Self-truncation and scaling in
Euler-Voigt-X
and related fluid models
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Classical hydrodynamics
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Effective Dissipation and Turbulence in Spectrally Truncated Euler Flows
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A new transient regime in the relaxation towards absolute equilibrium of the conservative and time-
reversible 3D Euler equation with a high-wave-number spectral truncation is characterized. Large-scale
dissipative effects, caused by the thermalized modes that spontaneously appear between a transition wave
number and the maximum wave number, are calculated using fluctuation dissipation relations. The large-
scale dynamics is found to be similar to that of high-Reynolds number Navier-Stokes equations and thus
obeys (at least approximately) Kolmogorov scaling.



Truncated Euler equation

TD. LEE (Quart Appl Math 1952), RH. KRAICHNAN 1967-1973, C. Cichowlas et al.
(PRL 2005), W. BOS and J. Bertoglio (Phys. Fluids 2005), Frisch et al. (PRL 2008), ...
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Truncated Euler equation

Conserved quantities
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H. Moffatt, J. Moreau in the 60’s. Discovered 200 vears after Euler work
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H(k) = a(k’,1)-d(-k',1)
k—Ak/2<|K'|<k+Ak/2

Both Energy and Helicity are exactly conserved by the
truncated dynamics



Kraichnan’s Helical
Absolute Equilibrium
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Numerical sstmulation ABC flow
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Resolution of 5123 VX Uxpc = Aslape
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Truncated Euler:
basic facts

® Relaxation toward Kraichnan helical absolute
equilibrium

® Transient mixed energy and helicity cascades

® Thermalized small-scales act as microworld
providing an effective dissipation in the system




Superfluid hydrodynamics
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Truncated Gross-Pitaevskii equation

week ending

PRL 106, 115303 (2011) RS- Coa PR B VTE W SLETTER S 18 MARCH 2011

Dispersive Bottleneck Delaying Thermalization of Turbulent Bose-Einstein Condensates

Giorgio Krstulovic and Marc Brachet

Laboratoire de Physique Statistique de [’Ecole Normale Supérieure, associé au CNRS et aux Universités Paris VI et VII,

24 Rue Lhomond, 75231 Paris, France
(Received 26 July 2010; revised manuscript received 10 January 2011; published 16 March 2011)

A new mechanism of thermalization involving a direct energy cascade is obtained in the truncated
Gross-Pitaevskii dynamics. A long transient with partial thermalization at small scales is observed before
the system reaches equilibrium. Vortices are found to disappear as a prelude to final thermalization. A
bottleneck that produces spontaneous effective self-truncation and delays thermalization is characterized
when large dispersive effects are present at the truncation wave number. Order of magnitude estimates
indicate that self-truncation takes place in turbulent Bose-Einstein condensates. This effect should also be
present in classical hydrodynamics and models of turbulence.



Kolmorogov regime in the

GPE
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FIG. 2. Plot of the incompressible kinetic energy spectrum,
Eiin(k). The bottom curve (a) (circles) corresponds to time
t = (0 (same conditions as in Fig. 1). The spectrum of a
single axisymmetric 2D vortex multiplied by (//27) = 175 is
shown as the bottom solid line. The top curve (b) (plusses)
FIG. 5. Same visualization as in Fig. 1, but at time ¢ = 8. corresponds to time 7 = 5.5. A least-square fit over the interval
2 = k = 16 with a power law Eg (k) = Ak™" gives n = 1.70
(top solid line).

o K41 regime first found in the GPE 18 years ago:

e C. Nore, M. Abid, and M. E. Brachet, Phys. Rev. Lett. 78, 3896 (1997)
e C. Nore, M. Abid, and M. E. Brachet, Phys. Fluids 9, 2644 (1997)
M Kobayashi and M Tsubota. Phy. Rev. Lett. 94(6):065302, Jan 2005.

