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The understanding of coupled dynamics of superfluid and
normal fluid we get usually from:

Experiments
Theory
Simulations

a) The hydrodynamic equations of superfluid turbulence (HST) are used
for description of heat transfer processes in applications and dynamics
of nonlinear waves of second sound.

The structure of the vortex tangle is not considered. The new
hydrodynamic variable (density of the vortex tangle) is introduced.
Equation for the density of the vortex filaments is included in the HST system

b) Many researchers use a 'vortex filament method' to describe the experimental
observations of some macroscopic and statistical properties of the vortex tangle.
Usually, the calculations are performed for a given velocity profile of the normal
component 5



Vinen's equation

W.F. Vinen, Proc. R. Soc. London, Ser. A 240, 128 (1957),
Proc. R. Soc. London, Ser. A 242, 493 (1957)

Vinen's equation was obtained in the framework described by R.P. Feynman, Progress
in Low Temperature Physics Vol. | (1955), p.17
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In the same paper Vinen suggested that the form of the first term may be different.
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Schwarz’s equation

K.W. Schwarz, Phys. Rev. Lett. 38, 551 (1977); Phys. Rev. B 18, 245 (1978);
Phys. Rev. Lett. 49, 283 (1982); Phys. Rev. B, 38, 2398 (1988);
K.W. Schwarz and J.R. Rozen, Phys. Rev. B, 44, 7563 (1991)
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Schwarz obtained the equation for the L(t), starting from first principles i.e., from the
dynamic equations of motion. The obtained equation is in agreement with the form of
Vinen’s equation.

Note that according to Schwarz’s theory the decreasing of vortex line length is caused

by friction force. According to Feynman-Vinen theory, the decreasing of vortex line
length is caused by breaking of a large vortex into smaller vortices like the cascade4

processes in classical turbulence.



Equations for vortex line density evolution

A vortex tangle is not isotropic in a counterflow channel. Several ways have been
proposed to modify Vinen’s equation in more general situations.

D. Khomenko, L. Kondaurova, V.S. L'vov, P. Mishra, A. Pomyalov, and |. Procaccia,
Phys. Rev. B, 91, 180504 (2015)
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J.A. Geurst, Physica A, 183, 279 (1992).
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K.W. Schwarz, Phys. Rev. B, 38, 2398 (1988);

S.K. Nemirovskii, Phys. Rev. B, §7, 5972 (1998);

T. Lipniacki, Phys. Rev. B, 64, 214516 (2001);

D. Jou, M.S. Mongiovi, M. Sciacca, Physica D, 240, 249 (2011).



Hydrodynamics of superfluid turbulence (HST)

A change of the hydrodynamic characteristics leads to an immediate change of the L
and vice versa. Therefore the study (by hydrodynamic means) of superfluid turbulence
and the study of hydrodynamic processes in the presence of a vortex tangle are
indivisible parts of one general problem. The form of the hydrodynamic equations
depends on the type of turbulence. Here we will consider the case

of the counterflowing (Vinen) turbulence.

« S. Nemirovskii, V. Lebedev, Sov. Phys. - JETP 84, 1729 (1983); J. Low Temp.
Phys., 113, 591 (1998). Phenomenological method of constructing HST

« K. Yamada, S. Kashiwamura, K. Miyake, Physica B,(ISSN:0921-4526), 154, 318
(1989). HST equations based on the microscopic, Schwarz kinetic theory.
Yamada'’s et al. formulation is based on the Langevin stochastic equation

and the use of the Fokker-Plank equation.

« J. Gerst, Physica A, 183, 279 (1992). The HST equations were deduced
for the case of one dimensional flow from a variational principle.



Phenomenological method of constructing HST
Dynamics of vortex tangle density + the classical two fluid
Landau Khalatnikov hydrodynamic equations

S.K. Nemirovskii, V.V. Lebedev, Sov. Phys.-JETP 84, 1729 (1983);
J. Low Temp. Phys., 113, 591 (1998).
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The HST equations taking into account the terms
of the second order of smallness

L.P. Kondaurova, S.K. Nemirovskii, M.V. Nedoboiko, Low Temp. Phys., 25, 639 (1999),
J. of Low Temp. Phys. 119, 329 (2000).
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i=0,1, 2 for the cases of plane, cylindrical and spherical geometry, correspondingly.
Discontinuity decay method (Godunov method), Numerical solution of multidimesional
gasdynamic problem, S.K. Godunov, ed. (Nauka, Moscow, 1976). 8



Comparison of experimental data with calculations

The dynamics of periodic and single powerful heat pulses in various temperature
regions where the coefficient of second sound nonlinearity takes a positive, negative
and zero values were studied.

