# Coherent laminar and turbulent motion of toroidal vortex bundles in superfluid helium

#### **Andrew Baggaley**

Newcastle University

#### In collaboration with:

Daniel Wacks Carlo Barenghi Donatello Gallucci Nick Proukakis

## Outline

- Motivation
  - (3D) vortex bundles
  - (2D) vortex clusters
- Vortex rings in superfluid helium
- Experiment:

Borner, Schmeling, & Schmidt (Physics of Fluids 1983)

• Numerical work:

Wacks, Baggaley, & Barenghi (PoF 2013, PRB 2014)

Conclusions

#### Motivation

At T=0 two distinct regimes of quantum turbulence are observed



Walmsley & Golov, PRL, 2008



#### Quasi-Classical Regime

Some statistical properties of the flow are in agreement with K41



(d)

#### Araki et al.

Vortex bundles seem important to generate large scale flow T > 010  $10^{-4}$ 0.2 E(k)0.10 0.12 0.08 0.04  $10^{-5}$ 10 10<sup>1</sup> 10<sup>2</sup> 10<sup>4</sup>  $\boldsymbol{\omega}(\mathbf{r}, t) = \kappa \sum_{i=1}^{N} \frac{\mathbf{s}_{i}^{\prime}}{(2\pi\sigma^{2})^{3/2}} \exp(-|\mathbf{s}_{i} - \mathbf{r}|^{2}/2\sigma^{2})\Delta\xi$  $\mathbf{v}_n(\mathbf{s}, t) = \sum_{m=1}^M (\mathbf{A}_m \times \mathbf{k}_m \cos \phi_m + \mathbf{B}_m \times \mathbf{k}_m \sin \phi_m)$ T = 0

AWB, PoF, 2012

#### Vortex bundles seem important to generate large scale flow



AWB, PoF, 2012

#### Vortex bundles seem important to generate large scale flow





#### AWB, PoF, 2012



AWB, Laurie & Barenghi PRL, 2012

#### Analogy with classical turbulence

Ordinary turbulence contains metastable regions of coherent vorticity (vortex tubes, worms)



She, Jackson & Orzag, 1990

Vincent & Meneguzzi 1991



#### Analogy with classical turbulence

Ordinary turbulence contains metastable regions of coherent vorticity (vortex tubes, worms)



**Total Vorticity** 



Wavelet extracted coherent vortices



Incoherent vorticity



Farge, Pellegrino & Schneider, PRL, 2001

#### Experimental evidence for such a picture in QT



Fig. 4: Power spectrum density of the vortex line density  $L_{\perp}$  for different mean flow velocities: from bottom to top 0, 0.68, 0.90 and 1.25 m/s. The straight line is a (-5/3) power law. The insert is a  $f^{-5/3}$  compensated spectrum for the 3 different mean flows after removal of a  $5 \cdot 10^{15} \text{ m}^{-4} \text{ Hz}^{-1}$  white-noise floor.

Observed frequency dependence of the spectrum, disagrees with classical vorticity spectra

Disagreement explained if the vortex line density field is decomposed into a polarised field (which carries most of the energy) and an isotropic field (which is responsible for the spectrum)

Roche & Barenghi, EPL, 2008

#### In 2D Bundles -> Clusters

Received a lot of attention in the BEC community recently



## 2D Superfluid Wind-tunnel

• 2D Gross-Pitaevskii equation:

$$i\hbar\frac{\partial}{\partial t}\psi(\mathbf{x},t) = \left[-\frac{\hbar^2}{2m}\nabla^2 - \mu + g|\psi(\mathbf{x},t)|^2 + V_{tot}(x)\right]\psi(\mathbf{x},t)$$

• Ring trap with a 'grid'

$$V_{tot} = V_{ring}(\rho) + V_{obst}(\rho) = V_G(1 - e^{-2(\rho - \rho_0)^2/w^2}) + \sum_{i=1}^3 V_0 \delta(\rho + \rho_i), \qquad \rho = \sqrt{x^2 + y^2}$$

 Impose an initial phase winding,(80Γ), which in the absence of the obstacle would create a persistent current







