Spectral properties of superfluid turbulence

Carlo F Barenghi

Lucy Sherwin, Andrew Baggaley, Yuri Sergeev

School of Mathematics and Statistics

- Energy spectrum
- Vortex line density spectrum
- New numerical results shed light into these spectra

< ∃ →

Superfluid turbulence

 4 He turbulence, statistical steady state, away from boundaries, created either thermally (counterflow) or mechanically (coflow), $\mathcal{T}>1~\mathrm{K}$ regime

Measure vortex line density L (temperature gradients, second sound, etc), infer typical intervortex distance $\ell \sim L^{-1/2}$

- Thermally: $L \sim V_{ns}^2$ (Vinen 1956) $V_{ns} = V_n - V_s \sim \dot{Q}$ $V_{ns} = \text{counterflow}$ $\dot{Q} = \text{applied heat flux}$
- Mechanically: $\ell/D \sim Re^{-3/4}$ (Salort *et al* 2011) hence $L \sim Re^{3/2}$ Reynolds $Re = V_n D/\nu_n \sim (D/\eta)^{4/3}$ $\eta =$ dissipation scale, D system scale $\nu_n =$ kinematic viscosity $\eta =$ Kolmogorov length

Why spectra ?

Spectra help to understand the property of turbulence

• Energy spectrum: tells about distribution of energy over length scales

$$E = \frac{1}{V} \int_{V} \frac{\mathbf{v}^2}{2} dV = \int_0^{\infty} E(k) dk$$
$$E(k) \sim k^{-5/3} \quad \text{in } 1/D \ll k \ll 1/\eta$$

Numerics: measure \mathbf{v} vs \mathbf{r} at given tExperiments: measure \mathbf{v} vs t at given \mathbf{r}

• Vortex line density spectrum: should tell about 'worms' (Sasa *et al* 2011, Baggaley 2012)

Experimental spectra

• Energy spectrum:

(Maurer & Tabeling 1998)

• Vortex line density spectrum:

(Roche et al 2007)

(Roche *et al* 2007)

• Energy spectrum: $E(k) \sim k^{-5/3}$

Nore, Abid & Brachet 1997 (T = 0, GPE) Kobayashi & Tsubota 2005 (T = 0, GPE) Araki, Tsubota, Nemirovskii 2002 (T = 0, Biot-Savart) Baggaley, CFB, Shukurov & Sergeev 2012 (T = 0, Biot-Savart) Baggaley & CFB 2011 ($T \neq 0$, Biot-Savart) L'vov, Nazarenko & Skrbek 2006 ($T \neq 0$, Leith model) Roche, CFB & Leveque 2009 ($T \neq 0$, HVBK model) Wacks & CFB 2011 ($T \neq 0$, shell model) etc

• Vortex line density spectrum: Counterflow: Nemirovskii 2012, CFB, Swanson & Donnelly 1982

・ 同 ト ・ ヨ ト ・ ヨ ト

Vortex lines as spaces curves $\mathbf{s}(\xi, t)$ in periodic box

$$\frac{d\mathbf{s}}{dt} = \mathbf{v}_{s}^{ext} + \mathbf{v}_{s}^{self} + \alpha \mathbf{s}' \times (\mathbf{v}_{n}^{ext} - \mathbf{v}_{s}^{self} - \mathbf{v}_{s}^{self}) - \alpha' \mathbf{s}' \times (\mathbf{s}' \times (\mathbf{v}_{n}^{ext} - \mathbf{v}_{s}^{self} - \mathbf{v}_{s}^{self}))$$
$$\mathbf{v}_{s}^{self}(\mathbf{s}) = \frac{\kappa}{4\pi} \oint \frac{(\mathbf{r} - \mathbf{s}) \times d\mathbf{r}}{|\mathbf{r} - \mathbf{s}|^{3}} \quad (\text{Biot - Savart})$$

Desingularization and reconnections

Prescribed \mathbf{v}_n^{ext} and \mathbf{v}_s^{ext}

Models for \mathbf{v}_n

• Uniform normal flow in a given direction $\mathbf{v}_n^{ext} = V_n \mathbf{\hat{x}}, \quad \mathbf{v}_s^{ext} = \mathbf{0}$

$$\begin{aligned} \mathbf{v}_n^{ext} &= \sum_{m=1}^{m=M} (\mathbf{A}_m \times \mathbf{k}_m \cos \phi_m + \mathbf{B}_m \times \mathbf{k}_m \sin \phi_m), \\ \phi_m &= \mathbf{k}_m \cdot \mathbf{s} + f_m t, \quad f_m = \sqrt{k_m^3 E(k)}, \\ E(k_m) &\sim k_m^{-5/3}, \quad Re = (k_M/k_1)^{4/3} \end{aligned}$$

 Turbulent solution v_n^{ext} of Navier-Stokes (frozen) 1024³, Re ≈ 3200 (John Hopkins Turbulence Database)