Kondaurova L.P., Nemirovskii S.K., Nedoboiko M.V., Cryogenics, 34, 309 (1994);
Chech.J.Phys., 46, 23 (1996); J. Low Temp. Phys., 119, 329 (2000);

J. Low Temp. Phys., 150, 200 (2008).

Experimens: W. Fiszdon, M.v. Schwerdtner, W. Poppe, J. Fluid Mech., 21, 663 (1990).
The coefficient of second sound nonlinearity a, takes a positive value.
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/\ @ | The time dependence of the temperature at a
point located at a distance of 1 mm from the
cylindrical heater. T = 1.4 K, Q =4 W/cm?,
pulse duration 1ms, Ty is pulse repetition time.
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Boiling times
The temperature attains the maximum values the near the heater, so the
overheating and boiling of helium is possible. Depending on intensity of heating,
two different experimental results an the time of boiling tg as a function of the heat
fluxes Q" were observed (S.W.Van Sciver, Cryogenics, Plenum Press, 1986;

S. Nemirovskii, A. Tsoi, Cryogenics 29 (1989) 985; R. Wang, Cryogenics 35, 883
(1995); S.K. Nemirovskii, W. Fiszdon, Rev. Modern Phys. 67, 37 (1995) ).

4
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We got the time of boiling for small boiling heat fluxes when
the vortex line density L takes its equilibrium value L=y 2 v?

Experimens: S.W. Van Sciver, Cryogenics 19, 385 (1979)
4
Oty =B T=2.0K
T=18K ,
B, =17 (W/cm )4°c
B, =110(W/cm2)4 ‘C
B, =49+87 (W /em*) -c
B, =80+160 (W /cm? | -c

The numerical results are in agreement with the experimental data considering scatter
values of Gorter-Mellink constant at T=1.8 K. The obtained numerical results are not in
agreement with the experimental data at T=2.0K

Required to know the equation of dynamics of vortex filaments, 10
the value of Gorter-Mellink constant!



Experimental investigations
of the stationary case of Vinen’s equation

The vortex line density of the tangle can be easily determined by measuring
then attenuation of second sound or from temperature differences.

Schematic view of the generation of counterflow turbulence of He Il
and its detection using second sound attenuation method.

He
bath )
Q
/ second sound sensors

He Il

L. Skrbek and K.R. Sreenivasan, Physics of fluids 24, 011301 (2012)
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The experimental study of superfluid turbulence

Y varies greatly from experiment to experiment.

jZBanI
KPX,

W.F. Vinen, Proc. Roy. Soc. London, Ser. A 240, 114 (1957), and 243, 400 (1957);
counterflow in a 0.4 x 0.78 x 10 cm? wide, low-aspect-ratio rectangular metal channel.

o _ /2 _ _
Vinen'’s relation: L =y, v, vV =

V.P. Peshkov and V.J. Tkachenko, Zh. Eksp. Teor. Fiz. 41, 1427 (1961) [Sov. Phys. -
JETP 14, 1019 (1962)], counterflow in a 0.14cm x 800cm metal circular channel.

C.E. Chase, Phys. Rev. 127, 361 (1962), counterflow in a 0.08cm x 5.16cm
metal circular channel.

P.E. Demotakis and J.E. Broadwell, Phys. Fluids 16, 1787 (1973), counterflow
in @ 0.318cmX0.9cm glass circular channel.

R.K. Childers and J.T. Tough, Phys. Rev. B, 13, 1040 (1976), couterflow in a 0.012cm
X 10cm, 0.011cm x 10cm metal circular channel; 0.0126cm x 10cm, 0.0061cm x 10cm
glass circular channel.

12



The experimental study of superfluid turbulence

D.R. Ladner and J.T. Tough, Phys. Rev. B, 17, 1455 (1978); 20, 2690 (1979);
counterflow in a 0.098 x 0.0098 x 10 cm3, 0.091 x 0.0091 x 10 cm3,

0.047 x 0.0047 x 10 cm3, 0.032 x 0.0032 cm?3 high-aspect-ratio rectangular glass
channels and in a 0.0098cm x 10cm, 0.0091cm x 10cm, 0.0047cm x 10cm,
0.0032cm x 10cm narrow circular glass channel.