## Outline

- Motivation
  - (3D) vortex bundles
  - (2D) vortex clusters
- Vortex rings in superfluid helium
- Experiment:

Borner, Schmeling, & Schmidt (Physics of Fluids 1983)

• Numerical work:

Wacks, Baggaley, & Barenghi (PoF 2013, PRB 2014)

Conclusions

A controlled setup to study bundles of quantised vortices

Vortex rings have a long tradition in superfluid helium, from Rayfield & Reif (1964), to Winiecki & Adams (2000) to recent work of Walmsley, Zmeev & Golov



Vortex rings are Hamiltonian objects:  $v = \partial H / \partial p$ 

$$v = \frac{\Gamma}{4\pi R} \left[ \ln(8R/a) - 1/2 \right] \qquad H = \frac{\rho \Gamma^2 R}{2} \left[ \ln(8R/a - 2) \right]$$
$$p = \rho \Gamma \pi R^2$$

### Borner's Experiment



Experiment by Borner et al. 1983

- Large-scale vortex rings in superfluid helium-4
- Ring position,  $\Gamma_s$  ,  $\ \Gamma_n$  measured acoustically vs time
- Vortex structures of larger circulation (  $\sim 1000-2000\kappa)$  observed

#### Other studies



Hydrogen-Deuterium visualisation of flow filed



Stamm et al. (1993)



# Thermally driven, visualisation with hollow glass beads





#### Borner's Experiment

- Interpretation of the experiment: Bundles of  $N \approx 10^3$  concentric quantised vortex rings Typical  $\ell \approx 0.003 \text{ cm} \gg \text{ core size } \xi \approx 10^{-8} \text{ cm}$
- How do vortex bundles move ?
   some kind of stable generalized (N > 2) leapfrogging



classical leapfrogging of two vortex rings, Sommerfeld 1950

## Classical leap-frogging of two vortex rings



#### Yamadao & Matsui, 1978









# Vortex filament method

Biot-Savart Integral

$$\frac{d\mathbf{s}}{dt} = -\frac{\Gamma}{4\pi} \oint_{\mathcal{L}} \frac{(\mathbf{s} - \mathbf{r})}{|\mathbf{s} - \mathbf{r}|^3} \times \mathbf{dr}$$



#### A note on reconnections

GPE







#### A note on reconnections





#### Experimental results



| <br> |  | <br> |   |
|------|--|------|---|
|      |  |      |   |
|      |  |      | · |
|      |  |      |   |

Paoletti et al. Physica D (2010)

#### Experimental results



| <br> |  | <br> |   |
|------|--|------|---|
|      |  |      |   |
|      |  |      | · |
|      |  |      |   |

Paoletti et al. Physica D (2010)

#### Experimental results





#### In agreement with Biot-Savart

Paoletti et al. Physica D (2010)



## Finite temperature effects

- In the lab we are never at 0K
- Helium is an intimate mix of inviscid superfluid component and a viscous normal fluid.



#### Finite temperature effects

- In the lab we are never at 0K
- Helium is an intimate mix of inviscid superfluid component and a viscous normal fluid.

Andronikashvili (1946) 1.0 Ps/P  $\frac{\rho_i}{\rho}$ 0.8 0.6 0.4 0.2 pn/p 0 1.5 2.0 1.0 0.5 0 (K)



# Mutual friction

Balance Magnus and drag forces

$$\frac{d\mathbf{s}}{dt} = \mathbf{v}_s^{\text{tot}} + \alpha \mathbf{s}' \times (\mathbf{v}_n^{\text{ext}} - \mathbf{v}_s^{\text{tot}}) - \alpha' \mathbf{s}' \times [\mathbf{s}' \times (\mathbf{v}_n^{\text{ext}} - \mathbf{v}_s^{\text{tot}})]$$

Normal viscous fluid coupled to inviscid superfluid via mutual friction.

Superfluid component extracts energy from normal fluid component via Donelly-Glaberson instability, amplification of Kelvin waves.

