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Motivation
At T=0 two distinct regimes of quantum turbulence are observed

Walmsley & Golov, PRL, 2008 

At T < 0:7 K, each injected electron dresses itself in a
quantized vortex ring, somewhere between the tip and the
nearby grid, and then propagates along with it into the cell.
The ring energy Er ! 1

2!
2"sR"!r # 2$ and velocity vr %

!
4#R "!r # 1$ depend solely on its radius R [here !r !
ln"8R=a0$ % 11] [9]. The arrival of pulses of current car-
ried by ballistic CVRs is shown in Fig. 2. The extrapolation
of the dependence of the time-of-flight on the driving
voltage to V ! 0 gives 0.3 s (inset) corresponding to
CVRs injected through the grid with initial velocities v0 %
15 cm=s, radius R0 % 0:53 $m and energy 21 eV. Even
though the side and bottom tips had very different thresh-
old voltages for electron injection, 300 and 120 V, these
initial radii of the rings were about the same for both. No
dependence of the ring energy on the injected current in the
range 10#12–10#10 A was found. The mutual friction %
limits the range of a ballistic ring to R0=% [9]. For CVRs to
survive the distance to the collector d, one needs %<
R0=d& 10#5 (corresponding to T < 0:5 K), although a
propelling force due to the driving field extends this tem-
perature range.

When such rings collide, they build a tangle which then
spreads into the entire volume. The decrease in the peak
height I of the current pulses due to the ballistic CVRs
(shown in Fig. 2), relative to the long time amplitude I"1$
when all vortices have decayed, is the measure of blocking
the paths of some ballistic CVRs with the probability per
unit length L& where && R. We hence determine the
vortex density after time t since stopping injection as
L"t$ ! "&d$#1 lnI"1$I"t$ . The slowly decaying component of
the current (i.e., of the decay time much longer than the
pulse width 0.1–0.3 s and the time constant of the amplifier
0.15 s), that appears in Fig. 2 as ‘‘tails’’ after each pulse at
times t > 1:5 s, is due to the ions trapped on entangled
vortices originating after each pulse. Their contribution,
clearly seen in Fig. 2 as being of&0:04 pA after only 5 s of
waiting between pulses, was subtracted when determining
I"t$. The free decay for these tangles L"t$ at T < 0:5 K is
shown in Fig. 3, which is our central result. We found that
the late-time decay is insensitive to the details of generat-

FIG. 2 (color online). Transients of the current of CVRs to the
top collector after different waiting times between the pulses
(shown in seconds); the duration of injection is 0.3 s, V ! 90 V,
T ! 0:15 K. The arrival time (leading edge indicated by an
arrow), 0.7 s, is the same for all pulses. The inset shows the
dependence of the arrival time on the driving voltage.

FIG. 3 (color online). Free decay of a tangle at T ! 0:15 K.
The injection direction and duration, and driving field are
indicated. Probing with pulses of CVRs of duration 0.1–0.3 s
were done in the same field as the initial injection, and also in the
same direction except in one case (*). The line L / t#1 corre-
sponds to Eq. (2) with 'V ! 0:1!.

FIG. 1 (color online). Cartoon of the vortex configurations (side view) at different stages. The shaded areas indicate the trajectories
of ions used to probe the tangle along two orthogonal directions. To avoid contamination of the developing tangle with new ions and
vortices, only one probe pulse of ions was fired for each realization of the tangle. (a) At t ! 0, a pulse of CVRs is injected from the left
injector. While most CVRs make it to the collector as a sharp pulse, some got entangled near the injector. (b) At t& 5 s, the tangle
spreads into the middle of the cell. (c) At t& 20 s, the tangle has occupied all volume. (d) For up to 1000 s, the homogeneous tangle is
decaying further.
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ing the initial tangle such as injection duration (0.1–1 s)
and intensity (10!12–10!10 A), and driving field
(0–20 V=cm) (see Fig. 3), i.e., the decay curve is universal
and follows Eq. (2). This gives strong support to the
interpretation that the dynamics is that of a random tangle
and not just the transient of a structured tangle with a not
yet saturated energy-containing length. No changes with
temperature were observed at T " 0:5 K. The values of
!V=", obtained using Eq. (2), were slightly different for
L#t$ probed in horizontal (0:083% 0:004) and vertical
(0:120% 0:013) directions. This might reflect the fact
that trapping diameters # were slightly different for
CVRs injected by different tips. As we could only calibrate
# for the horizontal direction, and then used the obtained
value to quantify L for both directions, the absolute value
of !V & 0:08" seems more reliable. Note that, because of
the finite width of the probe pulses 0.1–1.0 s and recorded
time-of-flight '0:15–1:0 s for CVRs and free ions, the
decay time t has an uncertainty of 0.1–1 s; this is negligible
for points at t > 20 s that were used for quantitative
analysis.

During steady injection, the slow component of the
collector current, associated with the spread of the tangle
containing the trapped ions, only arrived after '10 s. This
implies that the initial tangle is always created near the
injector and not near the collector at the opposite side of
the cell. To study the dynamics of how the tangle spreads
out into space, we probed L#t$ across the direction of
injection [Fig. 3(*)]: within some 5–10 seconds, the tangle
reaches the center of the cell, then fills all volume and
becomes homogeneous [as L#t$ becomes indistinguishable

from those measured along the direction of injection] after
'20 s. The dynamics of spreading was found to be inde-
pendent of the driving field. The observed time, '20 s, is
surprisingly short if one compares it with the estimate
d2=D' 2( 105 s based on the simulated value of the
diffusion coefficient [14] D' 0:1" for L. However, if we
consider ‘‘evaporation of vortex loops’’ from the boundary
regions of strongly inhomogeneous tangles, the rate of
spreading is comparable with'1 mm=s observed in simu-
lations [15]. Also, the initial tangle might maintain a
certain polarization as a memory of the orientation of the
initial injected CVRs that it was created from. This would
speed up the process of spreading before the tangle occu-
pies the entire volume.

The field due to the trapped charge was found not to
affect the dynamics of the tangle’s decay. This was checked
for various ratios of the total injected charge of density n to
L up to n=L' 105 cm!1, as well as in different driving
fields between !5 V=cm and 20 V=cm. As the time of
flight of CVRs (Fig. 2) was independent of the trapped
charge (but dependent on the driving voltage), the field due
to the trapped charge was always much smaller than the
driving one.

Yet, after a sufficient injection time, the classical energy
Ec can become dominant. Indeed, the observed late-time
decay at T > 0:7 K (Fig. 4), L / t!3=2, especially promi-
nent for dense initial tangles after long (>30 s) injection,
was virtually identical to that of turbulence produced by
mechanical means. Using Eq. (3), we extract the values of
!K#T$ for L / t!3=2 and plot them in Fig. 5 for ion-jet,

FIG. 4 (color online). Free decay of a tangle produced by a jet
of ions (!) from the bottom injector into a 10 V=cm field for
150 s, as well as by an impulsive spin-down to rest [8] from
1:5 rad=s and 0:5 rad=s, at T & 1:60 K. All tangles were probed
by pulses of free ions in the horizontal direction (spin-down data:
probe field 20 V=cm, pulse length 0.5 s; ion jet data: probe field
10 V=cm, pulse length 1.0 s ). The line L / t!3=2 corresponds to
Eq. (3) with !K & 0:2".

FIG. 5 (color online). The effective kinematic viscosity for
different types of superfluid turbulence. Vinen (quantum) type,
generated by: CVRs (this work, L#t$ measured along the vertical
(4) and horizontal (5) directions), buildup of counterflow [3],
simulations [16], vibrating grid in 3He-B vs temperatures at
which 4He has comparable values of 10!4 < $< 2( 10!3

[20]. Kolmogorov (quasiclassical) type: ion jet (this work),
spin-down [8] sampled by CVRs (4) and free ions (5), towed
grid [11].
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At T < 0:7 K, each injected electron dresses itself in a
quantized vortex ring, somewhere between the tip and the
nearby grid, and then propagates along with it into the cell.
The ring energy Er ! 1

2!
2"sR"!r # 2$ and velocity vr %

!
4#R "!r # 1$ depend solely on its radius R [here !r !
ln"8R=a0$ % 11] [9]. The arrival of pulses of current car-
ried by ballistic CVRs is shown in Fig. 2. The extrapolation
of the dependence of the time-of-flight on the driving
voltage to V ! 0 gives 0.3 s (inset) corresponding to
CVRs injected through the grid with initial velocities v0 %
15 cm=s, radius R0 % 0:53 $m and energy 21 eV. Even
though the side and bottom tips had very different thresh-
old voltages for electron injection, 300 and 120 V, these
initial radii of the rings were about the same for both. No
dependence of the ring energy on the injected current in the
range 10#12–10#10 A was found. The mutual friction %
limits the range of a ballistic ring to R0=% [9]. For CVRs to
survive the distance to the collector d, one needs %<
R0=d& 10#5 (corresponding to T < 0:5 K), although a
propelling force due to the driving field extends this tem-
perature range.

When such rings collide, they build a tangle which then
spreads into the entire volume. The decrease in the peak
height I of the current pulses due to the ballistic CVRs
(shown in Fig. 2), relative to the long time amplitude I"1$
when all vortices have decayed, is the measure of blocking
the paths of some ballistic CVRs with the probability per
unit length L& where && R. We hence determine the
vortex density after time t since stopping injection as
L"t$ ! "&d$#1 lnI"1$I"t$ . The slowly decaying component of
the current (i.e., of the decay time much longer than the
pulse width 0.1–0.3 s and the time constant of the amplifier
0.15 s), that appears in Fig. 2 as ‘‘tails’’ after each pulse at
times t > 1:5 s, is due to the ions trapped on entangled
vortices originating after each pulse. Their contribution,
clearly seen in Fig. 2 as being of&0:04 pA after only 5 s of
waiting between pulses, was subtracted when determining
I"t$. The free decay for these tangles L"t$ at T < 0:5 K is
shown in Fig. 3, which is our central result. We found that
the late-time decay is insensitive to the details of generat-

FIG. 2 (color online). Transients of the current of CVRs to the
top collector after different waiting times between the pulses
(shown in seconds); the duration of injection is 0.3 s, V ! 90 V,
T ! 0:15 K. The arrival time (leading edge indicated by an
arrow), 0.7 s, is the same for all pulses. The inset shows the
dependence of the arrival time on the driving voltage.

FIG. 3 (color online). Free decay of a tangle at T ! 0:15 K.
The injection direction and duration, and driving field are
indicated. Probing with pulses of CVRs of duration 0.1–0.3 s
were done in the same field as the initial injection, and also in the
same direction except in one case (*). The line L / t#1 corre-
sponds to Eq. (2) with 'V ! 0:1!.

FIG. 1 (color online). Cartoon of the vortex configurations (side view) at different stages. The shaded areas indicate the trajectories
of ions used to probe the tangle along two orthogonal directions. To avoid contamination of the developing tangle with new ions and
vortices, only one probe pulse of ions was fired for each realization of the tangle. (a) At t ! 0, a pulse of CVRs is injected from the left
injector. While most CVRs make it to the collector as a sharp pulse, some got entangled near the injector. (b) At t& 5 s, the tangle
spreads into the middle of the cell. (c) At t& 20 s, the tangle has occupied all volume. (d) For up to 1000 s, the homogeneous tangle is
decaying further.
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L ⇠ t�1L ⇠ t�3/2

Ultra-quantum Quasi-Classical



(T>0) Also T1 regime of thermal counterflow6

Figure 7. Snapshot of the vortex configuration for counterflow tur-
bulence (left) and frozen Navier-Stokes turbulence (right) taken once
the simulations are in a statistically steady state.

Figure 8. Smoothed line density sustained by counterflow turbu-
lence (left) and frozen Navier-Stokes turbulence (right).
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Figure 7. Snapshot of the vortex configuration for counterflow tur-
bulence (left) and frozen Navier-Stokes turbulence (right) taken once
the simulations are in a statistically steady state.

Figure 8. Smoothed line density sustained by counterflow turbu-
lence (left) and frozen Navier-Stokes turbulence (right).
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Figure 2. Energy spectrum E(k) (arbitrary units) vs wavenumber
k (cm−1) corresponding to vortex tangles generated by a counter-
flow (left) and frozen Navier-Stokes turbulence (right). The dashed
lines indicate the k−1 (left) and the k−5/3 dependence (right), respec-
tively. Parameters as in Fig. (1). The compensated spectra kEs(k)
and k5/3Es(k) in the insets show the regions of k–space where the
approximate scalings k−1 and k−5/3 apply.
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Figure 3. Power spectral density PSD (arbitrary units) of the fluc-
tuations of the total vortex line density L for counterflow turbulence
(left) and frozen Navier-Stokes turbulence (right), measured within
box sizes (ℓi) (from bottom to top): ℓ1 = 0.1 (red line), ℓ2 = 0.05
(blue line), ℓ3 = 0.025 (green line), ℓ4 = 0.0125 (black line). Dashed
verticals are calculated as: fℓi = Γ/ℓ2i
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Quasi-Classical Regime

Some statistical properties of the flow are in agreement with K41

32 EUROPHYSICS LETTERS

that a total-head pressure tube immersed in helium II measures a linear combination of the
pressure, normal and superfluid components. It is di�cult to simplify further relation (4) at
this stage, except perhaps close to T� where the normal component is dominant compared to
the superfluid one and far below T� where we have the opposite situation.
In our experiment, the signal obtained at the probe is analyzed on a HP3562A spectrum

analyzer, and digitized on a 16 bit converter, controlled by a DSP. The records are of various
sizes, from a few to about five millions of points. Such sizes proved su�cient to determine up
to the eighth moment of the structure functions, for the range of scales we consider.

