Large-scale vortical motions in thermal counterflow around an obstacle

Jonathan Bertolaccini (PhD student) Lab. de Physique, Ens de Lyon & CNRS, Lyon

Emmanuel Lévêque

Lab. de Physique, Ens de Lyon & CNRS, Lyon Lab. Mécanique des Fluides et d'Acoustique, Ec-Lyon & CNRS, Lyon

Philippe-E. Roche Institut Néel, CNRS & UJF, Grenoble

Motivations

LETTERS

Large-scale turbulent flow around a cylinder in counterflow superfluid ⁴He (He(II))

TAO ZHANG* AND STEVEN W. VAN SCIVER

National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, USA *Current address: GE Global Research Center, 1 Research Circle, EP 123, Niskayuna, New York 12309, USA *e-mail: vnsciver@magnet.fsu.edu nature physics | VOL 1 | OCTOBER 2005 | www.nature.com/naturephysics

The current results indicate that both components may be undergoing a kind of flow separation as they pass over the cylinder

It is worth noting that for classical fluids at $Re_{D} > 10,000$ considerably different flow structures are normally present downstream of a cylinder

There is a need to understand the two-way coupling between the normal-fluid and the superfluid component !

... investigation by numerical simulations

Figure 3 Computed streamlines for particle motion for the two heat flux cases in Fig. 2. a, q = 4 kW m⁻² at T = 1.6 K corresponding to Re₀ = 41,000 and $L_0 = 1 \times 10^{10}$ m m⁻³. **b**, q = 11.2 kW m⁻² at T = 2.03 K corresponding to Re₀ = 21,000 and $L_0 = 2.6 \times 10^{10}$ m m⁻³.

0

200

400

600

-200

-400

-400

Numerical modeling of thermal counterflow

Geometry of símulations:

Ingredients of the physical modeling (at macroscopic level):

★ Two-fluíd model (Landau ξ Tísza)

★ Boussinesq-type approximation

D

$$\nabla p_n = \frac{\rho_n}{\rho} \nabla P + \rho_s \, s \, \nabla T \qquad \qquad \nabla p_s = \frac{\rho_s}{\rho} \nabla P - \rho_s \, s \, \nabla T$$

• Thermo-mechanical effect is encapsulated in a generalized partial pressure

- isothermal and incompressible approximations:
 - Temperature T is a parameter (not a variable) of the system
 - $\rho_n = \rho_n(T)$ and $\rho_s = \rho_s(T) : \nabla v_n = 0$ and $\nabla v_s = 0$

$$\rho_n \frac{Dv_n}{Dt} = -\nabla p_n + F_{ns} + \nu \Delta v_n \qquad \qquad \rho_s \frac{Dv_s}{Dt} = -\nabla p_s - F_{ns}$$

* HVBK approximation for mutual coupling

$$F_{ns} \approx -\frac{B\rho_s\rho_n}{2\rho}\widehat{\omega_s} \times (\omega_s \times (v_s - v_n)) + \frac{B'\rho_s\rho_n}{2\rho}(\omega_s \times (v_s - v_n))$$

mutual friction Magnus effect

... dynamics is integrated numerically at a mesoscopic level by the Lattice Boltzmann method

Lattice Boltzmann method - key ingredients only:

He-II is viewed as populations of normal-fluid and superfluid particles that propagate and collide on a lattice The Lattice Boltzmann scheme expresses the dynamics of these propulations on the lattice

 \star in the bulk :

 $f_{\alpha}(\mathbf{x},t)$ is the number of particles moving in the direction α in (\mathbf{x},t) : $f_{\alpha}(\mathbf{x} + \mathbf{c}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t) - \frac{1}{\tau} (f_{\alpha}(\mathbf{x}, t) - f_{\alpha}^{eq}(\mathbf{p}, \mathbf{v}, \mathbf{F}_{hvbk})(\mathbf{x}, t))$

$$\mathbf{p} = \sum_{\alpha} f_{\alpha} c_{s}^{2} \quad \text{« particles carry pressure »} \qquad \begin{aligned} \mathbf{f}_{\alpha}^{eq}(\rho, \mathbf{v}, \mathbf{F}_{\text{hvbk}}) &= w_{\alpha} \left(A + \frac{\mathbf{B} \cdot \mathbf{c}_{\alpha}}{c_{s}^{2}} + \frac{\mathbf{C} : (\mathbf{c}_{\alpha} \mathbf{c}_{\alpha} - c_{s}^{2} \mathbf{I})}{2c_{s}^{4}} \right) \\ A &= \mathbf{p}/c_{s}^{2} \\ \mathbf{B} &= \rho \mathbf{v} + \nu/c_{s}^{2} \mathbf{F}_{\text{hvbk}} \\ \mathbf{B} &= \rho \mathbf{v} + \nu/c_{s}^{2} \mathbf{F}_{\text{hvbk}} \\ \mathbf{C} &= \rho \mathbf{v} \mathbf{v} + 2\nu/c_{s}^{2} \mathbf{F}_{\text{hvbk}} \mathbf{v} \end{aligned}$$

Note that for the sake of numerical stability, a very small artificial viscosity is affected to the superfluid : $v_s/v_n = \frac{1}{25}$

★ At solid boundaries:

* How to drive the thermal flow (at a mesoscopic level)?