Kelvin wave grows with amplitude

 $\mathcal{A}(t) = \mathcal{A}(0)e^{\sigma t}$  $\sigma(k) = \alpha(kV - \nu'k^2)$ 

Counterflow Turbulence



 $\mathbf{v}_n^{ext}(\mathbf{s}, t) = (c, 0, 0)$ 

# Mutual friction

Balance Magnus and drag forces

$$\frac{d\mathbf{s}}{dt} = \mathbf{v}_s^{\text{tot}} + \alpha \mathbf{s}' \times (\mathbf{v}_n^{\text{ext}} - \mathbf{v}_s^{\text{tot}}) - \alpha' \mathbf{s}' \times [\mathbf{s}' \times (\mathbf{v}_n^{\text{ext}} - \mathbf{v}_s^{\text{tot}})]$$

Normal viscous fluid coupled to inviscid superfluid via mutual friction.

Superfluid component extracts energy from normal fluid component via Donelly-Glaberson instability, amplification of Kelvin waves.

Kelvin wave grows with amplitude

 $\mathcal{A}(t) = \mathcal{A}(0)e^{\sigma t}$  $\sigma(k) = \alpha(kV - \nu'k^2)$ 

Counterflow Turbulence



 $\mathbf{v}_n^{ext}(\mathbf{s}, t) = (c, 0, 0)$ 

#### Numerical simulations of Borner's experiment

Vortex lines = space curves s(t):
 Biot–Savart law

$$\frac{d\mathbf{s}}{dt} = \mathbf{v}_{si} = -\frac{\kappa}{4\pi} \oint_{\mathcal{L}} \frac{(\mathbf{s} - \mathbf{r})}{|\mathbf{s} - \mathbf{r}|^3} \times \mathbf{dr}$$

plus reconnection Ansatz

- <sup>4</sup>He parameters: Circulation  $\kappa = 10^{-3} \text{ cm}^2/\text{s}$ Vortex core size  $\xi = 10^{-8} \text{ cm}$
- Initial condition: (arbitrary) vortex lattice of N rings ( $N = 7, 19, 37, 61, 91, \cdots$ )



Initial condition N = 19 rings

Begin at T=0

#### Tests

Energy: 
$$E = \frac{1}{2} \int_{V} \mathbf{v}^{2} dV = \kappa \oint \mathbf{v} \cdot \mathbf{s} \times \mathbf{s}' d\xi_{0}$$



Leapfrogging of N = 2 rings travelling up to 40 diameters Symbols refer to different numerical resolutions  $\Delta \xi_0$  $\Delta E/E$  within 0.5%, 1% for largest bundles

#### N=3 rings: Generalised Leapfrogging



## N=3 rings: Generalised Leapfrogging



(a) t = 0.0075 s



(d) 
$$t = 2.25 \text{ s}$$







(b) t = 0.75 s



(e) 
$$t = 3.0 \text{ s}$$







(c) t = 1.5 s



(f) t = 3.75 s





\_

## Larger N

• Large *N* bundles of rings, over long time/distance, tend to develop long wave perturbations

• These perturbations eventually induce vortex reconnections, hence short waves perturbations which travel around the rings, which induce further short wave perturbations

• Due to reconnections, the number *N* becomes ill defined, but vortex bundles are robust, and travel at essentially constant speed over a large distance even if turbulent





Barenghi at al., 2008





Barenghi at al., 2008



#### N=7 rings: Instability



(a) t = 55.875 s



(d) t = 60.0 s







(b) t = 55.75 s



(e) t = 63.75 s



(h) t = 75.0075 s



(c) t = 58.50 s



(f) t = 67.50 s



(i) t = 78.75 s

#### Velocity

One vortex ring:

$$u = rac{\kappa}{4\pi R} \left( \ln \left( 8R/\xi 
ight) - 1/2 
ight)$$

Model bundle of N rings by  $\kappa \to N\kappa$  and  $\xi \to a$ 



Black squares and diamonds: Borner's experiments Red circles: numerical simulations  $N \le 1027$ Blue line: model



#### N=91 Bundle



 $\Delta x/D = 2.65$ 

 $\Delta x/D = 5.17$ 

 $\Delta x/D = 10.04$ 

#### Cross-section

The long-term instability is probably due to "core" deformation: the bundle does not remain circular, but acquires a D-shape and becomes stretched