Results. – We first consider turbulent flows of normal helium, i.e. for temperatures
above T�. A typical signal of pmeas(t), for normal helium at 2.3 K, driven at 6 Hz, is shown in
fig. 2(a).
In the experimental conditions we consider here, the local velocity is 80 cm/s, and the

Reynolds number is roughly 2⇥106. Figure 3 (a) represents the Fourier spectrum corresponding
to the signal of fig. 2 (a). On the spectrum, the peak around 25 Hz corresponds to the forcing
frequency: it is four times the disk rotation frequency, which is 6 Hz in the present case, as
previously mentioned. A peak at 900 Hz (probably linked to the organ pipe frequency) fixes,
in practice, the upper limit of the accessible frequency range; it has been filtered out prior to
digitalization.
In normal fluids, one thus finds that at low frequencies, the spectrum slowly decreases

with f , and between 30 and 600 Hz a power law behavior is visible. For comparison, we have
plotted the f�5/3 line corresponding to the Kolmogorov prediction. It is fair to say we are
close to a Kolmogorov regime in this part of the spectrum. The structure function exponents
we obtain, along with the typical values of the skewness and flatness factors of the velocity
increments, are indistinguishable from those found currently in similar systems. These results
essentially show that for a normal fluid, the total-head tube does operate as an anemometer.
We now turn to the superfluid case, at two temperatures below T�. Figure 2 (b) and (c)

represent the time series of pmeas(t) for two distinct temperatures, one close to T�, (see (b),
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Fig. 3. – Energy spectra obtained in the same conditions, but at di↵erent temperatures: (a) 2.3 K;
(b) 2.08 K; (c) 1.4 K. The spectra have been shifted vertically so as to make their representation clear.

Fig. 4. – pdf of the velocity increments obtained for time separations equal to (a) �t = 1 ms (corre-
sponding to the smallest scale we can resolve) and (b) �t = 100 ms (which is representative of a large
scale), at T = 1.4 K; the abcissa s is rescaled so as the variances of the distributions are equal to one.
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of this study.
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Direct numerical simulations. – In this section, we
processed velocity fields obtained in a stationary numeri-
cal simulation of He II with periodic boundary conditions.
The numerical procedure is described in [20]. The sim-
ulated velocity fields have a resolution of 5123 or 10243.
The simulated equations are summarized below,

Dv̨

n

Dt

= ≠ 1
fl

n

Òp

n

+ fl

s

fl

˛

F

ns

+ µ

fl

n

Ò2

v̨

n

+ ˛

f

ext

n

(12)

Dv̨

s

Dt

= ≠ 1
fl

s

Òp

s

≠ fl

n

fl

˛

F

ns

+ ˛

f

ext

s

(13)

where indices n and s refer to the normal component and
the superfluid one, respectively, ˛

f

ext

n

and ˛

f

ext

s

are external
forcing terms, µ is the dynamic viscosity. The mutual
coupling term is approximated by its first order expression:

˛

F

ns

= ≠B

2 |Ę̂
s

| (v̨
n

≠ v̨

s

) (14)

where Ę̂

s

= Ò ◊ v̨

s

is the superfluid vorticity and B = 2
is taken as the mutual friction coe�cient [26].

We impose that the simulation cut-o� scale corresponds
to the quantum inter-vortex scale ”, estimated from the
quantum of circulation Ÿ around a single superfluid vortex
and from the average vorticity,

”

2 = ŸÚe
|Ę̂

s

|2
f (15)

This truncation procedure was validated by the accurate
prediction of the vortex line density in experiments [20].
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Fig. 5: Simulated 3D velocity power spectra. Solid lines are
obtained from the velocity field of the superfluid component v̨s.
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component v̨n. The sky blue spectra were obtained at very
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The velocity power spectra for normal and superfluid
components are shown in figure 5 in the very low and
high temperature limits (resp. 1.15 K and 2.1565 K corre-
sponding to fl

s

/fl

n

= 40 and fl

s

/fl

s

= 0.1). To allow closer
comparison with the experiments, the Reynolds number
Re is estimated as,

Re = L

0


Èv2

m

Í
µ/fl

(16)

where v

m

= 1

fl

(fl
n

v

n

+ fl

s

v

s

) is the momentum velocity2,
L

0

= fi is the length corresponding to the forcing wave-
number k

0

and the kinematic viscosity is µ/fl. The power
spectrum of the momentum velocity is not plotted but
nearly matches the normal component spectrum at high
temperature and the superfluid component spectrum at
very low temperature, as expected.

The 10243 very low temperature simulation, where
fl

s

/fl

n

= 40, and the 5123 high temperature simulation,
where fl

s

/fl

n

= 0.1, have nearly the same Reynolds number
(Re = 1960 and Re = 2280 respectively), much smaller
than the Reynolds number in the experiments (of order
1.8 ◊ 105). Yet, in both cases, the spectra collapse at
large scales close to a Kolmogorov-like k

≠5/3 scaling but
di�er at smaller scales, named “meso-scales” [20]. In this
range of meso-scales, larger than the inter-vortex scale but
smaller than inertial scales, the superfluid component is
no longer locked to the normal component. At the low-
est temperatures, its energy distribution approaches a k

2

scaling, as evidenced in figure 5, which is compatible with
the equipartition of superfluid energy.

2
We used the one-dimensional rms, vrms,1d =

vrms,3dÔ
3 to be com-

parable with experiments.
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resolution !! ! 1:83" 10#2 cm and !t ! 4:0"
10#3 sec.

The energy spectrum E$k% is defined as E !
R1
0 dkE$k%, where E is the kinetic energy per unit mass

and k is the wave number of the velocity field. In our
previous papers we derived the energy spectrum under the
vortex filament model [12]:

E$k% ! "2

2$2#%3
Z d"k

jkj2
ZZ

d!1d!2 " s0$!1%
& s0$!2%e#k&'s$!1%#s$!2%(; (1)

where d"k denotes the volume element k2 sin$kd$kd%k in
spherical coordinates. Here a vortex filament is repre-
sented by the parametric form s ! s$!; t%, where s refers
to a point on the filament, the prime denotes differentia-
tion with respect to the arc length !, and the integration is
taken along the filament. The energy spectrum E$k% is
calculated for the vortex configuration s$!% obtained by
the simulation of the dynamics.

Figure 1 shows the decay of the vortex tangle without
the mutual friction [13]. As the initial configuration of
vortices, we use the Taylor-Green vortex [3] [Fig. 1(a)].
These initial vortices are highly polarized. However,
through the chaotic dynamics which includes lots of
reconnections, the vortices become a homogeneous and
isotropic vortex tangle [Figs. 1(b)–1(d)].

First we discuss the transient behavior of the k depend-
ence of the energy spectrum E$k%. The energy spectra
calculated from each configuration in Fig. 1 are shown in
Fig. 2. It is shown that the slope is changed about at k !
2#=l, where l is the average intervortex spacing. The
energy spectrum for k > 2#=l has k#1 behavior which

comes from the velocity field near each vortex line [3,14],
though the random vortices compose the turbulent veloc-
ity field. On the contrary, the spectrum for k < 2#=l is
strongly affected by the random vortex configuration. At
t ! 0 sec, the spectrum has a large peak at the smallest
wave number, being flat in the intermediate range because
there are only large vortices and no short-scale structure
on them. Figure 2 shows that as the vortices become the
homogeneous and isotropic vortex tangle the slope for
k < 2#=l converges to the Kolmogorov form k#5=3.

The Kolmogorov law can be derived from the argument
based on the picture of the cascade process [15]. In the
inertial range the kinetic energy is transferred steadily
from small k to large kwithout dissipation, and dissipated
at the end of the inertial range. Thus, for the steady state,
the energy dissipation rate & ! #dE=dt can be identified
with the energy flux in the inertial range. Then the energy
spectrum depends only on the wave number k and the
energy dissipation rate & ! #dE=dt, which leads to the
Kolmogorov spectrum E$k% ! C&2=3k#5=3. Here C is
the (dimensionless) Kolmogorov constant of order unity.

In our previous papers, the cascade process without the
mutual friction in superfluid turbulence was discussed
[10]. Through lots of reconnections, the vortex tangle
breaks up to smaller ones and this process proceeds
self-similarly, and in our calculation the smallest vortex
whose size is the order of the numerical space resolution
!! is eliminated by the cutoff procedure. This resolution
in our calculation is much larger than the dissipative scale
in a real system. However, this numerical cutoff can be
justified, because the cascade process at a small scale pro-
ceeds much faster than that at a large scale. Actually we
showed the decay rate of the density of vortices was
almost independent of the cutoff scale !!. Figure 3 shows
the energy dissipation rate & due to the cutoff procedure
in the dynamics of Fig. 1. After 70 sec, the tangle
becomes isotropic and homogeneous losing the memory

(a) (b)

(c) (d)

FIG. 1. Time evolution of the vortex tangle at t ! 0 sec (a),
t ! 30:0 sec (b), t ! 50:0 sec (c), and t ! 70:0 sec (d).

FIG. 2. The energy spectra of the vortex tangle at t ! 0 sec
(dashed line), t ! 30:0 sec (dot-dashed line), t ! 50:0 sec
(long-dashed line), and t ! 70:0 sec (solid line).
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resolution !! ! 1:83" 10#2 cm and !t ! 4:0"
10#3 sec.

The energy spectrum E$k% is defined as E !
R1
0 dkE$k%, where E is the kinetic energy per unit mass

and k is the wave number of the velocity field. In our
previous papers we derived the energy spectrum under the
vortex filament model [12]:
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jkj2
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d!1d!2 " s0$!1%
& s0$!2%e#k&'s$!1%#s$!2%(; (1)

where d"k denotes the volume element k2 sin$kd$kd%k in
spherical coordinates. Here a vortex filament is repre-
sented by the parametric form s ! s$!; t%, where s refers
to a point on the filament, the prime denotes differentia-
tion with respect to the arc length !, and the integration is
taken along the filament. The energy spectrum E$k% is
calculated for the vortex configuration s$!% obtained by
the simulation of the dynamics.

Figure 1 shows the decay of the vortex tangle without
the mutual friction [13]. As the initial configuration of
vortices, we use the Taylor-Green vortex [3] [Fig. 1(a)].
These initial vortices are highly polarized. However,
through the chaotic dynamics which includes lots of
reconnections, the vortices become a homogeneous and
isotropic vortex tangle [Figs. 1(b)–1(d)].

First we discuss the transient behavior of the k depend-
ence of the energy spectrum E$k%. The energy spectra
calculated from each configuration in Fig. 1 are shown in
Fig. 2. It is shown that the slope is changed about at k !
2#=l, where l is the average intervortex spacing. The
energy spectrum for k > 2#=l has k#1 behavior which

comes from the velocity field near each vortex line [3,14],
though the random vortices compose the turbulent veloc-
ity field. On the contrary, the spectrum for k < 2#=l is
strongly affected by the random vortex configuration. At
t ! 0 sec, the spectrum has a large peak at the smallest
wave number, being flat in the intermediate range because
there are only large vortices and no short-scale structure
on them. Figure 2 shows that as the vortices become the
homogeneous and isotropic vortex tangle the slope for
k < 2#=l converges to the Kolmogorov form k#5=3.

The Kolmogorov law can be derived from the argument
based on the picture of the cascade process [15]. In the
inertial range the kinetic energy is transferred steadily
from small k to large kwithout dissipation, and dissipated
at the end of the inertial range. Thus, for the steady state,
the energy dissipation rate & ! #dE=dt can be identified
with the energy flux in the inertial range. Then the energy
spectrum depends only on the wave number k and the
energy dissipation rate & ! #dE=dt, which leads to the
Kolmogorov spectrum E$k% ! C&2=3k#5=3. Here C is
the (dimensionless) Kolmogorov constant of order unity.

In our previous papers, the cascade process without the
mutual friction in superfluid turbulence was discussed
[10]. Through lots of reconnections, the vortex tangle
breaks up to smaller ones and this process proceeds
self-similarly, and in our calculation the smallest vortex
whose size is the order of the numerical space resolution
!! is eliminated by the cutoff procedure. This resolution
in our calculation is much larger than the dissipative scale
in a real system. However, this numerical cutoff can be
justified, because the cascade process at a small scale pro-
ceeds much faster than that at a large scale. Actually we
showed the decay rate of the density of vortices was
almost independent of the cutoff scale !!. Figure 3 shows
the energy dissipation rate & due to the cutoff procedure
in the dynamics of Fig. 1. After 70 sec, the tangle
becomes isotropic and homogeneous losing the memory

(a) (b)

(c) (d)

FIG. 1. Time evolution of the vortex tangle at t ! 0 sec (a),
t ! 30:0 sec (b), t ! 50:0 sec (c), and t ! 70:0 sec (d).

FIG. 2. The energy spectra of the vortex tangle at t ! 0 sec
(dashed line), t ! 30:0 sec (dot-dashed line), t ! 50:0 sec
(long-dashed line), and t ! 70:0 sec (solid line).
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FIG. 2. The vortex line density L (cm−2), plotted as a function of time t (s), for the finite temperature simulation driven by
the KS flow Eq. (3).

