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Motivation

At T=0 two distinct regimes of quantum turbulence are observed
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(7>0) Also T1 regime of thermal counterflow
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Quasi-Classical Regime

Some statistical properties of the flow are in agreement with K41
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Vortex bundles seem important to generate large scale flow
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Vortex bundles seem important to generate large scale flow
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Vortex bundles seem important to generate large scale flow
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Analogy with classical turbulence

Ordinary turbulence contains metastable regions of coherent vorticity (vortex
tubes, worms)

She, Jackson & Orzag, 1990

Vincent & Meneguzzi 1991



Analogy with classical turbulence

Ordinary turbulence contains metastable regions of coherent vorticity (vortex
tubes, worms)
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Experimental evidence for such a picture in QT
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Fig. 4: Power spectrum density of the vortex line density L
for different mean flow velocities: from bottom to top 0, 0.68,
0.90 and 1.25m/s. The straight line is a (—5/3) power law. The
insert is a f —5/3 compensated spectrum for the 3 different mean
flows after removal of a 5- 10> m~* Hz~ ! white-noise floor.

Observed frequency
dependence of the spectrum,
disagrees with classical
vorticity spectra

Disagreement explained if
the vortex line density field is
decomposed into a polarised
field (which carries most of
the energy) and an isotropic
field (which is responsible for
the spectrum)



In 2D Bundles -> Clusters

Received a lot of attention in the BEC community recently
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2D Supertluid Wind-tunnel
e 2D Gross-Pitaevskii equation:
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A controlled setup to study bundles of quantised vortices

Vortex rings have a long tradition in superfluid helium, from Rayfield
& Reif (1964), to Winiecki & Adams (2000) to recent work of
Walmsley, Zmeev & Golov

Vortex rings are Hamiltonian objects: U = (9H/3p

v = % In(8R/a) — 1/2] H = PR

n(8R/a — 2)]

p = pI'mR?



Borner's Experiment

Second - sound
receivers

Experiment by Borner et al. 1983
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Borner's Experiment

e Interpretation of the experiment:
Bundles of N ~ 103 concentric quantised vortex rings

Typical £ ~ 0.003 cm > core size £ ~ 107° c¢m

e How do vortex bundles move ?
some kind of stable generalized (N > 2) leapfrogging
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Classical leap-frogging of two vortex rings

Yamadao & Matsui, 1978
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Vortex filament method

Biot-Savart Integral /

éz F}((s—r)xdr /
dt A7 [, |s —r|
o

e




Vortex filament method

Biot-Savart Integral /

éz I\74(8_1.)><dr /
dt 41 L"S—I'IS

\\// Model reconnections
algorithmically ‘cut and paste’




A note on
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Experimental results
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Finite temperature effects

The typical
solid-liquid-gas
phase diagram

In the lab we are never at 0K

Pressure

Helium is an intimate mix of inviscid
superfluid component and a viscous normal

fluid.
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Finite temperature effects

The typical
solid-liquid-gas
phase diagram

 |n the lab we are never at OK

Pressure

* Helium is an intimate mix of inviscid
superfluid component and a viscous normal

fluid.
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Mutual friction

Balance Magnus and drag forces

ds
dt

Normal viscous fluid coupled to

__ tot / ext tot o, / ext ot
= v +as’ x (v¢ —VS)—O(S x[s X (v, — V, ]

Counterflow Turbulence

inviscid superfluid via mutual ™
friction.

BN,
Superfluid component extracts \Q
energy from normal fluid component

via Donelly-Glaberson instability,

>

[
amplification of Kelvin waves. '

n

Kelvin wave grows with amplitude

A(t) = A(0)e”’

o(k) = akV — V'k?) v (s, t) = (c,0,0)
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Numerical simulations of Borner’'s experiment

e Vortex lines = space curves s(t):
Biot—Savart law

ds | K (s —r)

= —— x dr
dt A r |S— r\3

plus reconnection Ansatz

e “*He parameters:
Circulation kK = 1073 cm?/s
Vortex core size £ = 107% cm

e [nitial condition:
(arbitrary) vortex lattice of N rings

(N =7,19,37,61,91, - - - )

Begin at T=0
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Tests
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N=3 rings: Generalised Leapfrogging

