Introduction	Model	Results	Conclusion
	Self-con	SISTENT	
N			
1	IORMAL FEOID AND SU	FERILOID PROFILES	

IN TURBULENT HE II COUNTERFLOWS

Luca Galantucci, Michele Sciacca, Carlo Barenghi

Workshop Interpretation of Measurements in Superfluid Turbulence of He4

Saclay, 16 September 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Model	Results	Conclusions
OVERVIEW			

Introduction	Model	Results	Conclusions
OVERVIEW			

2 MODEL

Conclusions

NUMERICAL SIMULATIONS: STATE OF THE ART

• mesoscopic lengthscales $\Delta < \ell$

KINEMATIC SIMULATIONS

- prescribed **v**_n:
 - uniform
 - parabolic
 - vortex tubes / ABC flows
 - frozen classical turbulent channel flow
 - unsteady classical homog. and isotropic turbulence

- vortex filament method
 - Schwarz
 - Tsubota
 - Barenghi
 - Baggaley
 - Hänninen

・ コ ト ・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

L'vov

COUPLED (SELF-CONSISTENT) SIMULATIONS

- simple vortex topology (single vortex lines / rings)
- decaying tangles (Kivotides)

NUMERICAL SIMULATIONS: STATE OF THE ART

• mesoscopic lengthscales $\Delta < \ell$

KINEMATIC SIMULATIONS

- prescribed **v**_n:
 - uniform
 - parabolic
 - vortex tubes / ABC flows
 - frozen classical turbulent channel flow
 - unsteady classical homog. and isotropic turbulence

- vortex filament method
 - Schwarz
 - Tsubota
 - Barenghi
 - Baggaley
 - Hänninen
 - L'vov

COUPLED (SELF-CONSISTENT) SIMULATIONS $\mathbf{v}_n \Leftrightarrow \mathbf{v}_s$

- simple vortex topology (single vortex lines / rings)
- decaying tangles (Kivotides)

Conclusions

NUMERICAL SIMULATIONS: BOUNDARIES

• boundaries fundamental role onset classical turbulence

- Plane channel counterflow
 - Baggaley & Laizet (PoF, 2013)
 - Baggaley & Laurie (JLTP, 2015)
 - Khomenko *et al.* (PRB,2015)
 - **v**_n imposed:
 - Poiseuille laminar non–Poiseuille frozen turbulent DNS
- Square cross-section channel counterflow
 - Yui & Tsubota (PRB, 2015)
 - **v**_n imposed: Hagen-Poiseuille tail-flattened

(日)

Conclusions

NUMERICAL SIMULATIONS: BOUNDARIES

- boundaries fundamental role onset classical turbulence
- Plane channel counterflow
 - Baggaley & Laizet (PoF, 2013)
 - Baggaley & Laurie (JLTP, 2015)
 - Khomenko et al. (PRB,2015)
 - **v**_n imposed:
 - Poiseuille laminar non–Poiseuille frozen turbulent DNS
- Square cross-section channel counterflow
 - Yui & Tsubota (PRB, 2015)
 - **v**_n imposed: Hagen-Poiseuille tail-flattened

・ ロ ト ・ 雪 ト ・ 目 ト ・ 目 ・

Introduction	Model	Results	Conclusions
OVERVIEW			

Tea	head	110	tio	**
1111	uυι	iuc	uu	11

Model

Results

Conclusions

2D PLANE COUNTERFLOW CHANNEL

- 2D channel
- N vortex-points
- **r**_j(t) = (x_j(t), y_j(t)) j = 1, ··· N
 Γ_j = ±κ

CONNECTION WITH EXPERIMENTS

• $n := N/A \longleftrightarrow L$

•
$$L^{1/2}D = 1.03\gamma_0 \frac{\rho}{\rho_s} \langle u_n \rangle h_D - 1.48\beta$$

- $\langle u_n \rangle = q/(T\rho S)$
- channel width *D* = 9.1 × 10⁻³ cm
 Ladner & Tough (PRB, *1979*)