For the simulations presented here we take M = 188, k1 = 0.1 cm, and kM = 1.8 × 10−3 cm,
which gives Ren ≈ 200. The initial conditions for the quantized vortices are a set of 100 randomly
oriented vortex rings with radius 9.5 × 10−3 cm. We timestep the vortices, according to Eq. (1), for
a period of 10 s, approximately 25 large eddie turnover times for the normal fluid. A time series of
the evolution of the vortex line density L = !/V (! is the total length of the vortices and V = D3

is the volume of the cubic domain) is displayed in Fig. 2. Initially there is a rapid growth in the
vortex line density, until the energy injected from the normal fluid is balanced by dissipation due to
vortex reconnections, after which L fluctuates around a mean value. In this steady state we analyze
both the energy spectrum of the superfluid velocity field and the structure of the vortices. Figure 3
(left) shows the vortex tangle at t = 10s, the energy spectrum, averaged over the saturated part of
the simulation (2 s ≤ t ≤ 10 s), is displayed in Fig. 3 (middle). To compute the energy spectrum
we construct a 5122 mesh in the xy-plane at the center of the box (z = 0). At each mesh point we
calculate vs , using the tree approximation to the BS integral Eq. (2).

We display this spectrum in Fig. 3 and note that it is consistent with Kolmogorov scaling at
low k. The pertinent question is: are there also associated bundles of quantized vortices? Visual
inspection of the vortex tangle may suggest bundles; however, we seek more quantitative evidence
of there existence. We convolve the discrete vortex filaments with a Gaussian kernel, and define a
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FIG. 3. The left panel shows the vortex tangle produced in the simulation at finite temperature where the normal fluid
velocity is the prescribed KS flow Eq. (3), at t = 10 s. The middle panel displays the energy spectrum E(k) vs the wavenumber
k (cm−1), note that the vertical dashed line corresponds to the intervortex spacing kℓ. (Right) A volume rendering of the
smoothed vorticity field ω (s−1) computed on a 1283 cartesian mesh.
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FIG. 4. The initial conditions for the three simulations performed at 0 K. (Left) 100 randomly oriented an positioned loops
of radius 9.5 × 10−3 cm, (middle) 10 loops of radius 9.55 × 10−2 cm, and (right) 60 randomly oriented and directed lines
arranged into bundles of 2 with a typical separation of 4 × 10−3 cm.

smoothed vorticity field ω, on a regular Cartesian mesh

ω(r, t) = κ

N∑

i=1

s′
i

(2πσ 2)3/2
exp(−|si − r|2/2σ 2)$ξ , (4)

where s′
i = dsi/dξ is the unit vector along a vortex at si = si (ξ, t) and N is the number of dis-

cretization points. We choose a smoothing length σ which is of the order of ℓ = 1/
√

L , the typical
separation of vortices, commonly referred to as the intervortex spacing. This is the only relevant
lengthscale to smooth over.

Figure 3 (right) shows a volume rendering of the smoothed vorticity field ω computed on a
1283 grid. Strong vortical regions are visible, which we associate with coherent bundles of vortices.
This provides further evidence,15, 20 that Kolmogorov turbulence in the superfluid component, at
finite temperatures is associated with bundles of vortices. The key question is: is this true at zero
temperature and are bundles necessary?

IV. TURBULENCE AT ZERO TEMPERATURE

As previously discussed, at zero temperature the system is a pure superfluid; hence, the equation
of motion for a vortex point reduces to

ds
dt

= − κ

4π

∮

L

(s − r)
|s − r|3

× dr. (5)

Our aim is to see if bundling of vortices is necessary for a Kolmogorov spectrum. With this in mind
we consider three different initial conditions. First we consider a system comprises 100 randomly
oriented and positioned loops of radius 9.5 × 10−3 cm, see Fig. 4 (left). We evolve the system for
a period of 0.5 s and then examine the energy spectra and smoothed vorticity field, ω. These are
displayed in Fig. 5 along with a snapshot of the final state of the vortex tangle.

Clearly here there is no large scale flow and no bundles are present. This is due to the fact
that the initial configuration contained little energy at large scales. Motivated by this we consider
again a system of loops but with a radius of the order of the domain size. In order to maintain the
same initial vortex line density we use 10 loops of radius 9.55 × 10−2 cm. After the application
of periodic boundary conditions this leaves a system of nearly straight vortices which have random
positions and orientations, Fig. 4 (middle). We verify that here the bulk of the energy is contained
in large scale motions. Again we timestep the system for 0.5 s and compute the energy spectra and
smoothed vorticity field, see Fig. 6. As before we see no formation of the Kolmogorov spectra and
the spectrum corresponds to that of a non-cascading straight vortex E(k) ∼ k−1. If we inspect the
smoothed vorticity field we again see a lack of bundles or coherent structures.
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cretization points. We choose a smoothing length σ which is of the order of ℓ = 1/
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Figure 3 (right) shows a volume rendering of the smoothed vorticity field ω computed on a
1283 grid. Strong vortical regions are visible, which we associate with coherent bundles of vortices.
This provides further evidence,15, 20 that Kolmogorov turbulence in the superfluid component, at
finite temperatures is associated with bundles of vortices. The key question is: is this true at zero
temperature and are bundles necessary?
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Our aim is to see if bundling of vortices is necessary for a Kolmogorov spectrum. With this in mind
we consider three different initial conditions. First we consider a system comprises 100 randomly
oriented and positioned loops of radius 9.5 × 10−3 cm, see Fig. 4 (left). We evolve the system for
a period of 0.5 s and then examine the energy spectra and smoothed vorticity field, ω. These are
displayed in Fig. 5 along with a snapshot of the final state of the vortex tangle.

Clearly here there is no large scale flow and no bundles are present. This is due to the fact
that the initial configuration contained little energy at large scales. Motivated by this we consider
again a system of loops but with a radius of the order of the domain size. In order to maintain the
same initial vortex line density we use 10 loops of radius 9.55 × 10−2 cm. After the application
of periodic boundary conditions this leaves a system of nearly straight vortices which have random
positions and orientations, Fig. 4 (middle). We verify that here the bulk of the energy is contained
in large scale motions. Again we timestep the system for 0.5 s and compute the energy spectra and
smoothed vorticity field, see Fig. 6. As before we see no formation of the Kolmogorov spectra and
the spectrum corresponds to that of a non-cascading straight vortex E(k) ∼ k−1. If we inspect the
smoothed vorticity field we again see a lack of bundles or coherent structures.
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tree approximation, specific details can be found in Ref. 4, here it is sufficient to state that the critical
opening angle θmax = 0.4, reducing the evaluation of the BS integral from an O(N 2) procedure to
O(N log(N )).

All simulations are performed within a cube of size D = 0.1 cm with periodic boundary
conditions. When evaluating the tree approximation to the BS integral, Eq. (2), for each vortex point
in the box we consider the other 33 − 1 = 26 boxes around it through periodic wrapping. In all
simulations we use parameters which refer to 4He, circulation κ = 9.97 × 10−4 cm2/s and vortex core
radius a0 = 10−8 cm. We take δ = 2 × 10−3 cm and use a numerical timestep of 5 × 10−5 s, sufficient
to resolve Kelvin waves at scales corresponding to δ/2. Spacial derivatives, which arise in evaluating
the local part of the desingularized BS equation, are approximated using 4th order finite-difference
scheme. Finally timestepping is performed using a 3rd order Adams–Bashforth scheme.

III. KOLMOGOROV TURBULENCE AT FINITE TEMPERATURES

The viscosity of the normal fluid is small in 4He, therefore, if quantum turbulence is driven by
mechanical means, we would expect the normal fluid to be turbulent. To model the turbulent normal
fluid we use the kinematic simulation (KS) model,21 in which the normal fluid velocity at position s
and time t is prescribed by the following sum of M random, unsteady Fourier modes:

vn(s, t) =
M∑

m=1

(Am × km cos φm + Bm × km sin φm) , (3)

with φm = km · s + ζmt , where km and ζm =
√

k3
m E(km) are wavevectors and frequencies. Via an

appropriate choice of Am and Bm , the energy spectrum of vn reduces to the Kolmogorov form
E(km) ∝ k−5/3

m for 1 ≪ k ≪ kM, with k = 1 at the integral scale and kM at the cut-off scale. The
effective Reynolds number Ren = (kM/k1)4/3 is defined by the condition that the dissipation time
equals the eddy turnover time at k = kM. We have adapted Eq. (3) to periodic boundary conditions,
by ensuring a 2π dependence in the components of km . Hence, vn is a convenient model for
homogeneous isotropic turbulence in an incompressible fluid. Figure 1 displays a two-dimensional
slice of the velocity field used in this study.
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FIG. 5. (Left) The vortex tangle after 0.5 s resulting from small vortex loops, Fig. 4 (left). (Middle) The energy spectrum
E(k) vs the wavenumber k (cm−1), note that the vertical dashed line corresponds to the intervortex spacing kℓ. The initial
energy spectrum is displayed as a grey line. (Right) A volume rendering of the smoothed vorticity field, due to this vortex
configuration, computed on a 1283 Cartesian mesh.

Finally we consider a system where we seek to promote bundling of the quantized vortices. We
take a set of 15 straight vortex lines, randomly oriented and directed along either the x, y, or z axis.
For each initial line we create a three further parallel vortex lines, oriented in the same direction,
but with its location offset by the initial intervortex spacing, approximately 5δ, leading to bundles
of four vortices. This initial condition is seen in Fig. 4 (right). Note that the choice of 60 lines
ensures the total vortex line density is approximately the same as in the two loop simulations. As
in the previous two simulations, we timestep the system for 0.5 s and compute the energy spectra
and smoothed vorticity field, see Fig. 7. Agreement with the Kolmogorov spectrum is visible at
lengthscales larger than the intervortex spacing. Associated with this we see coherent structures in
the smoothed vorticity field, which we associate with organized bundles of vortices. In order to
display the arrangement of vortices which leads to such a structure in Fig. 8 we display a magnified
section of the tangle corresponding to an intense vortical region.

In all zero-temperature simulations the energy spectrum is computed from the final vortex
configuration on a 5122 mesh in the xy-plane (z = 0). As earlier the smoothed vorticity field ω is
visualized from a 1283 mesh. Due to the inherent randomness of these initial conditions we perform
a large number of simulations and our conclusions remain robust to different configurations of loops
or lines. We have also confirmed that changing the degree to which the vortices are bundled in the
3rd simulation does not dramatically change the results of the simulation. However if the spacing
between the two vortices in the ‘bundle’ is very large, which can result in straight vortices with no
evidence of bundling, then we see the k−1 spectrum due to a straight vortex.
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FIG. 6. (Left) The vortex tangle after 0.5 s resulting from large vortex loops, Fig. 4 (middle). (Middle) The energy spectrum
E(k) vs the wavenumber k (cm−1), note that the vertical dashed line corresponds to the intervortex spacing kℓ. The initial
energy spectrum is displayed as a grey line. (Right) A volume rendering of the smoothed vorticity field, due to this vortex
configuration, computed on a 1283 Cartesian mesh.
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energy spectrum is displayed as a grey line. (Right) A volume rendering of the smoothed vorticity field, due to this vortex
configuration, computed on a 1283 Cartesian mesh.
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take a set of 15 straight vortex lines, randomly oriented and directed along either the x, y, or z axis.
For each initial line we create a three further parallel vortex lines, oriented in the same direction,
but with its location offset by the initial intervortex spacing, approximately 5δ, leading to bundles
of four vortices. This initial condition is seen in Fig. 4 (right). Note that the choice of 60 lines
ensures the total vortex line density is approximately the same as in the two loop simulations. As
in the previous two simulations, we timestep the system for 0.5 s and compute the energy spectra
and smoothed vorticity field, see Fig. 7. Agreement with the Kolmogorov spectrum is visible at
lengthscales larger than the intervortex spacing. Associated with this we see coherent structures in
the smoothed vorticity field, which we associate with organized bundles of vortices. In order to
display the arrangement of vortices which leads to such a structure in Fig. 8 we display a magnified
section of the tangle corresponding to an intense vortical region.

In all zero-temperature simulations the energy spectrum is computed from the final vortex
configuration on a 5122 mesh in the xy-plane (z = 0). As earlier the smoothed vorticity field ω is
visualized from a 1283 mesh. Due to the inherent randomness of these initial conditions we perform
a large number of simulations and our conclusions remain robust to different configurations of loops
or lines. We have also confirmed that changing the degree to which the vortices are bundled in the
3rd simulation does not dramatically change the results of the simulation. However if the spacing
between the two vortices in the ‘bundle’ is very large, which can result in straight vortices with no
evidence of bundling, then we see the k−1 spectrum due to a straight vortex.
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In all plots of the energy spectra (Figs. 5–7, middle panel) we also include the initial energy
spectra, plotted in grey. In the simulations which do not exhibit agreement with the Kolmogorov
spectrum, Figs. 5 and 6, a much greater decrease in energy is seen, compared to Fig. 7. This supports
the hypothesis that the bundling of vortices leads to a suppression of reconnections.18 This would
explain the noticeably lower reduction in the energy of the system seem in Fig. 7. We plan to
investigate this behaviour further in a future study. Finally in Fig. 7 we note a prominent increase in
the energy at scales below the intervotex spacing, kℓ, due to the Kelvin wave cascade.