C.F. Barenghi, K. Park, and R.J. Donnelly, Phys. Lett. A, 84, 435 (1981); counterflow
ina 1.0 x 1.0 x 40 cm?® wide, metal square channel.

L.B. Opatowsky and J.T. Tough, Phys. Rev. B, 24, 5420 (1981); pure superflow
in a 0.0057 x 0.057 x 9.4 cm?3 the high-aspect-ratio rectangular glass channel.

D.F. Brever and D.O. Edwards, J. Low Temp. Phys., 43 (1981), counterflow
in @ 0.00505cm x 10.2cm, 0.0368cm x 9.1cm circular glass channels.

R.A. Ashton, L.B. Opatowsky, and J.T. Tough, Phys. Rev. Lett. 46, 658 (1981);
pure superflow in a 0.013cm x 8cm circular glass channel.

J.D. Henberger and J.T. Tough, Phys. Rev. B 25, 3123 (1982); counterflow
ina 0.01 x0.01 x 10cm? and ina 0.012 x 0.012 x 10 cm?3 narrow square glass channel.
13



The experimental study of superfluid turbulence

K.P. Martin and J.T. Tough, Phys. Rev. B 27, 2788 (1983); counterflow
ina 0.10 cm x 10 cm circular glass channel.

D.D. Awschalom, F.P. Milliken, and K.W. Schwarz, Phys. Rev. Lett. 3, 1372
(1984); counter flow in a 1.0 x 2.3 x 26cm?3 wide metal rectangular channel.

D.J. Melotte and C.F. Barenghi, Phys. Rev. Lett. 80, 4181 (1998).

T.V. Chagovets and L. Skrbek, Phys. Rev. Lett. 100, 215302 (2008); J. Low Temp.
Phys. 153, 162 (2008); pure superflow in a 0.6 x 0.6 x 11.5cm3, 1.0 x 1.0 x 11.5cm?
square metal channel

S. Babuin, M. Stammeier, E. Varga, M. Rotter, and L. Skrbek, Phys. Rev. B 86,
134515 (2012); pure superflowina 0.7 x 0.7 x 11.5cm3, 1.0 x 1.0 x 11.5cm3
square metal channel.

A. Marakov, J. Gao, W. Guo, S.W. Van Sciver, G.G. lhas, D.N. McKinsey, and
W.F. Vinen, Phys. Rev. B 91, 94503 (2015), counterflow in a 0.95 x 0.95 x 30 cm3

square metal channel

14



Different states of superfluid turbulence

J.T. Tough, “Superfluid turbulence,” in Progress in Low Temperature Physics
(North-Holland Publ. Co., 1982), Vol. VIII.

Two states of turbulence (T-l1 --> T-ll) are observed in small aspect ratio

(circular or square) narrow tubes.

Only one state of turbulence T-lll is observed in both wide and large aspect ratio
(rectangular, approximately a parallel-plate geometry) channels in which the line
density has essentially the same value as in T-Il.

Schwarz’s theory, unlike Vinen'’s, has no adjustable parameters and makes
quantitative predictions about y.

Note that the calculations were performed by Schwartz in the local-induced
approximation. Besides, Schwartz used an artificial trick, the so-called “mixing”

procedure, in which the vortices were rotated around the axis parallel to
counterflow velocity randomly.

Tough found that Schwarz’s gamma (K.W. Schwarz, Phys. Rev. Lett. 38, 551
(1977); Phys.Rev. B 18, 245 (1978); Phys. Rev. Lett. 49, 283 (1982))
agrees fairly well to the measured values of gamma in the T-II state.

15



Comparison of experimental data with Schwarz' s calculations

K.P. Martin and J.T. Tough, Phys. Rev. B 27, 1788, (1983)

T T T T T T A K.P.Martin and J.T. Tough, Phys. Rev. B
27, 2788 (1983); counterflow in
a 0.10 cm x 10 cm circular glass channel

@ P.E. Demotakis and J.E. Broadwell, Phys.
Fluids 16, 1787 (1973), counterflow

in a 0.318cm x 0.9cm circular glass channel
' [7 V.P. Peshkov and V.J. Tkachenko, Zh. Eksp.
Teor. Fiz. 41, 1427 (1961) [Sov. Phys.-JETP
14, 1019 (1962)], counterflow
in a 0.14cm x 800cm metal circular channel.
DF 17 A D.F. Brever and D.O. Edwards, J. Low
Temp. Phys., 43 (1981), counterflow in
ol—L- I‘? L |La ,‘ja, e ll?-mllgﬁg—# a 0.00505cm x 10.2cm, 0.0368cm x 9.1cm
N circular glass channels.
= C.E. Chase, Phys. Rev. 127, 361 (1962), counterflow

in a 0.08cm x 5.16cm metal circular channel.