• T-I regime:
$$Re = 206 \ll Re_c \approx 5772$$

● ρ,ρ_n,ρ_s=const ◆□▶ ◆母▶ ◆壹▶ ◆壹▶ 壹 ∽�<

Tea	head	110	tio	**
1111	uυι	iuc	uu	11

Model

Results

Conclusions

2D PLANE COUNTERFLOW CHANNEL

- 2D channel
- N vortex-points

•
$$\mathbf{r}_{j}(t) = (x_{j}(t), y_{j}(t)) \ j = 1, \dots N$$

•
$$\Gamma_j = \pm \kappa$$

CONNECTION WITH EXPERIMENTS

• $n := N/A \longleftrightarrow L$

•
$$L^{1/2}D = 1.03\gamma_0 \frac{\rho}{\rho_s} \langle u_n \rangle h_D - 1.48\beta$$

- $\langle u_n \rangle = q/(T\rho S)$
- channel width $D = 9.1 \times 10^{-3}$ cm Ladner & Tough (PRB, 1979)

• T-I regime:
$$Re = 206 \ll Re_c \approx 5772$$

590

Introduction	Model	Results	Conclusions
SUPERFLUID	VORTICES		

•
$$\frac{d\mathbf{r}_{j}}{dt} = \mathbf{v}_{s}(\mathbf{r}_{j}, t) + \alpha \, \mathbf{s}_{j}' \times (\mathbf{v}_{n}(\mathbf{r}_{j}, t) - \mathbf{v}_{s}(\mathbf{r}_{j}, t)) + \alpha' (\mathbf{v}_{n}(\mathbf{r}_{j}, t) - \mathbf{v}_{s}(\mathbf{r}_{j}, t))$$

•
$$\mathbf{v}_{s}(\mathbf{r}_{j}, t) = \mathbf{v}_{s}^{ext}(t) + \mathbf{v}_{si}(\mathbf{r}_{j}, t)$$

•
$$\mathbf{v}_{si}(\mathbf{r}_{j}, t) = \sum_{k=1...N} \mathbf{v}_{si,k}(\mathbf{r}_{j}, t)$$

COMPLEX-POTENTIAL FORMULATION

•
$$v_{si,k}(z, t) = v_{si,k}^{x} - iv_{si,k}^{y} = \frac{dF_{k}(z)}{dz}$$

• $F_{k}(z, t) = \mp i \frac{h}{2\pi m} \log \frac{\sinh\left[\frac{\pi}{2D}(z - z_{k}(t))\right]}{\sinh\left[\frac{\pi}{2D}(z - \overline{z_{k}}(t))\right]} \begin{cases} \text{ conformal map} \\ \text{ inifinite images} \end{cases}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Introduction	Model	Results	Conclusions
SUPERFLUID	VORTICES		

•
$$\frac{d\mathbf{r}_{j}}{dt} = \mathbf{v}_{s}(\mathbf{r}_{j}, t) + \alpha \mathbf{s}_{j}' \times (\mathbf{v}_{n}(\mathbf{r}_{j}, t) - \mathbf{v}_{s}(\mathbf{r}_{j}, t))$$
$$+ \alpha' (\mathbf{v}_{n}(\mathbf{r}_{j}, t) - \mathbf{v}_{s}(\mathbf{r}_{j}, t))$$
$$• \mathbf{v}_{s}(\mathbf{r}_{j}, t) = \mathbf{v}_{s}^{ext}(t) + \mathbf{v}_{si}(\mathbf{r}_{j}, t)$$
$$• \mathbf{v}_{si}(\mathbf{r}_{j}, t) = \sum_{k=1...N} \mathbf{v}_{si,k}(\mathbf{r}_{j}, t)$$

COMPLEX-POTENTIAL FORMULATION

•
$$v_{si,k}(z,t) = v_{si,k}^x - iv_{si,k}^y = \frac{dF_k(z)}{dz}$$

• $F_k(z,t) = \mp i \frac{h}{2\pi m} \log \frac{\sinh\left[\frac{\pi}{2D}(z-z_k(t))\right]}{\sinh\left[\frac{\pi}{2D}(z-\overline{z_k}(t))\right]} \begin{cases} \text{ conformal map} \\ \text{ inifinite images} \end{cases}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Ten		1	- 42	-
ш	uru	au	cu	υII