A. Polarization of the tangle

In the work of L’vov et al.,18 the polarization of the tangle was quantified by defining the
circulation "(R) over a contour of a two–dimensional disc of radius R. Vortices will intersect this

FIG. 8. A magnified plot of a single structure from the zero-temperature simulation which exhibits the Kolmogorov scaling
(Fig. 7), plotted at t = 0.5 s. We plot only the vortex segments that make up the structure as black lines. An isosurface of the
smoothed vorticity field is plotted at 2.3 ωrms, ωrms = 0.065.
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tree approximation, specific details can be found in Ref. 4, here it is sufficient to state that the critical
opening angle θmax = 0.4, reducing the evaluation of the BS integral from an O(N 2) procedure to
O(N log(N )).

All simulations are performed within a cube of size D = 0.1 cm with periodic boundary
conditions. When evaluating the tree approximation to the BS integral, Eq. (2), for each vortex point
in the box we consider the other 33 − 1 = 26 boxes around it through periodic wrapping. In all
simulations we use parameters which refer to 4He, circulation κ = 9.97 × 10−4 cm2/s and vortex core
radius a0 = 10−8 cm. We take δ = 2 × 10−3 cm and use a numerical timestep of 5 × 10−5 s, sufficient
to resolve Kelvin waves at scales corresponding to δ/2. Spacial derivatives, which arise in evaluating
the local part of the desingularized BS equation, are approximated using 4th order finite-difference
scheme. Finally timestepping is performed using a 3rd order Adams–Bashforth scheme.

III. KOLMOGOROV TURBULENCE AT FINITE TEMPERATURES

The viscosity of the normal fluid is small in 4He, therefore, if quantum turbulence is driven by
mechanical means, we would expect the normal fluid to be turbulent. To model the turbulent normal
fluid we use the kinematic simulation (KS) model,21 in which the normal fluid velocity at position s
and time t is prescribed by the following sum of M random, unsteady Fourier modes:

vn(s, t) =
M∑

m=1

(Am × km cos φm + Bm × km sin φm) , (3)

with φm = km · s + ζmt , where km and ζm =
√

k3
m E(km) are wavevectors and frequencies. Via an

appropriate choice of Am and Bm , the energy spectrum of vn reduces to the Kolmogorov form
E(km) ∝ k−5/3

m for 1 ≪ k ≪ kM, with k = 1 at the integral scale and kM at the cut-off scale. The
effective Reynolds number Ren = (kM/k1)4/3 is defined by the condition that the dissipation time
equals the eddy turnover time at k = kM. We have adapted Eq. (3) to periodic boundary conditions,
by ensuring a 2π dependence in the components of km . Hence, vn is a convenient model for
homogeneous isotropic turbulence in an incompressible fluid. Figure 1 displays a two-dimensional
slice of the velocity field used in this study.
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FIG. 4. The initial conditions for the three simulations performed at 0 K. (Left) 100 randomly oriented an positioned loops
of radius 9.5 × 10−3 cm, (middle) 10 loops of radius 9.55 × 10−2 cm, and (right) 60 randomly oriented and directed lines
arranged into bundles of 2 with a typical separation of 4 × 10−3 cm.

smoothed vorticity field ω, on a regular Cartesian mesh

ω(r, t) = κ

N∑

i=1

s′
i

(2πσ 2)3/2
exp(−|si − r|2/2σ 2)$ξ , (4)

where s′
i = dsi/dξ is the unit vector along a vortex at si = si (ξ, t) and N is the number of dis-

cretization points. We choose a smoothing length σ which is of the order of ℓ = 1/
√

L , the typical
separation of vortices, commonly referred to as the intervortex spacing. This is the only relevant
lengthscale to smooth over.

Figure 3 (right) shows a volume rendering of the smoothed vorticity field ω computed on a
1283 grid. Strong vortical regions are visible, which we associate with coherent bundles of vortices.
This provides further evidence,15, 20 that Kolmogorov turbulence in the superfluid component, at
finite temperatures is associated with bundles of vortices. The key question is: is this true at zero
temperature and are bundles necessary?

IV. TURBULENCE AT ZERO TEMPERATURE

As previously discussed, at zero temperature the system is a pure superfluid; hence, the equation
of motion for a vortex point reduces to

ds
dt

= − κ

4π

∮

L

(s − r)
|s − r|3

× dr. (5)

Our aim is to see if bundling of vortices is necessary for a Kolmogorov spectrum. With this in mind
we consider three different initial conditions. First we consider a system comprises 100 randomly
oriented and positioned loops of radius 9.5 × 10−3 cm, see Fig. 4 (left). We evolve the system for
a period of 0.5 s and then examine the energy spectra and smoothed vorticity field, ω. These are
displayed in Fig. 5 along with a snapshot of the final state of the vortex tangle.

Clearly here there is no large scale flow and no bundles are present. This is due to the fact
that the initial configuration contained little energy at large scales. Motivated by this we consider
again a system of loops but with a radius of the order of the domain size. In order to maintain the
same initial vortex line density we use 10 loops of radius 9.55 × 10−2 cm. After the application
of periodic boundary conditions this leaves a system of nearly straight vortices which have random
positions and orientations, Fig. 4 (middle). We verify that here the bulk of the energy is contained
in large scale motions. Again we timestep the system for 0.5 s and compute the energy spectra and
smoothed vorticity field, see Fig. 6. As before we see no formation of the Kolmogorov spectra and
the spectrum corresponds to that of a non-cascading straight vortex E(k) ∼ k−1. If we inspect the
smoothed vorticity field we again see a lack of bundles or coherent structures.
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!v " !vC 1 !vI . Note that the wavelet transform is
orthogonal, which yields the decomposition of the total
enstrophy into Z " ZC 1 ZI . Finally, the Biot-Savart law
!V " = 3 !=22 !v" is used to compute the corresponding
coherent and incoherent velocity fields to obtain !V "
!VC 1 !VI . Moreover, since wavelets are almost eigen-
functions of the Biot-Savart kernel, the total energy is
also split into E " EC 1 EI 1 e with E " 1

2 # !V , !V $ and
e # 0.5%E.

To illustrate CVS filtering, we consider a statistically
stationary three-dimensional homogeneous isotropic
turbulent flow, forced at large scale, with a microscale
Reynolds number Rl " 150. The initial conditions are
random and the boundary conditions are periodic. This
flow was computed by Vincent and Meneguzzi [8] using
a pseudospectral code at resolution 2403, upsampled to
N " 2563. Such a fully developed turbulent flow contains
organized vortex tubes (also called vortex filaments or
“worms”), observed in both numerical [8,9] and laboratory
experiments [10], which are advected in a homogeneous
and isotropic fashion by the velocity field they generate.

In applying the CVS extraction algorithm with Coif-
man 12 wavelets [4,5], we find that the coherent flow is
represented by only 3%N wavelet coefficients, although
it retains 98.9% of the energy and 75.4% of the enstro-
phy. In contrast, the incoherent flow, which corresponds to
the 97%N remaining wavelet coefficients, contains only
0.6% of the energy and 24.6% of the enstrophy. In Fig. 1
we observe that both the coherent and incoherent fields
are multiscale, which confirms previous works [2,4,6,8].
The energy spectrum for the coherent flow has the same
k25%3 scaling as the total flow, throughout the whole in-
ertial range. The fall off observed in the dissipative range
corresponds to some coherent energy which has been trans-
ferred into incoherent energy before being dissipated. This
is confirmed by the fact that there is an equipartition of in-
coherent energy up to the dissipative scales, since its spec-
trum scales as k2 (white noise in 3D) followed by a decay

FIG. 1. Energy spectrum E!k".

due to the dissipation of incoherent energy at the smallest
scales.

We now compare the total, coherent, and incoherent vor-
ticity fields in physical space, after zooming into a 643

subcube to observe the small scale structures. Figures 2,
3, and 4 show three isosurfaces of the modulus of vor-
ticity j !vj for each of the three fields. We find the same
entangled vortex tubes in the coherent vorticity (Fig. 3)
as in the total vorticity (Fig. 2), while the incoherent vor-
ticity is structureless (Fig. 4). The decomposition of the
turbulent flow into an organized coherent contribution and
a random incoherent contribution is confirmed by looking
at the PDFs (probability distribution functions) of velocity
and vorticity. In Fig. 5 we observe that the coherent veloc-
ity has exactly the same PDF as the total velocity, and that
the PDF of the incoherent velocity PDF is Gaussian with
a variance ten times smaller than that of the total veloc-
ity. In Fig. 6 the PDF of the coherent vorticity exhibits the
same stretched exponential behavior as the total vorticity,
while the PDF of the incoherent vorticity is exponential
with a much smaller variance. Note that we have plotted
only one component of velocity and of vorticity, since we
have checked that, for both fields, the three components
have the same PDF.

The CVS extraction algorithm is based on a wavelet de-
noising method without any a priori assumption as to the
shape of the coherent vortices. We now check a poste-
riori that the coherent vorticity field indeed contains the
vortex tubes observed in fully developed turbulent flows
[8–10]. The vortex tubes are local quasisteady solutions
of Euler equations, which occur in regions where the non-
linearity is depleted. In 2D turbulent flows these regions

FIG. 2. Total vorticity (the gray surfaces, from light to dark,
correspond to j !vj " 3s, 4s, and 5s, with s "

p
2Z ).
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FIG. 3. Coherent vorticity (the gray surfaces, from light to
dark, correspond to j !vj " 3s, 4s, and 5s).

are characterized by a functional relationship between vor-
ticity and stream function which is used to identify the
coherent vortices [2]. However, such a precise criterion to
characterize them does not yet exist for 3D turbulent flows,
since their dynamics is more complicated due to vortex
stretching. If we rewrite Euler equations in terms of the
Lamb vector !l " !V 3 !v, we obtain ≠t !v 1 = 3 !l " 0
and = ? !V " 0. Thus, one possibility for the nonlinearity
to be depleted is when !V tends to align with !v. This cor-
responds to the local maximization of the relative helicity

FIG. 4. Incoherent vorticity (the gray surfaces, from light to
dark, correspond to j !vj " 3!2s, 2s, and 5!2s).
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h "
!V ? !v

j !V jj !vj and is called local Beltramization. Moreover, it
has been observed in both laboratory and numerical experi-
ments that vortex tubes maximize helicity [11,12], there-
fore we will use the relative helicity h as an indication of
their presence. In Fig. 7 we plot the PDF of h for the to-
tal, coherent, and incoherent flows, and we observe that
the coherent flow exhibits the same distribution as the total
flow, with two maxima at h " 11 and 21 corresponding
to alignment and antialignment between !v and !V (note that
two 3D random fields would have a flat PDF of h). The fact
that the coherent flow presents the same tendency towards
local Beltramization as the total flow is another confirma-
tion that the CVS filtering has extracted the vortex tubes.
In contrast, the PDF of h for the incoherent flow is more
evenly distributed with a maximum at h " 0, which sug-
gests a tendency towards two-dimensionalization. These
observations support Moffatt’s conjecture that “blobs of
maximal helicity may be interpreted as coherent structures,
separated by regular surfaces on which vortex sheets, the
site of strong dissipation, may be located” [13].

In conclusion, we have shown that the coherent
flow contains the vortex tubes and has the same k25!3
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characterize them does not yet exist for 3D turbulent flows,
since their dynamics is more complicated due to vortex
stretching. If we rewrite Euler equations in terms of the
Lamb vector !l " !V 3 !v, we obtain ≠t !v 1 = 3 !l " 0
and = ? !V " 0. Thus, one possibility for the nonlinearity
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has been observed in both laboratory and numerical experi-
ments that vortex tubes maximize helicity [11,12], there-
fore we will use the relative helicity h as an indication of
their presence. In Fig. 7 we plot the PDF of h for the to-
tal, coherent, and incoherent flows, and we observe that
the coherent flow exhibits the same distribution as the total
flow, with two maxima at h " 11 and 21 corresponding
to alignment and antialignment between !v and !V (note that
two 3D random fields would have a flat PDF of h). The fact
that the coherent flow presents the same tendency towards
local Beltramization as the total flow is another confirma-
tion that the CVS filtering has extracted the vortex tubes.
In contrast, the PDF of h for the incoherent flow is more
evenly distributed with a maximum at h " 0, which sug-
gests a tendency towards two-dimensionalization. These
observations support Moffatt’s conjecture that “blobs of
maximal helicity may be interpreted as coherent structures,
separated by regular surfaces on which vortex sheets, the
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!v " !vC 1 !vI . Note that the wavelet transform is
orthogonal, which yields the decomposition of the total
enstrophy into Z " ZC 1 ZI . Finally, the Biot-Savart law
!V " = 3 !=22 !v" is used to compute the corresponding
coherent and incoherent velocity fields to obtain !V "
!VC 1 !VI . Moreover, since wavelets are almost eigen-
functions of the Biot-Savart kernel, the total energy is
also split into E " EC 1 EI 1 e with E " 1

2 # !V , !V $ and
e # 0.5%E.

To illustrate CVS filtering, we consider a statistically
stationary three-dimensional homogeneous isotropic
turbulent flow, forced at large scale, with a microscale
Reynolds number Rl " 150. The initial conditions are
random and the boundary conditions are periodic. This
flow was computed by Vincent and Meneguzzi [8] using
a pseudospectral code at resolution 2403, upsampled to
N " 2563. Such a fully developed turbulent flow contains
organized vortex tubes (also called vortex filaments or
“worms”), observed in both numerical [8,9] and laboratory
experiments [10], which are advected in a homogeneous
and isotropic fashion by the velocity field they generate.