Solid line is the calculation of Schwarz for homogeneous turbulence.
K.W. Schwarz, Phys. Rev. Lett. 38, 551 (1977); Phys. Rev. B 18, 245 (1978);
Phys. Rev. Lett. 49, 283 (1982). 16



Comparison of experimental data with Schwarz' s calculations
D.D. Awschalom, F.P. Milliken, and K.W. Schwarz, Phys. Rev. Lett. 53, 1372 (1984)
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Triangles, W.F. Vinen, Proc. Roy. Soc. London, Ser. A 240,
114 (1957), and 243, 400 (1957); counterflow ina 0.4 x 0.78
x 10 cm3 wide, low aspect-ratio rectangular metal channel.
“The crosses in Fig. are revised values from Barenghi's
thesis, which differ considerably from the earlier published
values.” (C.F. Barenghi, K. Park, and R.J. Donnelly, Phys.
Lett. A 84, 435 (1981); counterflow ina 1.0 x 1.0 x 40 cm?3
wide, metal square channel.)

Open squares, D.D. Awschalom, F.P. Milliken, and

K.W. Schwarz, Phys. Rev. Lett. 53, 1372 (1984); counterflow
ina 1 x 2.3 x26cm?3 wide metal rectangular channel.
Squares, K.P. Martin and J.T. Tough, Phys. Rev. B 27, 2788
(1983); counterflow ina 0.10 cm x 10 cm

circular glass channel.

Circles, L.B. Opatowsky and J.T. Tough, Phys. Rev. B 24,
5420 (1981); pure superflow in a 0.0057X0.057X 9.4 cm3

the high-aspect-ratio rectangular glass channel.

Solid line is the calculation of Schwarz for homogeneous
turbulence.

Note that the comparison was carried out with the experimental data
obtained in the wide channels 17



Linear stability analysis of the Poiseuille normal flow

D.J. Melotte and C.F. Barenghi, Phys. Rev. Lett. 80, 4181 (1998)

Why are there two different kinds of superfluid vortex tangles : Tl and
TII? What is the nature of these tangles?

What determines the critical velocity at which there is a transition
from Tl to TIl with a dramatic increase of the superfluid vortex line
density?

Mellotte and Barenghi made linear stability analysis of the Poiseuille
normal flow under the increasing forcing due to the tangle at higher
and higher values of vortex line density.

In the state Tl: the superfluid is turbulent, the normal fluid is laminar.
In the state TlI: the superfluid is turbulent, the normal fluid is turbulent.

18



On flow of He Il in channels with ends blocked by superleaks

S. Babuin, M. Stammeier, E. Varga, M. Rotter, and L. Skrbek, Phys. Rev. B 86, 134515 (2012); pure superflow

ina 0.7 x 0.7 x 11.5cm3, 1.0 x 1.0 x 11.5cm3 square metal channel (Flows are generated by mechanically
operating a low temperature bellows assembly).
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Present work:
solid blue circles, 0.7 cm channel;
solid green squares, 0.7 cm channel, downstream

superleak removed;

open blue up-triangle, 1 cm channel.

- Other works:

| (i) thermally induced pure superflow,

open squares, R.A. Ashton, L.B. Opatowsky, and
J.T. Tough, Phys. Rev. Lett. 46, 658 (1981); pure
superflow in a 0.013cm x 8cm circular glass channel,

n solid red down-triangle, Chagovets and Skrbek, 0.7
cm

channel as present work, A-state turbulence;

| (i) counterflow,

solid blue up-triangle, solid magenta diamond,

- K.P. Martin and J.T. Tough, Phys. Rev. B 27, 2788

§ (1983); counterflow in a 0.10 cm x 10 cm circular
glass channel, Tll and TI states;

open circles, R.K. Childers and J.T. Tough, Phys. Reuv.
B 13, 1040 (1976), couterflow in a 0.0126¢cm x 10cm,

0.0061cm x 10cm glass circular channel, Tl state;
asterisk, Tl state, 0.7 cm channel as present work,
unpublished

dashed line, H. Adachi, S. Fujiyama, and M. Tsubota,
Phys. Rev. B 81, 104511 (2010), numerical simu%agtion.