Model

Results

Conclusions

SUPERFLUID VORTICES- RECONNECTIONS

- steady state \Rightarrow N constant
- ω_s production/destruction 3D
 - reconnections
 - mutual friction vortex stretching

NUMERICAL RECONNECTION

• $d(\oplus, \ominus) < \epsilon_c$

•
$$d(\oplus[\Theta], y = \pm 1) < \epsilon_c/2$$

 \downarrow
remove vortex-points

NUMERICAL RENUCLEATION

- (a): RANDOM
- (b): same *y*

Ten		1	- 42	-
ш	uru	au	cu	υII

Model

Results

Conclusions

SUPERFLUID VORTICES- RECONNECTIONS

- steady state \Rightarrow N constant
- ω_s production/destruction 3D
 - reconnections
 - mutual friction vortex stretching

NUMERICAL RECONNECTION

• $d(\oplus, \ominus) < \epsilon_c$

•
$$d(\oplus [\Theta], y = \pm 1) < \epsilon_c/2$$

 \downarrow
remove vortex-points

NUMERICAL RENUCLEATION

- (a): RANDOM
- (b): same *y*

Introduction	Model	Results	Conclusions
NORMAL FLUID			

HYPOTHESES

- $\rho, \rho_n, \rho_s, S = \text{const}$
- $\eta_n, \lambda = \text{const}$
- incompressible , isoentropic

•
$$\frac{\partial \mathbf{v}_n}{\partial t} + (\mathbf{v}_n \cdot \nabla) \mathbf{v}_n = -\frac{1}{\rho} \nabla p - \frac{\rho_s}{\rho_n} S \nabla T + v_n \nabla^2 \mathbf{v}_n$$

 $-\frac{\rho_s}{2\rho} \nabla (\mathbf{v}_n - \mathbf{v}_s)^2 + \frac{1}{\rho_n} \widetilde{\mathbf{F}}_{ns}$
• $\nabla \cdot \mathbf{v}_n = 0$

ション・「「・」」・「」・「」・

•
$$\nabla \cdot \mathbf{v}_n = \mathbf{0}$$

• $\mathbf{v}_n = \mathbf{v}_n^p + \mathbf{v}_n'$ • $\mathbf{v}_n^p = (u_n^p, v_n^p)$ Poiseuille • $\mathbf{v}_n' = (u_n', v_n')$ back-reaction

Introduction	Model	Results	Conclusions
NODMAL ELL	מז		

HYPOTHESES

• $\rho, \rho_n, \rho_s, S = \text{const}$

- $\eta_n, \lambda = \text{const}$
- incompressible , isoentropic

•
$$\frac{\partial \mathbf{v}_n}{\partial t} + (\mathbf{v}_n \cdot \nabla) \mathbf{v}_n = -\frac{1}{\rho} \nabla p - \frac{\rho_s}{\rho_n} S \nabla T + v_n \nabla^2 \mathbf{v}_n$$

 $-\frac{\rho_s}{2\rho} \nabla (\mathbf{v}_n - \mathbf{v}_s)^2 + \frac{1}{\rho_n} \widetilde{\mathbf{F}}_{ns}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

•
$$\nabla \cdot \mathbf{v}_n = 0$$

• $\mathbf{v}_n = \mathbf{v}_n^p + \mathbf{v}_n'$ • $\mathbf{v}_n^p = (u_n^p, v_n^p)$ Poiseuille • $\mathbf{v}_n' = (u_n', v_n')$ back-reaction

Introduction	Model	Results	Conclusions
NT			

NORMAL FLUID

$$\Psi - \omega \text{ FORMULATION}$$

• $\mathbf{v}'_n = \left(\frac{\partial \Psi'}{\partial y}, -\frac{\partial \Psi'}{\partial x}\right)$
• $\omega'_n = \left(\nabla \times \mathbf{v}'_n\right) \cdot \hat{\mathbf{z}}$