In applying the CVS extraction algorithm with Coif-
man 12 wavelets [4,5], we find that the coherent flow is
represented by only 3%N wavelet coefficients, although
it retains 98.9% of the energy and 75.4% of the enstro-
phy. In contrast, the incoherent flow, which corresponds to
the 97%N remaining wavelet coefficients, contains only
0.6% of the energy and 24.6% of the enstrophy. In Fig. 1
we observe that both the coherent and incoherent fields
are multiscale, which confirms previous works [2,4,6,8].
The energy spectrum for the coherent flow has the same
k25%3 scaling as the total flow, throughout the whole in-
ertial range. The fall off observed in the dissipative range
corresponds to some coherent energy which has been trans-
ferred into incoherent energy before being dissipated. This
is confirmed by the fact that there is an equipartition of in-
coherent energy up to the dissipative scales, since its spec-
trum scales as k2 (white noise in 3D) followed by a decay

FIG. 1. Energy spectrum E!k".

due to the dissipation of incoherent energy at the smallest
scales.

We now compare the total, coherent, and incoherent vor-
ticity fields in physical space, after zooming into a 643

subcube to observe the small scale structures. Figures 2,
3, and 4 show three isosurfaces of the modulus of vor-
ticity j !vj for each of the three fields. We find the same
entangled vortex tubes in the coherent vorticity (Fig. 3)
as in the total vorticity (Fig. 2), while the incoherent vor-
ticity is structureless (Fig. 4). The decomposition of the
turbulent flow into an organized coherent contribution and
a random incoherent contribution is confirmed by looking
at the PDFs (probability distribution functions) of velocity
and vorticity. In Fig. 5 we observe that the coherent veloc-
ity has exactly the same PDF as the total velocity, and that
the PDF of the incoherent velocity PDF is Gaussian with
a variance ten times smaller than that of the total veloc-
ity. In Fig. 6 the PDF of the coherent vorticity exhibits the
same stretched exponential behavior as the total vorticity,
while the PDF of the incoherent vorticity is exponential
with a much smaller variance. Note that we have plotted
only one component of velocity and of vorticity, since we
have checked that, for both fields, the three components
have the same PDF.

The CVS extraction algorithm is based on a wavelet de-
noising method without any a priori assumption as to the
shape of the coherent vortices. We now check a poste-
riori that the coherent vorticity field indeed contains the
vortex tubes observed in fully developed turbulent flows
[8–10]. The vortex tubes are local quasisteady solutions
of Euler equations, which occur in regions where the non-
linearity is depleted. In 2D turbulent flows these regions

FIG. 2. Total vorticity (the gray surfaces, from light to dark,
correspond to j !vj " 3s, 4s, and 5s, with s "

p
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Experimental evidence for such a picture in QT

Observed frequency 
dependence of the spectrum,         
disagrees with classical 
vorticity spectra  

Vortex spectrum of quantum turbulence

bulk dissipation by length unit which accounts for the total
attenuation on the first resonance.
Figure 3 also shows the resonances with an He flow.

Compared to the rest situation, the flow causes an extra
attenuation on the temperature signal. A small fraction of
it simply results from advection of the thermal wave out of
the cavity. A simple ballistic model of this effect gives the
equivalent bulk dissipation ξadv = V/2h · c which turns out
to be one order of magnitude below the signal of interest
and will be neglected. The rest of the extra attenuation is
attributed to a bulk dissipation by vortex lines ξV LD: this
is the signal of interest. Theory predicts that a second-
order resonance frequency shift is generated by vortex
dissipation (see [18] and references within) but, in our
case, it is much smaller than the resonance bandwidth
and we can neglect this effect. To probe the fluctuations
of the VLD during experiments, the sensor is operated at
the first resonance frequency. The measured temperature
oscillation, called ∆T0 (no flow) and ∆T (with flow) are
demodulated by a lock-in amplifier with a 160µs time
constant and the oscillation’s amplitude is stored for post-
processing. Basic oscillator theory relates VLD dissipation
ξV LD and the time-dependent amplitude ∆T according to

∆T

∆T0
=

sinh[ξ0 ·D]
sinh[(ξ0+ ξV LD) ·D]

. (1)

Attenuation ξV LD is related to the projected vortex line
density L⊥ by

ξV LD =
B ·κ ·L⊥
4c

, (2)

where the projected vortex line density L⊥ is defined as

L⊥ =
1

Ω

∫
sin2 θ ·dl (3)

in which Ω is the cavity volume, the summation is
performed along all the vortex line elements dl located
inside the cavity and θ is the angle between the line
elements and the axis of propagation of the second-sound
waves.
Heaters in He-II are well known to induce counter-

flows and —for large enough heating— the counterflow
can undergo self-induced turbulent transitions [3–5,19].
Consequently, a special attention has been dedicated to
properly choose the heating supplied to the probe, in order
to keep the probe non-invasive. With the fluid at rest, a
transition has been evidenced on the temperature oscil-
lation for a 30µW heating in the Cr film. The corre-
sponding heat density, once amplified by the resonance
gain Q is typical of the turbulence thresholds of counter-
flows turbulence [3–5]. During turbulence experiments, we
operated the probe with driving power ranging up to 10
times higher that the above threshold, and down to 5 times
below it. The normalized measured spectrum turns out to
be independent of the driving heat, indicating that any
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Fig. 4: Power spectrum density of the vortex line density L⊥
for different mean flow velocities: from bottom to top 0, 0.68,
0.90 and 1.25m/s. The straight line is a (−5/3) power law. The
insert is a f−5/3 compensated spectrum for the 3 different mean
flows after removal of a 5 · 1015m−4Hz−1 white-noise floor.

self-induced turbulence transition in this range has a negli-
gible contribution on the signal. It is worth noting that
Holmes and Van Sciver [12] conducted some second-sound
attenuation measurements with a probe heating density
more than 4 decades above ours, across a He-II flow
at similar temperature and velocites. These authors find
average VLD fully consistent with ours.
To estimate the signal bandwidth, one needs to consider

three time constants. First, the geometrically-limited
time resolution of the probe: the time of flight h/V of
order 1ms. Second, the time constant of the resonator
is Q/f1 ≃ 0.5ms, where Q is the quality factor. Third,
the 0.6ms time constant of the electronic set-up (−3 dB
cut-off for cable/demodulation/acquisition) which has
been measured without probes, using two frequency
mixers to mimic the Joule effect frequency doubling and
the modulation of the signal by vortex-line-attenuation.
These three time scales are comparable and the expected
bandwidth is therefore DC − 1 kHz.

Result. – Figure 4 presents the main result of this
letter: the power spectrum2 of the vortex line density L⊥
for mean flow velocities of 0, 0.68, 0.90 and 1.25m/s. The
straight line eyes-guides the −5/3 power law. The insert
in fig. 4 shows the same 3 spectra after subtraction of the
noise floor, which is fitted from the zero-velocity spectrum
by a 5 · 1015m−4Hz−1 white noise. The low frequency
saturation is consistent with the integral scale plateau of
order 1 cm. In between, over almost one decade, a local
power exponent of 1.55± 0.15 is found. During other runs,
this scaling has been observed down to the lowest stable

2The power spectrum density L⊥(f) ·L⊥(f) is normalized such
that its integral over positive frequencies equals ⟨(L⊥−⟨L⊥⟩)2⟩,
where ⟨·⟩ denotes time averaging. A Welch algorithm is used for
spectral averaging.

66002-p3

Roche & Barenghi, EPL, 2008 

Disagreement explained if 
the vortex line density field is 
decomposed into a polarised 
field (which carries most of 
the energy) and an isotropic 
field (which is responsible for 
the spectrum)  



In 2D Bundles -> Clusters

Received a lot of attention in the BEC community recently
3

FIG. 1: (Color online) Column 1: Density slices for paddle VI with parameters: d = 0.5, ! = 6 (dimensionless units); Columns
2–4: Density and vortex position images for paddles VI, VII and VIII. Parameters: VI (column 2): d = 1, ! = 4; VII (column
3): d = 1, ! = 1, v = 4; VIII (column 4): d = 1, ! = 2, v = 4. All paddles have V0 = 150, ⌘ = 8 (dimensionless units). Positive
vortices are identified by (pink) + signs and negative vortices by (blue) � signs. Time is indicated in white at the bottom left
hand side of each plot.

Case I: Paddle rotating at the condensate center

Firstly we look at a paddle rotating about its center
with frequency ! at the center of the condensate. This
is modeled by evolving Eq. (1) with VI = VP (x̃ ! x, ỹ !
y). The smallest paddle size we consider is d = 0.5,
rotating at a frequency ! = 6. The rotating motion of
the paddle produces circular spiral sound waves, which at
late times interfere with each other giving a wave interfer-
ence pattern (see the first column of figure 1). Paddles
with a larger width (d = 1), rotating at frequencies of
! = 4, 6 and 8, nucleate vortices in addition to creating
spiral sound waves. The density profile for a paddle ro-
tating at frequency ! = 4 is show in the second column
of figure 1 (see supplementary movie 1 for a comparison
of paddles rotating at frequencies ! = 4 and ! = 8). A

greater rate of rotation increases the number of vortices
initially nucleated, as expected. In all cases, vortices are
initially nucleated from the ends of the paddle with wind-
ing opposite to the direction of rotation of the paddle, as
depicted in figure 2. At subsequent times, when the local
superfluid velocity surpasses the critical velocity for vor-
tex nucleation [63], vortices of both signs are nucleated
from both the center and ends of the paddle. A cen-
tered rotating paddle imparts a small amount of angular
momentum to the condensate. The angular momentum
imparted is proportional to the frequency of the rotat-
ing paddle (see figure 3b). Note that after paddles of
frequency ! = 6 and 8 have been ramped o↵, the con-
densate angular momentum saturates to approximately
the same value.

5

FIG. 4: The function fij(r) in Ripley’s K-function.

and j is greater than r. That is

fij =


1 8 rij < r, i 6= j
0 8 rij > r or i = j

(6)

here rij is the distance from a reference vortex i to the
comparison vortex j with like-winding. This is depicted
in figure 4.

FIG. 5: Besag’s function L(r/rc) (see Eq. 9) for vortices of
negative winding at varying times (see legend) for a conden-
sate with vortices nucleated by a paddle with trajectory VII.
Parameters: d = 1, ! = 1 and v = 4.

Ripley’s K-function looks at the number of like-signed
vortices within a radius, r, from the position of an arbi-
trarily chosen vortex, i, at its center (see figure 4 and 5).
If the number of vortices with like-winding per unit area
within this radius, r, is greater than the overall number
of like-signed vortices per unit area for the whole con-
densate, then the vortices are said to be clustered. Clus-
tering results in K(r) increasing faster than if vortices of
either sign are distributed in a spatially random manner,
that is, if they follow a Poisson distribution. Ripley’s-K
function for a poisson-distributed data set takes the form
K(r) = ⇡r2. For a linear scaling of Poisson-distributed
data, it is useful to normalize Ripley’s K-function to
H(r) =

p
K(r)/⇡. Ripley’s L-function, also commonly

known as Besag’s function, is obtained from further nor-
malization of Ripley’s K-function:

L(r) =
p

K(r)/⇡ � r. (7)

FIG. 6: (Color Online) Schematic diagrams of independent
(A) and co-clustering (B) in systems with two distinct types
of objects, represented by pink pluses and blue circles respec-
tively.

As the condensate area, A, does not necessarily remain
constant over all times, we scale r by the characteristic
condensate radius rc =

p
A/⇡ for that time and in our

subsequent analysis evaluate

L(r/rc) =

vuut A

⇡(Nrc)2

NX

i=1

NX

j=1

fij(r/rc)�
r

rc
, (8)

which simplifies to:

L(r/rc) =

vuut 1

N2

NX

i=1

NX

j=1

fij(r/rc)�
r

rc
. (9)

Besag’s function is zero for like-signed vortices which are
randomly distributed, takes positive values for vortices
clustered over that spatial scale, and is negative if the
vortex distribution is dispersed. That is:

L(r/rc) =

2

4
1 Clustered
0 Random

�1 Dispersed
(10)

The radius around a centered vortex containing, on aver-
age, the most like-signed vortices per area, is called the
radius of maximal aggregation, and is given by the value
of r which maximizes L(r) [59].
For a paddle rotating at a constant radius from the

condensate center, evaluating L(r/rc) (see equation 9)
for positive vortices, as seen in figure 5, shows that the
clustering of vortices decreases with time. Although the
vortices are clustered, the amount of clustering is not
constant or increasing in time, giving no evidence of an
inverse cascade for this system.

B. Measures of independent clustering of
like-signed vortices

While Besag’s function gives a measure of the cluster-
ing of vortices with the same winding, it does not dis-
criminate between cases where like and opposite signed
vortices are clustered in the same spatial region and cases

White et al., 2012 



2D Superfluid Wind-tunnel

Gallucci et al. (in prep.) 
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• 2D Gross-Pitaevskii equation: 

• Ring trap with a ‘grid’ 

• Impose an initial phase 
winding,      , which in the 
absence of the obstacle 
would create a persistent 
current 

(80�)
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• Motivation 
• (3D) vortex bundles 
• (2D) vortex clusters 

• Vortex rings in superfluid helium 
• Experiment: 

Borner, Schmeling, & Schmidt (Physics of Fluids 1983)  
• Numerical work: 

Wacks, Baggaley, & Barenghi (PoF 2013, PRB 2014) 
• Conclusions



A controlled setup to study bundles of quantised vortices

Vortex rings have a long tradition in superfluid helium, from Rayfield 
& Reif (1964), to Winiecki & Adams (2000) to recent work of 
Walmsley, Zmeev & Golov  

Vortex rings are Hamiltonian objects: v = @H/@p

v =
�

4⇡R
[ln(8R/a)� 1/2] H =

⇢�2R

2
[ln(8R/a� 2)]

p = ⇢�⇡R2



Borner’s Experiment

Experiment by Borner et al. 1983 
• Large-scale vortex rings in 

superfluid helium-4 

• Ring position,     ,      
measured acoustically vs time 

• Vortex structures of larger 
circulation                           
observed

�s �n

(⇠ 1000� 2000)



Other studies
Murakami et al. (1987) Stamm et al. (1993) G. Stamm et al. / Physica B 193 (1994) 188-194 189 

rings will also produce simultaneously superfluid 
turbulence interacting with the microscopic vor- 
tex lines. By comparing the results of Borner  et 
al. [2] and Murakami et al. [3] with our flow 
visualization study we obtain a first insight on the 
evolution and stability of the resulting flow field 
and also some information about the influence of 
superfluid turbulence on the large-scale vortex 
rings. 