As a result, a counterflow naturally establishes between the two thermostats :

 $\rho_n V_n + \rho_s V_s = 0$

 $V_n \propto \gamma_e$ is here equivalent to the heating law $V_n \propto \dot{q}$

Existing simulations of thermal counterflow simulations (two-way coupling):

The knowledge of cooling characteristics of He II is indispensable to design superconducting magnets !

A PISO-like algorithm to simulate superfluid helium flow with the two-fluid model

Cyprien Soulaine $^{\rm a,*},$ Michel Quintard $^{\rm a,b},$ Hervé Allain $^{\rm c},$ Bertrand Baudouy $^{\rm d},$ Rob Van Weelderen $^{\rm c}$

^a Université de Toulouse; INPT, UPS; IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse, France ^b CNRS; IMFT, F-31400 Toulouse, France ^c CERN, T-CRC, 1211 Geneva 23. Switzerland

d CEA Saclay, Irfu/SACM, F-91191 Gif-sur-Yvette, France

0.215468

(CrossMark

Cryogenics Volume 42, Issue 1, January 2002, Pages 19–28

Numerical analysis for two-dimensional transient heat transfer from a flat plate at one-side of a duct containing pressurized He II

H Tatsumoto^{a,} 📥, 🔤, K Fukuda^b, M Shiotsu^a

3-D NUMERICAL ANALYSIS FOR HEAT TRANSFER FROM A FLAT PLATE IN A DUCT WITH CONTRACTIONS FILLED WITH PRESSURIZED HE II

D. Doi¹, Y. Shirai¹ and M. Shiotsu¹

+ VIEW AFFILIATIONS

AIP Conf. Proc. **985**, 648 (2008); http://dx.doi.org/10.1063/1.2908617^[2] Conference date: 16–20 July 2007 Location: Chattanooga (Tennessee)

Cryogenics Volume 48, Issues 3–4, March–April 2008, Pages 130–137

Experimental measurements and modeling of transient heat transfer in forced flow of He II at high velocities

S. Fuzier^{a,} 🎍 🖾, S.W. Van Sciver^{a, b}

0.05

0.04

0.02

0.01

A method for the three-dimensional numerical simulation of SuperFluid Helium

L. Bottura¹, C. Darve^{2, 3}, N.A. Patankar³, S.W. Van Sciver⁴

¹ CERN, Accelerator Technology Department, Geneva, Switzerland
 ² Fermi National Accelerator Laboratory, Accelerator Division, Batavia, IL, USA
 ³ Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA

⁴ National High Magnetic Laboratory, Florida State University Tallahassee, FL, USA 0.03

Counterflow without mutual coupling

composante normale
$$Re_n = 19$$

composante superfluide $Re_s = 475$
pair of attached vortices
L

CB
Von-Karman vortex street

composante superfluide $Re_s = 19$

pair of attached vortices

Turning on mutual coupling at low Reynolds number

T=1.96K
$$\rho_n \approx \rho_s \implies V_n \approx -V_s$$

 $Re_s \approx 25 Re_n$

Very low Reynolds number for normal fluid: $Re_n = 2$

composante normale

composante superfluide

Appearance of high-friction bands : virtual boundaries

Upstream recirculation zones

Reynolds number for normal fluid:
$$Re_n = 19$$

Reynolds number for normal fluid: $Re_n = 20,5$

composante normale

composante superfluide

Summary of flow topology

in three dimensions

composante normale

composante superfluide

 $v_{n,x}/V_n$ $|v_{s,x}/|V_s|$ -1.00 -0.6 1.75 0.6

Conclusions and perspectives

★ Vortical structures are associated with normal fluid rather than a kind of flow separation of the normal fluid and superfluid components as they pass over the cylinder

* Two-fluid dynamics are strongly influenced by the mutual friction :

- apparition of virtual boundaries which separate the flow of each component
- non trívíal flow topology

★ supplementary (to experimental flow viszualisation) insight into He-II counterflows consistent with Joe Vinen's comment ``... need to account for what the normal fluid is doing in a dynamically self-consistent computation of the flow patterns "

