Turbulence and irreversibility in space plasmas

Sébastien Galtier

& S. Banerjee, V. David, R. Ferrand, L. Hadid, R. Meyrand, F. Sahraoui

Laboratoire de Physique des Plasmas

Solar wind (wave) turbulence

at 1 AU

Solar wind (wave) turbulence

at 1 AU

Discussion about

- 1) Turbulence *versus* reversibility at kinetic scales: -8/3
- 2) Exact laws and anomalous heating: **E**

1) SW turbulence at kinetic scales

Phenomenological/analytical predictions

Theoretical predictions:

- Strong (wave) turbulence \rightarrow -7/3 (for k or k₁) [Biskamp+, PRL, 1999]
- Weak wave turbulence \rightarrow -2.5 (for k₁) [SG & Bhattacharjee, PoP, 2003]
- Non-standard phenomenology \rightarrow -8/3 (for k_{\perp})

[Boldyrev & Perez, ApJL, 2012; Meyrand & SG, PRL, 2013]

Diffusion model for kinetic scales

Weak KAW turbulence equations ⇒ nonlinear diffusion model in the [Passot & Sulem, JPP, 2019; Meyrand & SG, JPP, 2015] ⇒ nonlinear diffusion model in the strongly local interaction limit (triadic interactions)

 $\frac{\partial E(k_{\perp})}{\partial t} = C \frac{\partial}{\partial k_{\perp}} \left[k_{\perp}^{7} E(k_{\perp}) \frac{\partial (E(k_{\perp})/k_{\perp})}{\partial k_{\perp}} \right] - \eta k_{\perp}^{6} E(k_{\perp}) \frac{\partial (E(k_{\perp})/k_{\perp})}{\partial k_{\perp}} dk_{\perp}$

Kinetic Alfvén /oblique whistler wave turbulence

$$\begin{cases} \frac{\partial E(k_{\perp})}{\partial t} = -\frac{\partial \Phi_E(k_{\perp})}{\partial k_{\perp}} \\ E(k_{\perp}) = Ak_{\perp}^x \end{cases} \Rightarrow \Phi_E(k_{\perp}) = A^2 C (1 - x) k_{\perp}^{5+2x} \\ x=-2.5 \text{ is the stationary constant flux solution} \end{cases}$$

Let's do a **decay** simulation with C=1

Figure 1. Time evolution (every 1000*dt*) of the magnetic energy spectrum $E(k_{\perp})$ from t = 0 (blue) to t_* (dark red). A $k_{\perp}^{-8/3}$ spectrum emerges over three decades.

-8/3 emerges as a non-stationary solution of KAW turbulence

[see also: Fournier & Frisch, MTA, 1983]

The 8/3–spectrum corresponds to a self-similar solution of the second kind

$$E(k_{\perp}) = \frac{1}{\tau^a} E_0 \left(\frac{k_{\perp}}{\tau^b}\right) \qquad \tau = t_* - t$$
$$E_0(\xi) \sim \xi^m$$

[David & SG, ApJL, 2019]

a = -2, b = -3/4 and m = -8/3

for t < t*

 $k=+\infty$ is reached in a finite time

The stationary solution (-2.5) is then reached for $t > t_*$

Interpretation for the solar wind plasma

• The solar wind is free and non-viscous

⇒ a non-trivial power law spectrum can emerge for which the turbulence phenomenology is not relevant

- Dissipation/irreversibility affects the entire inertial range
- Weak (KAW/whistler) turbulence leads to a -8/3 magnetic spectrum (kinetic dissipation are neglected)
- Steep power laws can be interpreted as the **impact of kinetic effects** on the inertial range [-3.1;-8/3]

2) Exact MHD laws and plasma heating

Turbulence is a **source** of **heating** for the solar wind

[Compressible laws for SW: Banerjee+, ApJL, 2016; Hadid+, ApJ, 2017; Andrés+, submitted, 2019] [See also: Banerjee & SG, PRE, 2013; Andrés+, JPP, 2018; Ferrand+, ApJ, 2019]

Solar wind data / THEMIS

- Compressibility leads to higher turbulent heating
- The inertial range (plateau) is broader

The zeroth law of turbulence

[Mininni & Pouquet, PRE, 2009]

[For anisotropic MHD see: Bandyopadhyay+, PRX, 2018]

Fluctuations versus discontinuities

Can we estimate the heating produced by B-discontinuities?

Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations

Jean Duchon[†] and Raoul Robert[‡]

† Université Lyon 1, Laboratoire d'Analyse Numérique, CNRS UMR 5585, Bât. 101, 43 bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
‡ Institut Fourier CNRS UMR 5582, 100 rue des Mathématiques, BP 74, 38402 Saint Martin d'Hères Cedex, France

E-mail: Raoul.Robert@ujf-grenoble.fr

Received 25 May 1999 Recommended by P Constantin

Abstract. We study the local equation of energy for weak solutions of three-dimensional incompressible Navier-Stokes and Euler equations. We define a dissipation term D(u) which stems from an eventual lack of smoothness in the solution u. We give in passing a simple proof of Onsager's conjecture on energy conservation for the three-dimensional Euler equation, slightly weakening the assumption of Constantin *et al*. We suggest calling weak solutions with non-negative D(u) 'dissipative'.

