

D2

κ2(t + τdel − τ2)3
,

with n = 1, while fit for the well localized (LNV critical and subcritical) IC with n = 6.
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Basic and improved models of VLD decay

• Basic model vs co-flow decay experiment

dL
dt

=
2 (d2D)2

κ2(t− τ2)3
− α κ

d1
L2 , ⇒ L1(t) =

b1L0|τ1|
t− τ1

, L2(t) =
b2L0|τ2|3/2
(t− τ2)3/2

. (8)

Here L0 = L(t = 0), d2, b1 and b2 are dimensionless phenomenological parameters. τ1 and τ2 – virtual

origin times for the quantum L1 and classical L2 asymptotics. Approximate solution:

Lbas(t) = L2(t) coth
[L2(0)

L1(t)

]

. (9)
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Red solid lines, Prague co-flow delay data with T = 1.35K, L0 ≈ 106 cm−2.

Blue dotted lines – basic model Lbas(t) prediction with τ1 = 0.5 s , τ2 = 1 s and b2 = 0.075.
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• Improved model vs super-flow decay experiment

dL
dt

= Fdel(t, τdel)
2 (d2D)2

κ2(t + τdel − τ2)3
− ακ

d1
. (10)

Approximate solution:

Lim(t) = fn(t, τdel)L2(t + τdel) coth
[fn(t, τdel)L2(0)

L1(t)

]

. (11)
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Red solid lines, Prague super-flow delay data with T = 1.45K, L0 ≈ 106 cm−2.

Blue dotted lines – improved model Lim(t) with n = 2, τ1 = 0.015 s , τ2 = 0.1 s and b2 = 0.22.
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1 Summary and perspectives

Based on good agreement between the experimental observations and the analytical predictions

we conclude that

the basic and improved models adequately reflect the underlying physical processes responsible for the

decay of superfluid 4He turbulence, including

– partial decoupling of the normal- and super-fluid velocities in super- and counter-flowing turbulence;

– resulting suppression of energy spectra in these flows;

– time-delay in the energy flux in the energy flux from classical to quantum parts of super-fluid turbu-

lence.

Nevertheless much more experimental, numerical and analytical work is required to formulate really

advanced model of decaying superfluid turbulence, which will account in details for the interplay of

coexisting classical and quantum forms of superfluid turbulent energy. This requires, for example,

– inclusion into the model the real stationary energy spectrum of counter- and super-flowing 4He and

. its evolution after the switching off the flow,

– accounting for the energy flux to the quantum tangle from the classical thermal bath, and

– analysis of the affect of spatial inhomogeneity on the turbulence decay and its time evolution.
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