•
$$\nabla^2 \Psi' = -\omega'_n$$

• $\frac{\partial \omega'_n}{\partial t} + \left(u_n^p + \frac{\partial \Psi'}{\partial y}\right) \frac{\partial \omega'_n}{\partial x} - \frac{\partial \Psi'}{\partial x} \left(\frac{\partial \omega'_n}{\partial y} - \frac{d^2 u_n^p}{dy^2}\right) =$
 $v_n \nabla^2 \omega'_n + \frac{1}{\rho_n} \left(\frac{\partial \widetilde{F}^y}{\partial x} - \frac{\partial \widetilde{F}^x}{\partial y}\right)$

BOUNDARY CONDITIONS

•
$$\langle u'_n \rangle = 0 \Rightarrow \Psi'(\pm D/2) = 0$$

• no–slip for
$$\mathbf{v}_n \Rightarrow \omega$$

Introduction	Model	Results	Conclusions
Nonstar pres			

NORMAL FLUID

$\Psi - \omega$ formulation

•
$$\mathbf{v}'_n = \left(\frac{\partial \Psi'}{\partial y}, -\frac{\partial \Psi'}{\partial x}\right)$$

• $\omega'_n = \left(\nabla \times \mathbf{v}'_n\right) \cdot \hat{\mathbf{z}}$

•
$$\nabla^2 \Psi' = -\omega'_n$$

• $\frac{\partial \omega'_n}{\partial t} + \left(u_n^p + \frac{\partial \Psi'}{\partial y}\right) \frac{\partial \omega'_n}{\partial x} - \frac{\partial \Psi'}{\partial x} \left(\frac{\partial \omega'_n}{\partial y} - \frac{d^2 u_n^p}{dy^2}\right) =$
 $v_n \nabla^2 \omega'_n + \frac{1}{\rho_n} \left(\frac{\partial \widetilde{F}^y}{\partial x} - \frac{\partial \widetilde{F}^x}{\partial y}\right)$

BOUNDARY CONDITIONS

•
$$\langle u'_n \rangle = 0 \Rightarrow \Psi'(\pm D/2) = 0$$

• no–slip for
$$\mathbf{v}_n \Rightarrow \boldsymbol{\omega}$$

Introduction	Model	Results	Conclusions
F _{ns} COARSE-GR	AINING		

HALL–VINEN FORMULATION

• $\Delta X, \Delta Y > \ell$

•
$$\widetilde{\mathbf{F}}_{ns} = \alpha \rho_s \widehat{\widetilde{\boldsymbol{\omega}}}_s \times [\widetilde{\boldsymbol{\omega}}_s \times (\widetilde{\mathbf{v}}_n - \widetilde{\mathbf{v}}_s)] + \alpha' \rho_s \widetilde{\boldsymbol{\omega}}_s \times (\widetilde{\mathbf{v}}_n - \widetilde{\mathbf{v}}_s)$$

•
$$\Theta_{j}(\mathbf{r}) = \frac{1}{V_{j}}e^{-\frac{|\mathbf{r} - \mathbf{r}_{j}|^{2}}{2\ell^{2}}}$$
 Gaussian kernel
• $\widetilde{\mathbf{F}}_{ns} = -\alpha\rho_{s}\kappa\widetilde{L}(\widetilde{\mathbf{v}}_{n} - \widetilde{\mathbf{v}}_{s}) + \alpha'\rho_{s}\widetilde{\Omega}\hat{\mathbf{z}} \times (\widetilde{\mathbf{v}}_{n} - \widetilde{\mathbf{v}}_{s})$
 $\widetilde{L} = \sum_{j=1...N} \frac{1}{\Delta X \Delta Y} \iint_{(p,q)} \Theta_{j}(\mathbf{r}) d\mathbf{r}$
 $\widetilde{\Omega} = \sum_{j=1...N} \frac{\Gamma_{j}}{\Delta X \Delta Y} \iint_{(p,q)} \Theta_{j}(\mathbf{r}) d\mathbf{r}$
 $T_{ns} = \Delta X / v_{s}^{ext}$