Types of extreme events (28 events over 30 000 images) found experimentally

Coarse-grained approach to (Hall) MHD

Consider a locally space-averaged field: $\mathbf{u}^{\epsilon} = \varphi^{\epsilon} * \mathbf{u}$

with $\varphi^{\epsilon}(\mathbf{r}) = \varphi(\mathbf{r}/\epsilon)/\epsilon^3$, and φ a non-negative, smooth and rapidly decaying **test function**

$$\Rightarrow \quad \partial_t E^\epsilon + \nabla \cdot \mathbf{F}^\epsilon = -\mathscr{D}_\epsilon - \mathscr{D}_{\nu,\eta}$$

with
$$\mathscr{D}_{\epsilon} = \frac{1}{4} \int \nabla \varphi^{\epsilon}(\mathbf{r}) \cdot \left[\left((\delta \mathbf{u})^2 + (\delta \mathbf{b})^2 \right) \delta \mathbf{u} - 2(\delta \mathbf{u} \cdot \delta \mathbf{b}) \delta \mathbf{b} \right] d\mathbf{r}$$

[SG, JPAMT, 2018]
 $- \frac{d_I}{2} \int \varphi^{\epsilon}(\mathbf{r}) \left[\delta \mathbf{j} \cdot \delta(\mathbf{j} \times \mathbf{b}) \right] d\mathbf{r} \quad \longleftarrow \quad \text{Hall term}$

- Local version of the Karman-Howarth relation [see Aluie, NJP, 2017; Kuzzay+, PRE, 2019]
- From this expression one can **recover** the exact relations [Politano & Pouquet, PRE, 1998; Banerjee & SG, JPAMT, 2017]
- This approach **is stronger** than the statistical one

Inertial energy dissipation for weak solutions

Proposition. The local energy balance in incompressible Hall MHD can be written as: $\partial_t \left(\frac{\mathbf{u}^2 + \mathbf{b}^2}{2} \right) + \nabla \cdot \left[\frac{u^2}{2} \mathbf{u} + P \mathbf{u} + \mathbf{e} \times \mathbf{b} - \nu \mathbf{u} \times \mathbf{w} \right] = -\mathcal{D}_a - \mathcal{D}_{\nu,\eta},$ (8)where **w** is the vorticity, $\mathscr{D}_{\nu,\eta} = \nu \mathbf{w}^2 + \eta \mathbf{j}^2$ and $\mathbf{e} = \eta \mathbf{j} - \mathbf{u} \times \mathbf{b} + d_I \mathbf{j} \times \mathbf{b}$, $\mathscr{D}_{a} = \lim_{\epsilon \to 0} \frac{1}{4} \int \nabla \varphi^{\epsilon}(\mathbf{r}) \cdot \left[\left((\delta \mathbf{u})^{2} + (\delta \mathbf{b})^{2} \right) \delta \mathbf{u} - 2(\delta \mathbf{u} \cdot \delta \mathbf{b}) \delta \mathbf{b} \right] d\mathbf{r}$ $-\lim_{\epsilon \to 0} \frac{d_I}{2} \int \varphi^{\epsilon}(\mathbf{r}) \left[\delta \mathbf{j} \cdot \delta(\mathbf{j} \times \mathbf{b}) \right] d\mathbf{r}, \quad \textbf{\leftarrow Hall term}$ (9)with $\varphi^{\epsilon}(\mathbf{r}) = \varphi(\mathbf{r}/\epsilon)/\epsilon^3$, φ be an infinitely differentiable function with compact support on \mathbb{R}^3 (*test function*), even, non-negative with integral 1, and where \mathcal{D}_a is a distribution independent of φ . [SG, JPAMT, 2018]

- This result generalizes the theorem by **Duchon & Robert (2000)**
- The **lack of smoothness** of the fields can lead to some dissipation in the inviscid/ideal case
- This result supports the **Onsager's conjecture** and the zeroth law [Eyink, Physica D, 2008]

Conclusion

The solar wind is not a viscous fluid (it's a collisionless plasma)

 \Rightarrow -8/3 is a solution for a dissipationless plasma

⇒ classical phenomenology is not relevant

Steep power laws]-8/3; -3.1] as the signature of kinetic effects

The zeroth law is well observed in incompressible HD and MHD

Onsager's conjecture is supported by a coarse-grained analysis \Rightarrow is it simply a mathematical curiosity? [Eyink, PRX, 2018]

A local expression of energy balance can be used for the solar wind \Rightarrow statistical homogeneity/average is not used