Numerical simulations of superfluid turbulence

L. Kondaurova, V. L'vov, A. Pomyalov, and ltamar Procaccia,

Phys. Rev. B 89, 014502 (2014). The vortex filament method
ds
0 =V, + Ve + Oas'x(V — Vs )"' a's 'x[ (V — Vs )]"' U,

ns

V. =V -V is the relative velocity between normal fluid and
superfluid components

a,a' are the temperature-dependent friction coefficients

U,. is the boundary term

Biot-Savart law

S —5. |xds. 9)
BSE( ) ﬂSXS”'*'f )3 . /3)=C4l;ln( 8(512))

Ay —S.

System of coordinates
S, =84~ 9S8, K= h/m4 |s the quantum of circulation, @, is the vortex line core radius

S =8 780 The temperatures: T=1.3 K, T=1.6 K, T=1.9K
The values of counterflow velocity: 1 =03, 04, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 (cm/s)
Periodical boundary conditions are applied in all directions:

V(2)=V,(z+1), V.(x) =V, (x+L), V,(») =V, (y+1)) [.=1,=1,=0lcm 20



Criteria of vortex reconnection

Geometry based:

G : reconnect, if two points
come closer than the inter-point
distance ds,, without any
additional restrictions.

M. Tsubota, T. Araki, and S.K. NemirovskKii,
Phys. Rev. B 62, 751(2000)

GE criterion is similar to G,

with additional requirement that
the reconnection only takes place
if the total length is reduced

upon reconnection.

M. Leadbeater, T. Winiecki, D.C. Samuels, D :reconnect, if the segments will

C.F. Barenghi, and C.S.Adams, intersect in space during next
Phys. Rev. Lett. 86, 1410 (2001) time step.

R. Tebbs, A.J. Youd, and C.F. Barenghi, L.P. Kondaurova, S.K. Nemirovskii,
J. Low Temp. Phys. 162, 314 (2010) J. Low Temp. Phys.138, 555 (2005)

21



Statistical properties of the vortex tangle

= The line density as a function of time: L(t) = (I/V)j;ds

=> The mean density of the tangle in the equilibrium: <L>
The mean density is related to other properties

= The counterflow velocity: <L> = }/2V,,f9
=> The intervortex distance: O =1/ /<L>

" "

=gl

1/2
=> The mean second derivative and its square: <S > =C, <L> , <S
. . dN, 5/2
—=> The mean reconnection rate in the steady state: y = crI(<L>
{

M. Tsubota, T. Araki, and S.K. Nemirovskii, Phys. Rev. B 62, 751(2000),
C.F. Barenghi, D.C. Samuels, JLTP 156, 281 (2004),
L.P. Kondaurova, V.A. Andryuschenko, S.K. Nemirovskii, JLTP 150, 415 (2008).

=  Drift velocity of the vortex tangle V., and parameter C,,

1 ds(.f.‘;‘ ) _
vt I f dt d§ —V,» Vvt - Cvtvns

tot C

22
L. Kondaurova, V. L'vov, A. Pomyalov, and Itamar Procaccia, Phys. Rev. B 89, 014502 (2014)



Statistical properties of the vortex tangle

=> The anisotropy indexes of the tangle: VLﬂl s, Y 1dE,

K.W. Schwarz, Phys. Rev. B 38, 2398 (1988).
1 ' A l ~ ! "
[L=ﬁf[l_(s°ﬂ)2]d§> [l=afcrll'(sxs )15, 1),

=> Autocorrelation of the vortex orientations K(r -r,) < ( )S(Fz)>

=Lif i (sxs"ME, 1=1/4L

tot
=> Friction force density and the Gorter-Mellink constant
Fns = psKaJ9 J = _lfsl X[S, X (Vns - VBSE )]df’ F:vn = AGMpsanis
1%

=> Probability density function (PDF) of vortex-loop lengths

= PDF of the line curvature

=> Correlation between loop length and root-mean-square (RMS) of the loop curvature

=> PDFs of the mean and RMS the loop curvature

L. Kondaurova, V. L'vov, A. Pomyalov, and Itamar Procaccia, Phys. Rev. B 89, 014502 (2014) 23



Comparison of experimental data with calculations

Experimets:
1-V, =0, S.S. Babuin, M. Stammeier, E. Varga,
M. Rotter, and L. Skrbek, Phys. Rev. B 86, 134515