Introduction	Model	Results	Conclusions
E COAD			

\mathbf{F}_{ns} COARSE–GRAINING

HALL–VINEN FORMULATION

• $\Delta X, \Delta Y > \ell$

•
$$\widetilde{\mathbf{F}}_{ns} = \alpha \rho_s \widehat{\widetilde{\boldsymbol{\omega}}}_s \times [\widetilde{\boldsymbol{\omega}}_s \times (\widetilde{\mathbf{v}}_n - \widetilde{\mathbf{v}}_s)] + \alpha' \rho_s \widetilde{\boldsymbol{\omega}}_s \times (\widetilde{\mathbf{v}}_n - \widetilde{\mathbf{v}}_s)$$

•
$$\Theta_j(\mathbf{r}) = \frac{1}{V_j} e^{-\frac{|\mathbf{r} - \mathbf{r}_j|^2}{2\ell^2}}$$
 Gaussian kernel

•
$$\widetilde{\mathbf{F}}_{ns} = -\alpha \rho_s \kappa \widetilde{L} (\widetilde{\mathbf{v}}_n - \widetilde{\mathbf{v}}_s) + \alpha' \rho_s \widetilde{\Omega} \hat{\mathbf{z}} \times (\widetilde{\mathbf{v}}_n - \widetilde{\mathbf{v}}_s)$$

$$\widetilde{L} = \sum_{j=1...N} \frac{1}{\Delta X \Delta Y} \iint_{(p,q)} \Theta_j(\mathbf{r}) d\mathbf{r}$$

$$\widetilde{\Omega} = \sum_{j=1...N} \frac{\Gamma_j}{\Delta X \Delta Y} \iint_{(p,q)} \Theta_j(\mathbf{r}) d\mathbf{r}$$

$$T_{ns} = \Delta X / v_s^{ext}$$

Introduction	Model	Results	Conclusions
F _{ns} COARSE-GR	AINING		

HALL–VINEN FORMULATION

• $\Delta X, \Delta Y > \ell$

•
$$\widetilde{\mathbf{F}}_{ns} = \alpha \rho_s \widehat{\widetilde{\boldsymbol{\omega}}}_s \times [\widetilde{\boldsymbol{\omega}}_s \times (\widetilde{\mathbf{v}}_n - \widetilde{\mathbf{v}}_s)] + \alpha' \rho_s \widetilde{\boldsymbol{\omega}}_s \times (\widetilde{\mathbf{v}}_n - \widetilde{\mathbf{v}}_s)$$

•
$$\Theta_{j}(\mathbf{r}) = \frac{1}{V_{j}}e^{-\frac{|\mathbf{r} - \mathbf{r}_{j}|^{2}}{2\ell^{2}}}$$
 Gaussian kernel
• $\widetilde{\mathbf{F}}_{ns} = -\alpha\rho_{s}\kappa\widetilde{L}(\widetilde{\mathbf{v}}_{n} - \widetilde{\mathbf{v}}_{s}) + \alpha'\rho_{s}\widetilde{\Omega}\hat{\mathbf{z}} \times (\widetilde{\mathbf{v}}_{n} - \widetilde{\mathbf{v}}_{s})$
 $\widetilde{L} = \sum_{j=1...N} \frac{1}{\Delta X \Delta Y} \iint_{(p,q)} \Theta_{j}(\mathbf{r}) d\mathbf{r}$
 $\widetilde{\Omega} = \sum_{j=1...N} \frac{\Gamma_{j}}{\Delta X \Delta Y} \iint_{(p,q)} \Theta_{j}(\mathbf{r}) d\mathbf{r}$
 $T_{ns} = \Delta X/v_{s}^{ext}$