While many investigations have been made on 
steady thermal counterflow jets (see for example 
Ref. [4] and the papers cited therein), to the 
knowledge of the authors up to now no experi- 
ment has been carried out using a pulsed heat 
source to produce a macroscopic vortex ring. 
Only Liepmann and Laguna [5] reported about a 
vortex that appeared under steady state counter- 
flow conditions near the orifice and "has never 
been observed in classical fluids". 

2. Counterflow pulses and tracer particles 

The vortex rings are generated by releasing a 
heat pulse of a certain duration t H at the bottom 
of the circular counterflow channel made of 
polished brass with the exit top in the cryostat 
(see Fig. 1). The diameter of the channel is 
d = 8 m m  and the length of the channel L =  
17 mm. The bottom is closed by a glass plate 
onto which a meander-shaped thin-film heater 
(about 300 A Cr) has been vacuum-deposited. 
The geometry of this heater is shown in the 
insert on Fig. 1. The width of the heating strips is 
b = 0 . 7 4 m m ,  the space between two neigh- 
bouring strips is 0.1675 mm and the resistance is 
about 50 ~.  

While switching in the heater,  the normal fluid 
is set into motion towards the exit of the tube, 
while the superfluid component  moves towards 
the heater  in order to ensure no net-mass flow: 

p~v~ + p , v  n = 0 (1) 

where v, ,  v S are the velocities of the normal fluid 
and the superfluid component respectively and 
P., Ps the corresponding densities. Since the heat 
is only convected by the normal fluid flow, the 

@ 
\ \ 

!ilil __ cha no  :ii:ii~ I ilii~ 
e r  

heating strips 

( ~ )  vortexring 

/ / ~  shearlayor 

channel 

brass 

glass substrate 

Fig. 1. Schematic view of the vortex ring generator. The 
meander-shaped heater is shown on the insert. 

average normal fluid velocity at the exit of the 
nozzle can be determined by 

Q 
IVn,,I = (2)  

where Q is the heat flux in [W/cm 2] per cross- 
sectional area of the nozzle. With the above 
relation one can define two kinds of Reynolds 
numbers using the diameter d of the nozzle as a 
characteristic length scale and either the total 
density p or only the density p. of the normal 
fluid component:  

p d vno Pn d Vno Re - - ,  R e . - - -  (3) 
"qn 7/~ 

At a bath temperature of T o = 1.85 K the veloci- 
ties and hence the Reynolds numbers corre- 
sponding to a given heat flux at the nozzle exit 

I ~)2 ( ; .  ,~'talnltl t'l ill. Phv.si<'u I~ l g 3  ( l g t l 4 )  1,'~','~' lU4 

a) 

b) c) 

Fig. 3. R e c o r d e d  p ic tures  of the vor tex r ing for var ious  p a r a m e t e r  comb ina t i ons  for the gene ra t i ng  heat  pulses  al a ha th  
t e m p e r a t u r e  of 1.85 K. The  top  half  of the coun te r l low tube  is shown ill the midd le  bc*ltonl of each pic ture .  (a) ( ) I  ~,,' cm . 
t~, = 4{10 ms: (b) Q = 2 W / c m  e, l,, = 2{10 ms: (c) O = 2 W/cm :. *,~ : 400 ms. 

the ring w)rtex in axial and radial direct ion leads 
to the results shown in Fig. 6. This  picture shows 
that  while the vortex ring is moving downs t ream 
the d iamete r  increases and the t ranslat ional  
velocity decreases.  Fi t t ing a curve according to 
the equa t ion  3' - a + b x/Y gives the lines in Fig. 
6. The  average t rans la t ional  velocity for those 
t ime scales available from the exper iments  (0.5 < 

tls 1-c 1) can be estimated hom the solid linc to 
l~ I = 3.2 cm/s. This compares fair ly well with the 
experimental data which gives a value of H I =  
6cm/s.  Due to the extensive consumption of 
CPU time the numcrical data is only calculated 
tip to 25 ms after switching on the heater  and 
hence we cannot  directly compare  the measure-  
mcnts  with the numerica l  s imula t ions  becausc 

Thermally driven, visualisation 
with hollow glass beads 

Hydrogen-
Deuterium 

visualisation of 
flow filed





Borner’s ExperimentBorner’s experiment

• Interpretation of the experiment:
Bundles of N ⇡ 103 concentric quantised vortex rings
Typical ` ⇡ 0.003 cm � core size ⇠ ⇡ 10�8

cm

• How do vortex bundles move ?
some kind of stable generalized (N > 2) leapfrogging

classical leapfrogging of two vortex rings,
Sommerfeld 1950

Carlo F. Barenghi Daniel Wacks, Andrew Baggaley, Lucy Sherwin, Yuri SergeevLarge-scale vortex rings



Classical leap-frogging of two vortex rings

Yamadao & Matsui, 1978 











Vortex filament method
Biot-Savart Integral



Vortex filament method
Biot-Savart Integral

Model reconnections 
algorithmically ‘cut and paste’



A note on reconnections

125108-7 Zuccher et al. Phys. Fluids 24, 125108 (2012)

FIG. 3. Snapshots of the evolution of two anti-parallel vortices (angle between vortices β = π ), initially slightly perturbed to
enhance the Crow instability, at t = 0 (top left), t = 20 (top right), t = 30 (bottom left), and t = 40 (bottom right). Isosurfaces
of ρ = 0.2 are plotted to visualize the vortex cores (enhanced online). [URL: http://dx.doi.org/10.1063/1.4772198.1]

C. GPE reconnection of vortices at different initial angles

We perform several other numerical calculations of vortex reconnections to check whether the
time dependence of δ(t) depends on the angle β of the initial condition. Figure 5 shows the time
evolution of two initially straight vortices set at the angle β = 3π /4. Again, we observe that the

β = π

t

δ

100101

100

10

1

0.1

FIG. 4. Minimum distance δ between reconnecting vortices as a function of time t for the pair of reconnecting anti-parallel
vortices (β = π ) shown in Figure 3.
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FIG. 12. Reconnection of two vortex rings initially set parallel to each other (as in the work of de Waele and Aarts27),
computed with the Biot-Savart law: (Top) At time t = 0, (middle) t0 − t = 0.001 s, and (bottom) t − t0 = 0.005 s. The
vortex lines are colour-coded to indicate the magnitude of the velocity (in cm/s, see legend on each figure). The box is for
visualization only.

initial number of discretization points for the two rings is N = 1600. The same initial condition
was used by de Waele and Aarts.27 Figure 12 shows the time evolution. Note that the resulting
vortex reconnection is locally anti-parallel (β = π ). The initial condition of the second numeri-
cal calculation consists of the same two rings, but initially set perpendicular to each other. The
time evolution is shown in Figure 13. Note that the resulting reconnection is locally orthogonal
(β = π /2).
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FIG. 14. Minimum distance between the filaments δ(t) (cm) vs (t0 − t) (s) before the reconnection (top) and vs (t − t0) after
the reconnection (bottom), corresponding to the Biot-Savart evolution of two parallel vortex rings shown in Figure 11 (solid
black line) and of two perpendicular vortex rings shown in Figure 12 (dotted-dashed blue line). t0 is the time at which the
reconnection takes place. The dashed red line expresses δ(t) =

√
κ(t0 − t)/(2π ) found by de Waele and Aarts27 (top) and

δ(t) =
√

πκ(t − t0) (bottom) as a guide to the eye.

The coefficient A however is not the same in all cases (although, for the approach of parallel
rings, it is in fair agreement with de Waele and Aarts27). A similar spread was observed by Tsubota
and Adachi.46 The speed at which the vortex lines move away from each other after the reconnection
is faster than the speed at which they approach each other; this effect is also visible in Figure 14,
and qualitatively consistent with the findings obtained with the GPE, see Figure 7.

IV. CONCLUSION

Hussain and Duraisamy9 have shown that, in ordinary incompressible viscous fluids, the mini-
mum separation δ between reconnecting vortex tubes behaves differently before (δ(t) ∼ (t0 − t)3/4)
and after (δ(t) ∼ (t − t0)2) the reconnection at t = t0. By solving the GPE we find a similar time
asymmetry, although with different power laws: δ(t) ∼ (t0 − t)0.4 and δ(t) ∼ (t − t0)0.7 respectively,
independently of the initial angle between the vortex lines. On the contrary, by solving the Biot-
Savart equation, we find that the scaling is time symmetric, with δ(t) ∼ |t0 − t|1/2 for both t < t0 and
t > t0.
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FIG. 7. Distance between vortices as a function of |t − t0| before (top) and after (bottom) the reconnection for different
values of the angle β between initial vortex lines (β = π refers to anti-parallel vortices and β = π /2 refers to orthogonal
vortices). The computed values are joined by lines to guide the eye. The black solid lines are fits of the form δ(t) = A|t
− t0|α ; the fitting coefficients A and α are reported in Table I.

ρ = 0.94 with the isosurface at ρ = 0.2. The footprint of the wave is particularly visible in contours
of ρ on the plane y = 0, as shown in Figure 9.

The pressure wave is clearly visible for relatively small angles between vortices, β < π /2,
whereas for larger angles it becomes difficult to clearly track it and visualize it. Figure 10 shows
the time evolution of the mushroom-shaped pressure wave ejected after reconnection for β = 7π /8
(isosurfaces at ρ = 0.94).

E. GPE reconnections and vortex rings

As we have mentioned in Sec. I, secondary generation of vortex rings following a reconnection
event was observed in the numerical simulations of Kursa et al.33 and Kerr.34 Kursa et al.33 also
studied how the emission of vortex rings depends on the initial angle between the vortices (almost
anti-parallel configurations favour the generation of vortex rings following the Crow instability). We
do not investigate further the generation of vortex rings, since it was already studied in detail in cited
works. We only remark that if we make our computational box longer in the z direction, vortex rings
generation becomes visible, as shown in Figure 11. As for the physical significance of this effect,
we notice that, according to a recent study of Baggaley et al.,40 the distribution of reconnecting
angles β depends on the nature of the quantum turbulence. Quantum turbulence generated with
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FIG. 7. Distance between vortices as a function of |t − t0| before (top) and after (bottom) the reconnection for different
values of the angle β between initial vortex lines (β = π refers to anti-parallel vortices and β = π /2 refers to orthogonal
vortices). The computed values are joined by lines to guide the eye. The black solid lines are fits of the form δ(t) = A|t
− t0|α ; the fitting coefficients A and α are reported in Table I.

ρ = 0.94 with the isosurface at ρ = 0.2. The footprint of the wave is particularly visible in contours
of ρ on the plane y = 0, as shown in Figure 9.

The pressure wave is clearly visible for relatively small angles between vortices, β < π /2,
whereas for larger angles it becomes difficult to clearly track it and visualize it. Figure 10 shows
the time evolution of the mushroom-shaped pressure wave ejected after reconnection for β = 7π /8
(isosurfaces at ρ = 0.94).

E. GPE reconnections and vortex rings

As we have mentioned in Sec. I, secondary generation of vortex rings following a reconnection
event was observed in the numerical simulations of Kursa et al.33 and Kerr.34 Kursa et al.33 also
studied how the emission of vortex rings depends on the initial angle between the vortices (almost
anti-parallel configurations favour the generation of vortex rings following the Crow instability). We
do not investigate further the generation of vortex rings, since it was already studied in detail in cited
works. We only remark that if we make our computational box longer in the z direction, vortex rings
generation becomes visible, as shown in Figure 11. As for the physical significance of this effect,
we notice that, according to a recent study of Baggaley et al.,40 the distribution of reconnecting
angles β depends on the nature of the quantum turbulence. Quantum turbulence generated with
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FIG. 3. Snapshots of the evolution of two anti-parallel vortices (angle between vortices β = π ), initially slightly perturbed to
enhance the Crow instability, at t = 0 (top left), t = 20 (top right), t = 30 (bottom left), and t = 40 (bottom right). Isosurfaces
of ρ = 0.2 are plotted to visualize the vortex cores (enhanced online). [URL: http://dx.doi.org/10.1063/1.4772198.1]

C. GPE reconnection of vortices at different initial angles

We perform several other numerical calculations of vortex reconnections to check whether the
time dependence of δ(t) depends on the angle β of the initial condition. Figure 5 shows the time
evolution of two initially straight vortices set at the angle β = 3π /4. Again, we observe that the
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FIG. 4. Minimum distance δ between reconnecting vortices as a function of time t for the pair of reconnecting anti-parallel
vortices (β = π ) shown in Figure 3.
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FIG. 12. Reconnection of two vortex rings initially set parallel to each other (as in the work of de Waele and Aarts27),
computed with the Biot-Savart law: (Top) At time t = 0, (middle) t0 − t = 0.001 s, and (bottom) t − t0 = 0.005 s. The
vortex lines are colour-coded to indicate the magnitude of the velocity (in cm/s, see legend on each figure). The box is for
visualization only.

initial number of discretization points for the two rings is N = 1600. The same initial condition
was used by de Waele and Aarts.27 Figure 12 shows the time evolution. Note that the resulting
vortex reconnection is locally anti-parallel (β = π ). The initial condition of the second numeri-
cal calculation consists of the same two rings, but initially set perpendicular to each other. The
time evolution is shown in Figure 13. Note that the resulting reconnection is locally orthogonal
(β = π /2).
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the reconnection (bottom), corresponding to the Biot-Savart evolution of two parallel vortex rings shown in Figure 11 (solid
black line) and of two perpendicular vortex rings shown in Figure 12 (dotted-dashed blue line). t0 is the time at which the
reconnection takes place. The dashed red line expresses δ(t) =

√
κ(t0 − t)/(2π ) found by de Waele and Aarts27 (top) and

δ(t) =
√

πκ(t − t0) (bottom) as a guide to the eye.

