Small-Scale Energy Transfer Mechanisms in Quantum Turbulence

Jason Laurie

Weizmann Institute of Science

In collaboration with

Andrew Baggaley

University of Newcastle

Interpretation of Measurements in Superfluid Turbulence CEA Saclay, 18th September 2015

Motivation

Mechanisms of energy transport

- 1. Generation of Kelvin waves
 - The Kelvin wave cascade
- 2. Sound emission
 - Direct excitation of phonons
- 3. Vortex ring creation
 - Transfer of energy and momentum to other areas of the tangle or dissipation at boundaries

Courtesy of Andrew Baggaley and Sultan Alamri

Popular consensus for small scale QT

Evidence for Effective 4-Wave Interactions

Computation of spectrum prefactor

- Power law exponents are relatively close, making numerical verification difficult
- · Prefactors should provide an easier indicator
- · 4-wave collision integral simple enough to be numerically solved

Kelvin Wave Cascade in Gross-Pitaevskii

Sound Emission in Gross-Pitaevskii

Is There a Role for Vortex Ring Emission?

Vortex ring cascade at large angles

- A vortex reconnection of two (almost) anti-parallel vortices lead to a series of self-reconnections and the emission of multiple vortex rings
- Critical angle for ring generation in the Biot-Savart model is $\,\theta_c\simeq 0.942\pi$

Kursa *et al.* Phys. Rev. B, **83**, 014515, (2011) Kerr, Phys. Rev. Lett. **106**, 224501, (2011)

Modulational instability and self-reconnection

 Strongly nonlinear Kelvin waves can lead to modulational instability and self reconnections

Salman. Phys. Rev. Lett. **111**, 165301, (2013)

Can we quantify these processes in quantum turbulence?

How Common is Vortex Ring Emission?

Reconnection angles in QT tangles

- Suppression of large angle reconnection in polarized tangles
- Majority of reconnection will not lead to ring cascade

4% (Counterflow), 2% (Vinen), 1% (Polarized)

Clear observation of ring emission in localized tangles

- Can we identify types of ring emission in quantum turbulence?
- Kursa *et al.* (2011) made estimates based on ring cascade showing this could be the main dissipation mechanism for sparse low temperature tangles
- What about larger vortex rings that undergo reconnections?

Ring-Line Reconnections

Ideal vortex ring-line reconnection

Post-reconnection circumference

$$C(q) = 2\left(r^2 - q^2\right)^{1/2} + 2r \arccos\left(\frac{q}{r}\right)$$

- Reconnection leads to robust outgoing vortex ring and stable vortex line
- Numerical data suggests almost ideal circumference after reconnection
- Assuming that the impact factor is uniformly distributed we can compute the mean post reconnection ring radius

$$\langle r_{post} \rangle = \frac{3r}{4}$$
 Mean post-reconnection radius

Ring-Ring Reconnections

Naïve ring-ring reconnections

· Isotropic tangles would have an equal distribution of these reconnections

Unidirectional vortex ring collisions

Restricting the system to favour one type of reconnection can affect turbulence

Ring Propagation Through a Tangle

What is the survival of a vortex ring in a vortex tangle?

- Typical mean free path estimate is $\langle d \rangle = 1/2rL$
- Assuming exponential distribution, a naïve estimate gives $P(d > W) = \exp(-2rLW)$

- Our numerical data implies that the usual mean free path estimate underestimates the distance for reconnection by 75% (Biot-Savart)
- Upon reconnection inside a tangle there is still a significant chance of the ring surviving

W = 0.6 cm $\ell = 0.13 \text{ cm}$

Energy Transport by Vortex Rings

Scale of ring generation in self-reconnections

- Can estimate ring radius generated through self-reconnections $r \sim \ell / \left[\ln(\ell/a) \right]^{1/2}$
- A naïve estimate of ring energy transport

Our numerical simulations

Mean free path estimate $\simeq 1/1.14 rL$ Ring survival > 93%

- For a randomly generated ring, assuming ideal ring-line reconnections can transverse a typical tangle in with only 4 reconnections on average
- Consequently, up to 65% of the original ring energy can reach the boundaries
- For higher VLDs $L \simeq 10^6 {\rm ~cm^{-2}}$ this drops to only 5%

Conclusions

Vortex rings seem to be robust structures that are capable of transporting energy across a quantum vortex tangle even when undergoing reconnections

Important open problems

- •What happens at boundaries? Ring dissipation? Reflection?
- •Can we further quantify vortex ring generation in quantum tangles?
- Complex reconnection topologies (angled rings, bundles, ...)