Introduction	Model	Results	Conclusions
OVERVIEW			

In	tro		101	ion	
	u u	L.L.	101	1011	

NUMERICAL SIMULATIONS

PARAMETERS

- $T = 1.7^{-\circ}K$
- $L^{1/2}D = 25$
- $N \simeq 2000$
- nx = 192, ny = 64
- $\delta_c = D/2 = 4.55 \times 10^{-3} \text{ cm}$
- $u_c = \kappa / (2\pi\delta_c) = 3.49 \times 10^{-2} \text{ cm/s}$
- $t_c = \delta_c / u_c = 0.13s$

• $\Delta t^* \sim 10^{-6}$

steady-state

$$T_f = D^2 / v_n$$

・ロト・西ト・ヨト・ヨー うらつ

Conclusions

VORTEX DISTRIBUTION

FIGURE : Initial (left) and steady-state (right) vortex configuration

$$\frac{d\mathbf{r}_{j}}{dt} = \mathbf{v}_{s}(\mathbf{r}_{j}, t) + \alpha \, \mathbf{s}_{j}^{\prime} \times \left(\mathbf{v}_{n}(\mathbf{r}_{j}, t) - \mathbf{v}_{s}(\mathbf{r}_{j}, t)\right) + \alpha^{\prime} \left(\mathbf{v}_{n}(\mathbf{r}_{j}, t) - \mathbf{v}_{s}(\mathbf{r}_{j}, t)\right)$$

Introduction

Model

Results

Conclusions

VORTEX DENSITY PROFILES $\overline{n}(y)$

FIGURE : vortex–density profiles $\overline{n}(y)$ and vortex polarization $\overline{p}(y)$ at t = 0 (left) and $t > T_f$ (center). On the right normalized vortex–line density *L* from Baggaley & Laurie (JLTP,2015)

VELOCITY PROFILES $\overline{u}_s(y)$ and $\overline{u}_n(y)$

FIGURE : Superfluid and normal fluid velocity profiles $\overline{u}_s(y)$ and $\overline{u}_n(y)$ at t = 0 (left) and $t > T_f$ (center). On the right the experimentally measured normal fluid velocity profile by Marakov *et al.* (PRB,2015)

Introduction	Model	Results	Conclusions
3D ANALOGUE			

- rings lie on planes \perp to \mathbf{v}_n
- drift in opposite direction of \mathbf{v}_n

• circulation of rings \parallel to \mathbf{v}_n

•
$$\dot{x} = u_R = (1 - \alpha')\overline{u}_s + \alpha'\overline{u}_n$$

•
$$\dot{y} = \dot{R} = \pm \alpha (\overline{u}_n - \overline{u}_s)$$

ヘロト ヘ部ト ヘヨト ヘヨト

э

Introduction	Model	Results	Conclusions
3D ANALOGUE			

- streamwise flow of expanding vortex rings
- rings lie on planes \perp to \mathbf{v}_n
- drift in opposite direction of **v**_n
- circulation of rings \parallel to \mathbf{v}_n

•
$$\dot{x} = u_R = (1 - \alpha')\overline{u}_s + \alpha'\overline{u}_n$$

•
$$\dot{y} = \dot{R} = \pm \alpha (\overline{u}_n - \overline{u}_s)$$

Int	rod	1101	ion
III.	LOU	uct	IOII

Model

Results

3D ANALOGUE: IS IT REALISTIC

vortex-tangle anisotropic

- vortex–lines move towards the walls
- vortex lines move faster as they approach the walls

• superflow reduced in central region

200

Introduction	Model	Results	Conclusions
OVEDVIEW			

Introduction	Model	Results	Conclusions

- self–consistent calculation of \mathbf{v}_n and \mathbf{v}_s
- steady–state with $L \sim$ experiment
- recover the tail–flattened **v**_n profile meaured by Guo (PRB, *2015*)
- recover 3D numerical vortex–density profiles Baggaley & Laurie (JLTP, *2015*)
- predict a **v***s* parabolic profile cfr. Yui & Tsubota (PRB, *2015*)

ONGOING AND FUTURE STUDIES

- Pure Superflow
- Particle tracers