The coefficient A however is not the same in all cases (although, for the approach of parallel
rings, it is in fair agreement with de Waele and Aarts27). A similar spread was observed by Tsubota
and Adachi.46 The speed at which the vortex lines move away from each other after the reconnection
is faster than the speed at which they approach each other; this effect is also visible in Figure 14,
and qualitatively consistent with the findings obtained with the GPE, see Figure 7.

IV. CONCLUSION

Hussain and Duraisamy9 have shown that, in ordinary incompressible viscous fluids, the mini-
mum separation δ between reconnecting vortex tubes behaves differently before (δ(t) ∼ (t0 − t)3/4)
and after (δ(t) ∼ (t − t0)2) the reconnection at t = t0. By solving the GPE we find a similar time
asymmetry, although with different power laws: δ(t) ∼ (t0 − t)0.4 and δ(t) ∼ (t − t0)0.7 respectively,
independently of the initial angle between the vortex lines. On the contrary, by solving the Biot-
Savart equation, we find that the scaling is time symmetric, with δ(t) ∼ |t0 − t|1/2 for both t < t0 and
t > t0.

Downloaded 28 Dec 2012 to 130.209.66.37. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

125108-10 Zuccher et al. Phys. Fluids 24, 125108 (2012)

3
8π

π
2

5
8π

3
4π

7
8π
π

|t − t0|

δ

1001010.1

100

10

1

0.1

3
8π

π
2

5
8π

3
4π

7
8π
π

|t − t0|

δ

1001010.1

100

10

1

0.1

FIG. 7. Distance between vortices as a function of |t − t0| before (top) and after (bottom) the reconnection for different
values of the angle β between initial vortex lines (β = π refers to anti-parallel vortices and β = π /2 refers to orthogonal
vortices). The computed values are joined by lines to guide the eye. The black solid lines are fits of the form δ(t) = A|t
− t0|α ; the fitting coefficients A and α are reported in Table I.

ρ = 0.94 with the isosurface at ρ = 0.2. The footprint of the wave is particularly visible in contours
of ρ on the plane y = 0, as shown in Figure 9.

The pressure wave is clearly visible for relatively small angles between vortices, β < π /2,
whereas for larger angles it becomes difficult to clearly track it and visualize it. Figure 10 shows
the time evolution of the mushroom-shaped pressure wave ejected after reconnection for β = 7π /8
(isosurfaces at ρ = 0.94).

E. GPE reconnections and vortex rings

As we have mentioned in Sec. I, secondary generation of vortex rings following a reconnection
event was observed in the numerical simulations of Kursa et al.33 and Kerr.34 Kursa et al.33 also
studied how the emission of vortex rings depends on the initial angle between the vortices (almost
anti-parallel configurations favour the generation of vortex rings following the Crow instability). We
do not investigate further the generation of vortex rings, since it was already studied in detail in cited
works. We only remark that if we make our computational box longer in the z direction, vortex rings
generation becomes visible, as shown in Figure 11. As for the physical significance of this effect,
we notice that, according to a recent study of Baggaley et al.,40 the distribution of reconnecting
angles β depends on the nature of the quantum turbulence. Quantum turbulence generated with
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ρ = 0.94 with the isosurface at ρ = 0.2. The footprint of the wave is particularly visible in contours
of ρ on the plane y = 0, as shown in Figure 9.

The pressure wave is clearly visible for relatively small angles between vortices, β < π /2,
whereas for larger angles it becomes difficult to clearly track it and visualize it. Figure 10 shows
the time evolution of the mushroom-shaped pressure wave ejected after reconnection for β = 7π /8
(isosurfaces at ρ = 0.94).

E. GPE reconnections and vortex rings

As we have mentioned in Sec. I, secondary generation of vortex rings following a reconnection
event was observed in the numerical simulations of Kursa et al.33 and Kerr.34 Kursa et al.33 also
studied how the emission of vortex rings depends on the initial angle between the vortices (almost
anti-parallel configurations favour the generation of vortex rings following the Crow instability). We
do not investigate further the generation of vortex rings, since it was already studied in detail in cited
works. We only remark that if we make our computational box longer in the z direction, vortex rings
generation becomes visible, as shown in Figure 11. As for the physical significance of this effect,
we notice that, according to a recent study of Baggaley et al.,40 the distribution of reconnecting
angles β depends on the nature of the quantum turbulence. Quantum turbulence generated with
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Fig. 2. Parameter space diagram summarizing the ranges of heat fluxes q and
temperatures T for the pulsed counterflows used to generate quantum turbulence.

3.2. Identifying reconnection events

Near the reconnection moment t0, reconnecting vortices move
with high, atypical velocities and accelerations. An example of a
reconnection event is shown in Fig. 3 (also see Fig. 2 in [37] and
note that reconnection is clearly evidenced in the online movies
in [38]). In this example, the particle density is high so that both
vortices are marked by multiple trapped hydrogen particles. The
two vortices merge, exchange tails, then separate as indicated by
the velocity vectors in the middle row of images in Fig. 3.

Since the hydrogen particles are not completely passive [47],
the hydrogen volume fraction in the pulsed counterflow experi-
ments presented here has typically been kept one to two orders of
magnitude lower than that shown in Fig. 3. For such low volume
fractions, each identified vortex has only one to a few hydrogen
particles trapped, thereby minimizing the effects of the hydrogen
on the reconnection dynamics [47]. A reconnection event is char-
acterized, then, by a pair of particles rapidly approaching or sep-
arating. The number of possible particle pairs analyzed is ⇠ 1010,
which requires an ad hoc criterion to determine likely reconnec-
tion events. We define particles i and j as marking a reconnection
event at time t if the pairwise separation �

ij

(t) = |r
i

(t) � r

j

(t)|
satisfies

⇠
ij

⌘ �
ij

(t ± 0.25 s)/�
ij

(t) > 4, (4)

where r

i

(t) is the two-dimensional projection of the position of
particle i at time t and the plus (minus) sign indicates particles
that separated after (approached before) an event, which we label
as forward (reverse) events. We choose the temporal duration of
0.25 s to allow a sufficient range to perform the power-law fits
to the data while curtailing greater times, which are dominated
by boundary effects and the presence of neighboring vortices. The
criterion (4) excludes all but a fraction of possible pairs, namely
⇠ 5 ⇥ 104 forward and a similar number of reverse events.

It is important to note that we are assuming �(t) ' �
ij

(t);
however, the particles (i, j) may not be located as close as
desirable to the point of reconnection. We do not observe any
correlations between the measured quantities discussed below
and the initial particle separations or the values of ⇠

ij

as defined
in (4); nevertheless, more detailed theoretical analyses of vortex

Fig. 3. Contrast-enhanced negative images of particles trapped on reconnecting
vortices (top) along with velocity vectors (middle) and our interpretation of the
pre- and post-reconnection configurations of the vortices denoted by the solid
(red and blue) lines (bottom) with time measured from t0 at T = 1.90 K. The
down-pointing (green) vectors show the background drift that is subtracted from
all velocity vectors. The other (red and blue) velocity vectors (middle) correspond
to the (red and blue) marked vortices in the bottom images. The volume fraction
of hydrogen in these images (10�5) is higher than for all the pulsed counterflow
experiments discussed below. Reconnection is particularly unambiguous in the
onlinemovies in [38]. (For reviewing the colours in this figure, the reader is referred
to the web version of this article.)

reconnection are needed to reveal and quantify systematic effects
that may be caused by interpreting our measurements of �

ij

(t) as
good approximations to �(t).

4. Reconnection dynamics

4.1. Arbitrary power-law

We characterize the dynamics of reconnection by measuring
the separation �(t) ' �

ij

(t) of pairs of particles (i, j) that meet
the criterion (4). As mentioned above, previous dimensional and
theoretical arguments predict that �(t) behaves asymptotically
as a power-law with a scaling exponent ↵ = 0.5. To test this
hypothesis we fit our data to an arbitrary power-law of the form

�(t) = B|t � t0|↵. (5)
The values of B and t0 are determined by a linear least-squares
fit of [�(t)]1/↵ for 500 values of ↵ evenly-spaced in the interval
0 < ↵ < 2. For each set of {↵, B, t0} we compute the error in
the fit

�2(↵) ⌘ 1
n

nX

m=1


�fit
m

� �
m

�

�2

, (6)

where m denotes the movie frame, � = 4 µm (0.25 pixels) is
an estimate of the uncertainty of the particle positions, and n =
15, 20, 25 for data collected at 60, 80, or 100 frames per second,
respectively. We then choose the set of {↵, B, t0} that minimizes �2

(see Fig. 4).
The measured separations �(t) for four forward events are

shown in Fig. 5, along with the predicted asymptotic form �(t) =
(|t � t0|)1/2 for comparison. Fits to (5) are shown as solid lines
with the scaling exponent↵ given in the legend. Themost frequent
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Fig. 4. Variation of �2(↵) normalized by its minimum value �2
min = 0.73 as a

function of the scaling exponent↵ for the event shown by the (red) squares in Fig. 9.
This event was observed at a temperature T = 1.90 K, but it should be stressed (as
also for Figs. 5, 8 and 9) that fully comparable plots can be found at all temperatures
in the range explored (1.70 K < T < 2.05 K). We choose the parameters of the
arbitrary power-law fit {↵, B, t0} that minimize �2 as a function of ↵ defined by (6).
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Fig. 5. Four forward events at T = 1.90 K well fit by the arbitrary power-law
expression (5). Symbols denote the measured separation �(t) of pairs of particles
on reconnecting vortices with an example error bar � = 4 µm while solid lines
show fits to �(t) = B|t � t0|↵ with ↵ given in the legend. The predicted asymptotic
scaling �(t) = (|t � t0|)1/2 is shown by the purple dashed line.

fitted exponents cluster around the predicted value of ↵ = 0.5 and
their corresponding amplitudes B are of order 1/2; however, there
is a broad spread in both quantities.

Distributions of ↵ for both the forward and reverse events,
determined from fifty distinct experimental heat pulses, are shown
in Fig. 6(a). The distributions are formed from events with �2 < 4.
Approximately 40% of the 50,000 pairs that meet the criterion in
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Fig. 6. (a) Normalized frequency distributions of ↵ computed for 19,150 forward
events (circles, black) and 18,900 reverse events (squares, red). Note that the data
displayed here (as also in Figs. 7, 10, 11, 13 and 14) have been collected from the
range of heat fluxes and temperatures described in Fig. 2. The mean values of ↵ for
forward and reverse events are 0.68 and 0.69, respectively. (b) Two-dimensional
contour diagram of �2 versus ↵ for forward events. The peak near ↵ = 0.5 with
low values of �2 indicates that (5) best describes events with dynamics near those
predicted in (3).

(4) meet this �2 criterion. Both distributions are asymmetric but
peaked within 10% of the predicted value ↵ = 0.5. Furthermore,
as shown in Fig. 6(b), events with fitted values near 0.5 typically
have lower values of �2.

The amplitudes B for the same events are strongly correlated
with the scaling exponent ↵ as shown in Fig. 7. We find that
events with ↵ ' 0.5 have amplitudes B'p

 , as expected from
dimensional analysis. However, deWaele and Aarts [27] measured
B ' p

/2⇡ in numerical simulations of quantized vortex re-
connection in superfluid 4He using line-vortex methods; this is
approximately 30% of our experimentally determined value. The
time-scales in our experiments differ greatly from those in the
numerical simulations; deWaele and Aarts determined their value
ofB for 0 < t0�t < 3µs,whereas our time-scales span1ms< |t�
t0| < 100 ms. In addition de Waele and Aarts quote an amplitude
only for two initially antiparallel vortices; other initial orientations
might yield different values for B. On the other hand, we observe
only a two-dimensional projection of each reconnection event,
which would lead us to underestimate B, potentially furthering
the discrepancy. Clearly, resolving the source of this discrepancy
warrants additional investigation.

The predicted scaling of ↵ = 0.5 is derived from the assump-
tion that the quantum of circulation  is the only relevant param-
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Fig. 2. Parameter space diagram summarizing the ranges of heat fluxes q and
temperatures T for the pulsed counterflows used to generate quantum turbulence.