Yepez et al. Pays. Rev. Lett. 103(8):084501, Aug 2009



Wave propagation ., _ 4 —ikt | 5y

Bogoliubov dispersion relation:

m 2 412

Speed of sound c = \/g|Ao]2/m
Coherence length & = /h2/2m|Ao[?g.

Important dimensionless parameter for TGPE

é’ k Amount of dispersion of
I aX

thermal waves



Hydrodynamic description
of GPE
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Taylor-Green vortex




Energy transfer from incompressible
kinetic energy to sound waves.
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FIG. 13. Time evolution of total energy E,, (dot-dashed), incompressible
kinetic energy E}. (solid), compressible kinetic energy Ef. (dotted), quan-
tum energy E, (dashed), and internal energy E;, (long—dashed) for run d.
Note the transfer of energy from the incompressible part to the other con-
tributions.

Nore et al. pnys. Fluids 9 (9), 1997, PRL 78 (30), 1997



Truncation of GPE
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Description of BEC at finite temperature: Thermal
fluctuations overwhelm quantum fluctuations



Conserved quantities

Energy, number of particles and momentum
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Conservation laws are valid in the truncated system, if
dealiasing is done carefully enough



Thermalized microcanonical states
Condensation transition in T GPE

It was previously known that

the k=0 mode of 1 vanishes at finite energy

M]J. Davis, SA. Morgan and K. Burnett

PRL 87, (2001)
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FIG. 1. Condensate fraction plotted against total energy after
each individual simulation has reached equilibrium. The barely
discernible vertical lines on each point indicate the magnitude
of the fluctuations.

C. Connaughton,C. Josserand, A. Picozzi,
Y. Pomeau and S. Rica. PRL 95, 263901.(2005%)

Diiring et al. Physica D 2009, vol. 238

n,/N no/N 4

A 005
1P 4
0. 04
0.0z
n.e}
0.0z
o.01
0.6} . -
2.81 2,82 2.82 2.84<H>/V
0.4 r i
0.2
............................ .
0.5 1 1.5 & £.5 3<H>/V

FIG. 2 (color online). Condensate fraction n,/N vs total en-
ergy density (H)/V, where (H) = E + E,, E, being the con-
densate energy [see Eq. (9)]. Points (<) refer to numerical
simulations of the NLS Eq. (1) with 64° modes (N/V = 1/2).
The straight line (1) [(i1)] corresponds to the continuous Eq. (6)
[discretized Eq. (7)] approximation. Curve (iii) refers to con-
densation in the presence of nonlinear interactions [from
Eq. (9)], which makes the transition to condensation subcritical,
as illustrated in the inset (with 1024° modes). Each point (<)
corresponds to an average over 103 time units.



What is an absolute equilibrium for

GPE?



(Grand canonical

New algorithm to generate absolute equilibrium
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Partition function can be analytically obtained at low temperatures



Micro canonical versus grand
canonical
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o 1Ay%/p at const p 64°
IAI%/p at const p 64°
IA’/p at const p 64°
IA%/p at const p 128°




2D BKT transition

Vishwanath Shukla, Marc Brachet and Rahul Pandit

Turbulence in the two-dimensional Fourier-truncated Gross—Pitaevskii equation
New J. Phys. 15 113025 (2013)

Below transition

¢ Correlation function °

Above transition
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[Left] Log-log plot of ¢(r) vs. r (E < Egkr. Ne = 128); [Right] Semilog-y plot ¢(r)

VS, r (E > EgkT, N: = 128).
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Dynamics ot
thermalization in the

GPE



spKin, spKinlnc and spKinComp at t=0

® Fiin inc (k)
® Fiin comp(k)




Taylor-Green vortex




Taylor-Green vortex




Taylor-Green vortex




Taylor-Green vortex




Dispersive “bottleneck” for
thermalization of waves
Variable fk max (&fixed, different resolutions)

Kinetic energy spectrum

IC energy spectrum &t =64

0.1
k2 .-
001 Partial thermalization
~_ T e starts
S - ; A ) ’t,nf A
] e ..“.
0.001 Pt o \ i
- N "~ “Spectral convergence
\ \
dl s \\\ 1
10 h\u}m \~~~-—,I
-
*"&N
10-3 |

kEmaxindependent
1078 S B bottleneck




Self truncation in 2D

Vishwanath Shukla, Marc Brachet and Rahul Pandit
Turbulence in the two-dimensional Fourier-truncated Gross—Pitaevskii equation
New J. Phys. 15 113025 (2013)
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s it possible to obtain
Self-truncation in the

framework of classical
fluids?