Measurements done in the saturated regime

Red: uniform normal fluid Black: synthetic turbulence Blue: Navier-Stokes turbulence

Energy spectra: bump vs Kolmogorov

• Superfluid energy spectrum:

uniform normal fluid bump, lacks energy at small *k*

synthetic turbulence Kolmogorov, most energy at small k

Navier-Stokes turbulence (Kolmogorov)

Origin of Kolmogorov spectrum

Kolmogorov law arises from polarized vortex bundles

unpol. $E(k) \sim k^{-1}$

Colour-coded by coarse-grained vorticity Left: total lines Right: polarized (yellow), unpolarized (red)

Baggaley, Laurie, CFB 2012

Vortex tubes in classical turbulence

Wavelet decomposition (Farge *et al* 2001) shows that the $k^{-5/3}$ spectrum of classical turbulence arises from vortex tubes

Classical fluid:

Cascade exists if
$$\tau_d = \frac{r^2}{\nu} \gg \tau_r = \frac{r}{u_r} \quad \Rightarrow \quad Re_r = \frac{u_r r}{\nu} \gg 1$$

Helium:
$$\frac{dV_s}{dt} = \cdots - \alpha \kappa L(V_s - V_n) = \cdots - \frac{V_s}{\tau_f}$$

 $\tau_f = \frac{1}{\alpha \kappa L \beta}$ where $\beta = \rho / \rho_n$ (counterflow) and $\beta \ll 1$ (coflow)

Cascade exists only if $\tau_f \gg \tau_r$ and $r \gg \ell$ hence Kolmogorv scaling is expected only for

$$\ell \ll r \ll r_c = \frac{\epsilon^{1/2} \ell^3}{(\alpha \kappa \beta)^{3/2}}$$

limiting the Kolmogorov scaling at large scales for counterflow but not for coflow.

Spatial structure

• Vortex lines:

• Superfluid energy density smoothed over intervortex spacing:

Left: uniform normal fluid, Middle: synthetic turbulence, Right: Navier-Stokes turbulence

Local vs nonlocal contribution

$$\mathbf{v}_{s}^{self}(\mathbf{s}_{j}) = \mathbf{v}_{s}^{loc}(\mathbf{s}_{j}) + \mathbf{v}_{s}^{non}(\mathbf{s}_{j})$$

$$\mathbf{v}_{s}^{self}(\mathbf{s}_{j}) = \frac{\kappa}{4\pi} \ln\left(\frac{\sqrt{\Delta\xi_{j}\Delta\xi_{j+1}}}{a_{0}}\right) \mathbf{s}_{j}' \times \mathbf{s}_{j}'' + \frac{\kappa}{4\pi} \oint' \frac{(\mathbf{r} - \mathbf{s}_{j}) \times \mathbf{dr}}{|\mathbf{r} - \mathbf{s}_{j}|^{3}}$$

Relative nonlocal contribution

red: uniform normal fluid black: synthetic turbulence blue: Navier-Stokes turbulence

Spectrum of the vortex line density

Time series of L(t)

Regions of more intense L

Red: uniform normal fluid; Blue: Navier-Stokes turbulence

Check effect of averaging over D^3 , $(D/2)^3$, $(D/4)^3$ or $(D/8)^3$

The integral of white noise is brown (f^{-2}) noise

Spectrum of the vortex line density

uniform normal fluid

red: D^3 blue: $(D/2)^3$ green: $(D/4)^3$ black: $(D/8)^3$ Navier-Stokes turbulence (right: compensated by $f^{5/3}$)

Baggaley & CFB (2011): spectrum $\sim f^{-5/3}$ as material lines transported by turbulence

More topics of investigations

• Towards low temperature

Predictions of thermalization of energy spectrum at large k (Roche 2013) at scales $k\ell \approx 1$ and larger.

• Pressure spectrum

Prediction of quantum nature of pressure spectrum (k^{-2} rather than the classical $k^{-7/3}$) due to singular nature of vorticity (Kivotides, CFB *et al* 2001).

• Intermittency

Predictions of deviations from $k^{-5/3}$ in temperature regime $\rho_n \approx \rho_s$ using shell model (Boué *et al* 2013)

• Energy spectrum:

Mechanical drive: most energy is at small k with $E(k) \sim k^{-5/3}$, thermal drive E(k) is a bump (lacks energy at small k) with $\sim k^{-1}$ tail.

• Vortex line density spectrum Probably $f^{-5/3}$ but less understood.

• Much to do

about $k\ell \approx 1$ regime, low temperature regime, intermittency, pressure spectrum

References:

CFB, L'vov & Roche, PNAS 2014 (review)

Baggaley, Sherwin, CFB & Sergeev, PRB 2012

Sherwin, CFB & Baggaley, PRB 2015