(a) t = 0.005 (b) t = 0.4 (c)t=0.38

(d) t=12 (e) t =16 (f) t = 2.0

(g)t =24 (h)t =28 (i)t = 3.2




N=3 rings: Generalised Leapfrogging

(a) t=0.0075 s ]t=0.75 s (e)t=15s
Jt=2258 (e) t=3.0s (f) t=3.75s

Jt=5235s (1)t =6.08

Jt=45+s



Larger N

e Large N bundles of rings, over long time/distance, tend to
develop long wave perturbations

e [hese perturbations eventually induce vortex reconnections,
hence short waves perturbations which travel around the rings,
which induce further short wave perturbations

e Due to reconnections, the number N becomes ill defined, but
vortex bundles are robust, and travel at essentially constant speed
over a large distance even if turbulent
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N=7 rings: Instability

(h) t = 75.0075 s



Velocity

One vortex ring:

= (in(8R/€) — 1/2)

Model bundle of N rings by
k — Nk and & — a

N 0 'IDI'DEI EEIID'D 3{;;?[] 41];[][] EDI'DEI 6000
v = ’;;(In(SR/a)— 1/2)

Black squares and diamonds: Borner's experiments
Red circles: numerical simulations N < 1027
Blue line: model



N=91 Bundle

Ax/D = 2.65 Ax/D = 5.17 Ax/D = 10.04



Cross-section

he long-term instability is probably due to "core” deformation:
the bundle does not remain circular, but acquires a D-shape
and becomes stretched

N =91
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What about the effect of friction?

At T > 0 friction modifies vortex dynamics:

ds
dt

—|—V51—|‘OZS ><(Vext“ vsext_vSI) o S ><[S ><( ext V§Xt_vsi)]

ext

Motion of a single ring (Barenghi, Donnelly, Vinen 1983):

( ext . ,ext

dR_’yV ’

E_pﬁ: ° 0 Vi)
S

where v = y(«a, o) and

vsi = = [In (8R/€) — 1/2



Effect of friction

Assume v&t = y&T —

Decay of a single ring

Decay of N = 19 bundle



Effect of friction

Clearly not in agreement with Borner's and others results
at 1>0

A solution of the puzzle:

The piston which creates the superfluid bundle must
generate a normal fluid vortex ring too |

We add to the equation of motion a normal fluid ring
(with solid body rotating core) placed at the moving
centre of the superfluid bundle. This term Vn 7 0
effectively cancels the friction and stabilizes the bundle.



FIG. 3. (Color online) Motion of 3 vortex rings in the presence of friction at 7T = 2.02 K and normal-fluid ring (v, 7 0). The initial
condition is the same as in Fig. 1. Left: r = 0; middle: ¢t = 3.6; right: t = 7.2 s. It is apparent that the superfluid vortex bundle moves in a stable
way as in the absence of friction (Fig. 1); the individual rings leapfrog around each other.

TABLE III. Evolution at 7 = 2.02 K in the presence of friction

and v,,.

N t(s) AZ/D A/A() E/EO U/U()
2 50 11.87 0.97 1.02 0.99
3 40 11.37 0.96 1.07 1.10
7 30 10.13 1.52 1.18 0.69
19 60 10.21 0.80 1.08 0.64

FIG. 5. (Color online) Vortex bundle at 7 = 2.02 K in the pres-
ence of friction and normal-fluid ring v,. Top: Side (left) and rear
(right) view of vortex bundle with N = 19 rings at time r = 80 s.



To summarise

e Large-scale bundles of superfluid vortex rings are indeed
sufficiently robust to travel a distance of at least 10 diameters as
observed In experiments

e Generalised leapfrogging motion

e Results hold true in the presence of friction (high T):
the corresponding (continuous) large-scale normal fluid structure
prevents the superfluid rings from shrinking.

e Implications for quantum turbulence ?



Conclusions

Our results suggest that bundles of superfluid vortex rings can
travel coherently a significant distance, at least one order of

magnitude larger than their diameter at both zero and finite
temperatures.

In the absence of any direct experimental observation, the existence
(and the nonexistence) of quantised vortex bundles has generated
much discussion, particularly with respect to the quasi-classical
regime.

The vortex rings generated by the piston-cylinder setup provide a
“forced” but controlled method to study the coupling of the normal
and super fluid components.

The detailed mechanism of the generation of the double vortex
ring structure at the hole of the cylinder is an interesting problem
of two-fluid hydrodynamics which would be worth studying.




Conclusions (ctd): Perhaps it is time to revisit
macroscopic vortex rings experimentally again
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