(2012); pure superflow in a 0.7 x 0.7 x 11.5 cm3,
1.0 x 1.0 x 11.5 cm?3 square metal channel;
250 | 2-R.A. Ashton, L.B. Opatowsky, and J.T. Tough,
Phys. Rev. Lett. 46, 658 (1981); pure superflow
200 1 ina 0.013cm x 8cm circular glass channel,
& 3 - R.K. Childers and J.T. Tough, Phys. Rev. B 13,
-] 1040 (1976), couterflow in a 0.0126cm x 10cm glass
= 150 | circular channel R.K. Childers and J.T. Tough, Phys.
Rev. B, 13, 1040 (1976), couterflow in a 0.012cm
100! 1 x10cm, 0.011cm x 10cm metal circular channel;
0.0126cm x 10cm, 0.0061cm x 10cm glass circular
channel;
5‘1)2 ] 4 - K.P. Martin and J.T. Tough, Phys. Rev. B 27,

2788 (1983); counterflow ina 0.10 cm x 10 cm
circular glass channel;

Simulation:

5 - H. Adachi, S. Fujiyama, and M. Tsubota,
Phys. Rev. B 81, 104511 (2010)

A. Marakov, J. Gao, W. Guo, S.W. Van Sciver, G.G. lhas, D.N. McKinsey, and W.F. Vinen
Phys. Rev. B 91, 94503 (2015), superflow in a 0.95 x 0.95 x 30 cm3 square metal channel,
T=1.83K, y=162s/cm?.

24
The transition to normal fluid turbulence around 80 mW/cm? , V.= 0.766 cm/s



Comparison of calculations of y

Recon.criterion 7T =13K 7T =16K T =19K 22 H. Adachi. S. Fujiyama and

GC 68.6+0.1 105.8+0.2 128.6+0.7 M. Tsubota, Phys. Rev. B 81,
y,s/em*  GEC 72.1£0.2 115.7+£0.1 148.0+£0.2 104511 (2010).

DC 67.1 04 1202x0.7 171.2£2.6 K2 A. Baggaley, J. Low Temp.
I" ~~ GEC 0.07 0.12 0.15 PhyS 168, 18 (2012)

GC 31+0.1 —08+0.1 —5.4+0.3
10%vg, cm/s GEC 6.6+0.3 33+0.1 02=+0.1 7Bp, x,

DC 1.6+04 43405 43+04 Vv = P
. Ref. [22] GC 53.1 109.6 140.1 PX>

GC 116.9 Ye = /B, ¢ = 1(./%3.
v. Ref. [52] GE 114.35

DC 112.3 ¢
w. Eq. (18) 82 151 266 I, = /i‘| (8" x s")dE
vs. Eq. (19) Ref. [19] 80 130 198 Liot Je

A. W. Baggaley and S. Laurie, J. Low Temp. Phys. 178, 35 (2014)
y =157 s/lcm? (T=1.6 K), y = 195 s/cm? (T = 1.9 K) - the simulation for turbulent
normal fluid between parallel plates
y =83.6 s/lcm? (T = 1.6 K), y = 105,7 s/cm? (T = 1.9 K) — simulation for Poiseuille flow
between parallel plates, vortex filament method < Navier-Stoces equations

S. Yui and M. Tsubota, Phys. Rev. B 91, 184504 (2015)
y =31 s/cm? (T = 1.3 K), y = 47 s/cm* (T = 1.6 K), y = 103 s/cm? (T = 1.9 K) simulafjon
for Hagen-Poiseuille flow in square channel ; y = 176 s/cm? (T = 1.9 K) - tail-flat h=0.7



Summary

In the state TII (circular or square narrow tubes), wide low-aspect-ratio rectangular,
large aspect ratio (rectangular, approximately a parallel-plate geometry) channels,
pure superflow have the same value of y.

« Schwarz’'s gamma (simulations by using of the vortex filament method in local-
induced approximation) at constant of V¢ and the simulations for turbulent normal
fluid between parallel plates (simulations by the vortex filament method with using

full Biot-Savart equation«<— Navier-Stoces equations) agree fairly well to the
measured

these experimental values of y . Normal fluid is turbulent.

In the state TI (circular or square narrow tubes) normal fluid is laminar.

Simulations by the vortex filament method with using full Biot-Savart equation at
constant of V,, and simulations for Poiseuille flow between parallel plates (vortex
filament method <« Navier-Stoces equations) agree closely with the measured
experimental values of y in the state TI.

Simulations for Hagen-Poiseuille flow in square channel give lower y.

- Simulations at tail-flat h=0.7 give, however, the value of y seems to be too large
What is the structure of the vortex tangle in different channels at different values V.7
What is the correct equation for the evolution of the density of the vortex tangle? 26