N = 91



See classical stability of vortex rings (Moore, Saffman, Widnall, Fukumoto, Moffatt, etc)

#### What about the effect of friction?

At T > 0 friction modifies vortex dynamics:

$$\frac{d\mathbf{s}}{dt} = \mathbf{v}_s^{ext} + \mathbf{v}_{si} + \alpha \mathbf{s}' \times (\mathbf{v}_n^{ext} - \mathbf{v}_s^{ext} - \mathbf{v}_{si}) - \alpha' \mathbf{s}' \times [\mathbf{s}' \times (\mathbf{v}_n^{ext} - \mathbf{v}_s^{ext} - \mathbf{v}_{si})]$$

Motion of a single ring (Barenghi, Donnelly, Vinen 1983):

$$\frac{dR}{dt} = \frac{\gamma}{\rho_s \kappa} (v_s^{ext} - v_n^{ext} - v_{si})$$

where  $\gamma = \gamma(\alpha, \alpha')$  and

$$v_{si} = rac{\kappa}{4\pi R} [\ln \left( 8R/\xi 
ight) - 1/2]$$

#### Effect of friction

Assume 
$$\mathbf{v}_n^{e \times t} = \mathbf{v}_s^{e \times t} = \mathbf{0}$$



Decay of a single ring



Decay of N = 19 bundle

## Effect of friction

- Clearly not in agreement with Borner's and others results at T>0
- A solution of the puzzle:
- The piston which creates the superfluid bundle must generate a normal fluid vortex ring too !
- We add to the equation of motion a normal fluid ring (with solid body rotating core) placed at the moving centre of the superfluid bundle. This term v<sub>n</sub> ≠ 0 effectively cancels the friction and stabilizes the bundle.



FIG. 3. (Color online) Motion of 3 vortex rings in the presence of friction at T = 2.02 K and normal-fluid ring ( $v_n \neq 0$ ). The initial condition is the same as in Fig. 1. Left: t = 0; middle: t = 3.6; right: t = 7.2 s. It is apparent that the superfluid vortex bundle moves in a stable way as in the absence of friction (Fig. 1); the individual rings leapfrog around each other.



FIG. 5. (Color online) Vortex bundle at T = 2.02 K in the presence of friction and normal-fluid ring  $\mathbf{v}_n$ . Top: Side (left) and rear (right) view of vortex bundle with N = 19 rings at time t = 80 s.

TABLE III. Evolution at T = 2.02 K in the presence of friction and  $\mathbf{v}_n$ .

| N  | <i>t</i> (s) | $\Delta z/D$ | $\Lambda/\Lambda_0$ | $\bar{c}/\bar{c}_0$ | $v/v_0$ |
|----|--------------|--------------|---------------------|---------------------|---------|
| 2  | 50           | 11.87        | 0.97                | 1.02                | 0.99    |
| 3  | 40           | 11.37        | 0.96                | 1.07                | 1.10    |
| 7  | 30           | 10.13        | 1.52                | 1.18                | 0.69    |
| 19 | 60           | 10.21        | 0.80                | 1.08                | 0.64    |

#### To summarise

- Large-scale bundles of superfluid vortex rings are indeed sufficiently robust to travel a distance of at least 10 diameters as observed in experiments
- Generalised leapfrogging motion
- Results hold true in the presence of friction (high *T*): the corresponding (continuous) large-scale normal fluid structure prevents the superfluid rings from shrinking.
- Implications for quantum turbulence ?

## Conclusions

- Our results suggest that bundles of superfluid vortex rings can travel coherently a significant distance, at least one order of magnitude larger than their diameter at both zero and finite temperatures.
- In the absence of any direct experimental observation, the existence (and the nonexistence) of quantised vortex bundles has generated much discussion, particularly with respect to the quasi-classical regime.
- The vortex rings generated by the piston-cylinder setup provide a "forced" but controlled method to study the coupling of the normal and super fluid components.
- The detailed mechanism of the generation of the double vortex ring structure at the hole of the cylinder is an interesting problem of two-fluid hydrodynamics which would be worth studying.

Conclusions (ctd): Perhaps it is time to revisit macroscopic vortex rings experimentally again