Euler-Voigt-&X model

du
[1+ (—a2V2)§]§ = —(u-V)u—Vp,

V.u=0,

This dynamics conserves the generalized Energy with spectrum:

Ea(k,t)zé Y [+ (k) ]k, ).

keZ3
k—1/2<|K|<k+1/2

Let us remark that the differential operator multiplying the
right-hand side of our generalized 3D Euler-Voigt-a model
Eq. (2) can be written in Fourier space as 1 + (xk)? =1 +
(k/k,)P. The formal limit 8 — oo of Eq. (2) thus corresponds
to a standard spherical Galerkin truncation [@i(K) = O for |k| >
kmax] of the Euler Eq. (3) at knmax = k. Note that a somewhat



Numerical method

We consider here solutions of Eq. (2) that correspond to the
so-called Taylor-Green (TG) [24] (2w -periodic) 1nitial data
u(x,y,z,0) = u'(x,y,z), with

u'® = [sin(x) cos(y) cos(z), — cos(x) sin(y) cos(z),0]. (9)
The simulations reported in this paper were performed using a
special purpose symmetric parallel code developed from that
described in Refs. [23,25-27]. The code uses the symmetries
of the Taylor-Green initial data to speed-up computations and
optimize memory usage. The workload for a time step is
(roughly) twice that of a general periodic code running at a
quarter of the resolution. Specifically, at a given computational
cost, the ratio of the largest to the smallest scale available
to a computation with enforced Taylor-Green symmetries is
enhanced by a factor of 4 in linear resolution. This leads to a
factor of 32 savings in total computational time and memory
usage. The code is based on FFTW and a hybrid MPI-OpenMP
scheme derived from that described in Ref. [28]. At resolution

2048 we used 512 MPI processes, each process spawning 8
OpenMP threads.



Results
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FIG. 1. (Color online) Temporal evolution (indicated by arrows)
of the energy spectrum E, (k) for 8 =4 and k, = 80. Resolution
10243 (kyax = 342). The dashed lines respectively display the Kol-
mogorov k~>/3 and the equipartition k> scaling. The self-truncation
wavenumber is indicated by the small vertical arrow.
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Evolution of self-
truncation wavenumber
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Self-similar long time
behavior

Eukt) = =0 w| X _|
kg (t) | ks(2)_

10" 10° 10’
)

FIG. 6. (Color online) Temporal evolution of the self-similar
function W[k/kg(t)] = E.(k,0)ky(t) [see Eq. (13)] for B =4 and
k., = 4. Data from direct numerical resolution of Eq. (2) at resolution
5123, The inset shows the temporal evolution of ky(t)/kya for




EDOQNM models
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where the nonlinear transfer 7y;. is modeled as

k*pE(p,t)E(q,1)
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Leith model
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Results

TABLE II. Values of the exponent n of the self-truncation wave
number kg(¢) ~t"7 [see Eq. (12)] obtained from direct numeri-
cal simulation of the Euler-Voigt-a model Eq. (2), a V-EDQNM
[Egs. (14)—(17)], and ' V-Leith model (r = 2) [Eq. (24)].

B=2 B=4 B=6

aV-Euler 056 x102 025+3x102 0.07+5x1073
aV-EDQNM 0.33 +£5 x 10 0.11+9x 10> 0.085+1 x10*
aV-Leith 0.33+10°° 0.15+2x10% 0.09+9 x 1076




Conclusion

® Self-truncation obtained for classical fluid
® |s there a universal exponent?

® What experimental system!?
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