3.2. Identifying reconnection events

Near the reconnection moment t0, reconnecting vortices move
with high, atypical velocities and accelerations. An example of a
reconnection event is shown in Fig. 3 (also see Fig. 2 in [37] and
note that reconnection is clearly evidenced in the online movies
in [38]). In this example, the particle density is high so that both
vortices are marked by multiple trapped hydrogen particles. The
two vortices merge, exchange tails, then separate as indicated by
the velocity vectors in the middle row of images in Fig. 3.

Since the hydrogen particles are not completely passive [47],
the hydrogen volume fraction in the pulsed counterflow experi-
ments presented here has typically been kept one to two orders of
magnitude lower than that shown in Fig. 3. For such low volume
fractions, each identified vortex has only one to a few hydrogen
particles trapped, thereby minimizing the effects of the hydrogen
on the reconnection dynamics [47]. A reconnection event is char-
acterized, then, by a pair of particles rapidly approaching or sep-
arating. The number of possible particle pairs analyzed is ⇠ 1010,
which requires an ad hoc criterion to determine likely reconnec-
tion events. We define particles i and j as marking a reconnection
event at time t if the pairwise separation �

ij

(t) = |r
i

(t) � r

j

(t)|
satisfies

⇠
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(t ± 0.25 s)/�
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(t) > 4, (4)

where r

i

(t) is the two-dimensional projection of the position of
particle i at time t and the plus (minus) sign indicates particles
that separated after (approached before) an event, which we label
as forward (reverse) events. We choose the temporal duration of
0.25 s to allow a sufficient range to perform the power-law fits
to the data while curtailing greater times, which are dominated
by boundary effects and the presence of neighboring vortices. The
criterion (4) excludes all but a fraction of possible pairs, namely
⇠ 5 ⇥ 104 forward and a similar number of reverse events.

It is important to note that we are assuming �(t) ' �
ij

(t);
however, the particles (i, j) may not be located as close as
desirable to the point of reconnection. We do not observe any
correlations between the measured quantities discussed below
and the initial particle separations or the values of ⇠

ij

as defined
in (4); nevertheless, more detailed theoretical analyses of vortex

Fig. 3. Contrast-enhanced negative images of particles trapped on reconnecting
vortices (top) along with velocity vectors (middle) and our interpretation of the
pre- and post-reconnection configurations of the vortices denoted by the solid
(red and blue) lines (bottom) with time measured from t0 at T = 1.90 K. The
down-pointing (green) vectors show the background drift that is subtracted from
all velocity vectors. The other (red and blue) velocity vectors (middle) correspond
to the (red and blue) marked vortices in the bottom images. The volume fraction
of hydrogen in these images (10�5) is higher than for all the pulsed counterflow
experiments discussed below. Reconnection is particularly unambiguous in the
onlinemovies in [38]. (For reviewing the colours in this figure, the reader is referred
to the web version of this article.)

reconnection are needed to reveal and quantify systematic effects
that may be caused by interpreting our measurements of �

ij

(t) as
good approximations to �(t).

4. Reconnection dynamics

4.1. Arbitrary power-law

We characterize the dynamics of reconnection by measuring
the separation �(t) ' �

ij

(t) of pairs of particles (i, j) that meet
the criterion (4). As mentioned above, previous dimensional and
theoretical arguments predict that �(t) behaves asymptotically
as a power-law with a scaling exponent ↵ = 0.5. To test this
hypothesis we fit our data to an arbitrary power-law of the form

�(t) = B|t � t0|↵. (5)
The values of B and t0 are determined by a linear least-squares
fit of [�(t)]1/↵ for 500 values of ↵ evenly-spaced in the interval
0 < ↵ < 2. For each set of {↵, B, t0} we compute the error in
the fit
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where m denotes the movie frame, � = 4 µm (0.25 pixels) is
an estimate of the uncertainty of the particle positions, and n =
15, 20, 25 for data collected at 60, 80, or 100 frames per second,
respectively. We then choose the set of {↵, B, t0} that minimizes �2

(see Fig. 4).
The measured separations �(t) for four forward events are

shown in Fig. 5, along with the predicted asymptotic form �(t) =
(|t � t0|)1/2 for comparison. Fits to (5) are shown as solid lines
with the scaling exponent↵ given in the legend. Themost frequent
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fitted exponents cluster around the predicted value of ↵ = 0.5 and
their corresponding amplitudes B are of order 1/2; however, there
is a broad spread in both quantities.

Distributions of ↵ for both the forward and reverse events,
determined from fifty distinct experimental heat pulses, are shown
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predicted in (3).

(4) meet this �2 criterion. Both distributions are asymmetric but
peaked within 10% of the predicted value ↵ = 0.5. Furthermore,
as shown in Fig. 6(b), events with fitted values near 0.5 typically
have lower values of �2.

The amplitudes B for the same events are strongly correlated
with the scaling exponent ↵ as shown in Fig. 7. We find that
events with ↵ ' 0.5 have amplitudes B'p

 , as expected from
dimensional analysis. However, deWaele and Aarts [27] measured
B ' p

/2⇡ in numerical simulations of quantized vortex re-
connection in superfluid 4He using line-vortex methods; this is
approximately 30% of our experimentally determined value. The
time-scales in our experiments differ greatly from those in the
numerical simulations; deWaele and Aarts determined their value
ofB for 0 < t0�t < 3µs,whereas our time-scales span1ms< |t�
t0| < 100 ms. In addition de Waele and Aarts quote an amplitude
only for two initially antiparallel vortices; other initial orientations
might yield different values for B. On the other hand, we observe
only a two-dimensional projection of each reconnection event,
which would lead us to underestimate B, potentially furthering
the discrepancy. Clearly, resolving the source of this discrepancy
warrants additional investigation.

The predicted scaling of ↵ = 0.5 is derived from the assump-
tion that the quantum of circulation  is the only relevant param-
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Fig. 2. Parameter space diagram summarizing the ranges of heat fluxes q and
temperatures T for the pulsed counterflows used to generate quantum turbulence.

3.2. Identifying reconnection events

Near the reconnection moment t0, reconnecting vortices move
with high, atypical velocities and accelerations. An example of a
reconnection event is shown in Fig. 3 (also see Fig. 2 in [37] and
note that reconnection is clearly evidenced in the online movies
in [38]). In this example, the particle density is high so that both
vortices are marked by multiple trapped hydrogen particles. The
two vortices merge, exchange tails, then separate as indicated by
the velocity vectors in the middle row of images in Fig. 3.

Since the hydrogen particles are not completely passive [47],
the hydrogen volume fraction in the pulsed counterflow experi-
ments presented here has typically been kept one to two orders of
magnitude lower than that shown in Fig. 3. For such low volume
fractions, each identified vortex has only one to a few hydrogen
particles trapped, thereby minimizing the effects of the hydrogen
on the reconnection dynamics [47]. A reconnection event is char-
acterized, then, by a pair of particles rapidly approaching or sep-
arating. The number of possible particle pairs analyzed is ⇠ 1010,
which requires an ad hoc criterion to determine likely reconnec-
tion events. We define particles i and j as marking a reconnection
event at time t if the pairwise separation �
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where r
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(t) is the two-dimensional projection of the position of
particle i at time t and the plus (minus) sign indicates particles
that separated after (approached before) an event, which we label
as forward (reverse) events. We choose the temporal duration of
0.25 s to allow a sufficient range to perform the power-law fits
to the data while curtailing greater times, which are dominated
by boundary effects and the presence of neighboring vortices. The
criterion (4) excludes all but a fraction of possible pairs, namely
⇠ 5 ⇥ 104 forward and a similar number of reverse events.

It is important to note that we are assuming �(t) ' �
ij

(t);
however, the particles (i, j) may not be located as close as
desirable to the point of reconnection. We do not observe any
correlations between the measured quantities discussed below
and the initial particle separations or the values of ⇠

ij

as defined
in (4); nevertheless, more detailed theoretical analyses of vortex

Fig. 3. Contrast-enhanced negative images of particles trapped on reconnecting
vortices (top) along with velocity vectors (middle) and our interpretation of the
pre- and post-reconnection configurations of the vortices denoted by the solid
(red and blue) lines (bottom) with time measured from t0 at T = 1.90 K. The
down-pointing (green) vectors show the background drift that is subtracted from
all velocity vectors. The other (red and blue) velocity vectors (middle) correspond
to the (red and blue) marked vortices in the bottom images. The volume fraction
of hydrogen in these images (10�5) is higher than for all the pulsed counterflow
experiments discussed below. Reconnection is particularly unambiguous in the
onlinemovies in [38]. (For reviewing the colours in this figure, the reader is referred
to the web version of this article.)

reconnection are needed to reveal and quantify systematic effects
that may be caused by interpreting our measurements of �

ij

(t) as
good approximations to �(t).

4. Reconnection dynamics

4.1. Arbitrary power-law

We characterize the dynamics of reconnection by measuring
the separation �(t) ' �

ij

(t) of pairs of particles (i, j) that meet
the criterion (4). As mentioned above, previous dimensional and
theoretical arguments predict that �(t) behaves asymptotically
as a power-law with a scaling exponent ↵ = 0.5. To test this
hypothesis we fit our data to an arbitrary power-law of the form

�(t) = B|t � t0|↵. (5)
The values of B and t0 are determined by a linear least-squares
fit of [�(t)]1/↵ for 500 values of ↵ evenly-spaced in the interval
0 < ↵ < 2. For each set of {↵, B, t0} we compute the error in
the fit

�2(↵) ⌘ 1
n

nX

m=1


�fit
m

� �
m

�

�2

, (6)

where m denotes the movie frame, � = 4 µm (0.25 pixels) is
an estimate of the uncertainty of the particle positions, and n =
15, 20, 25 for data collected at 60, 80, or 100 frames per second,
respectively. We then choose the set of {↵, B, t0} that minimizes �2

(see Fig. 4).
The measured separations �(t) for four forward events are

shown in Fig. 5, along with the predicted asymptotic form �(t) =
(|t � t0|)1/2 for comparison. Fits to (5) are shown as solid lines
with the scaling exponent↵ given in the legend. Themost frequent
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function of the scaling exponent↵ for the event shown by the (red) squares in Fig. 9.
This event was observed at a temperature T = 1.90 K, but it should be stressed (as
also for Figs. 5, 8 and 9) that fully comparable plots can be found at all temperatures
in the range explored (1.70 K < T < 2.05 K). We choose the parameters of the
arbitrary power-law fit {↵, B, t0} that minimize �2 as a function of ↵ defined by (6).

10
–2

10
–3

10
–2

10
–1

10
–3

Fig. 5. Four forward events at T = 1.90 K well fit by the arbitrary power-law
expression (5). Symbols denote the measured separation �(t) of pairs of particles
on reconnecting vortices with an example error bar � = 4 µm while solid lines
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fitted exponents cluster around the predicted value of ↵ = 0.5 and
their corresponding amplitudes B are of order 1/2; however, there
is a broad spread in both quantities.

Distributions of ↵ for both the forward and reverse events,
determined from fifty distinct experimental heat pulses, are shown
in Fig. 6(a). The distributions are formed from events with �2 < 4.
Approximately 40% of the 50,000 pairs that meet the criterion in
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Fig. 6. (a) Normalized frequency distributions of ↵ computed for 19,150 forward
events (circles, black) and 18,900 reverse events (squares, red). Note that the data
displayed here (as also in Figs. 7, 10, 11, 13 and 14) have been collected from the
range of heat fluxes and temperatures described in Fig. 2. The mean values of ↵ for
forward and reverse events are 0.68 and 0.69, respectively. (b) Two-dimensional
contour diagram of �2 versus ↵ for forward events. The peak near ↵ = 0.5 with
low values of �2 indicates that (5) best describes events with dynamics near those
predicted in (3).

(4) meet this �2 criterion. Both distributions are asymmetric but
peaked within 10% of the predicted value ↵ = 0.5. Furthermore,
as shown in Fig. 6(b), events with fitted values near 0.5 typically
have lower values of �2.

The amplitudes B for the same events are strongly correlated
with the scaling exponent ↵ as shown in Fig. 7. We find that
events with ↵ ' 0.5 have amplitudes B'p

 , as expected from
dimensional analysis. However, deWaele and Aarts [27] measured
B ' p

/2⇡ in numerical simulations of quantized vortex re-
connection in superfluid 4He using line-vortex methods; this is
approximately 30% of our experimentally determined value. The
time-scales in our experiments differ greatly from those in the
numerical simulations; deWaele and Aarts determined their value
ofB for 0 < t0�t < 3µs,whereas our time-scales span1ms< |t�
t0| < 100 ms. In addition de Waele and Aarts quote an amplitude
only for two initially antiparallel vortices; other initial orientations
might yield different values for B. On the other hand, we observe
only a two-dimensional projection of each reconnection event,
which would lead us to underestimate B, potentially furthering
the discrepancy. Clearly, resolving the source of this discrepancy
warrants additional investigation.

The predicted scaling of ↵ = 0.5 is derived from the assump-
tion that the quantum of circulation  is the only relevant param-
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Fig. 2. Parameter space diagram summarizing the ranges of heat fluxes q and
temperatures T for the pulsed counterflows used to generate quantum turbulence.
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(t) is the two-dimensional projection of the position of
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that separated after (approached before) an event, which we label
as forward (reverse) events. We choose the temporal duration of
0.25 s to allow a sufficient range to perform the power-law fits
to the data while curtailing greater times, which are dominated
by boundary effects and the presence of neighboring vortices. The
criterion (4) excludes all but a fraction of possible pairs, namely
⇠ 5 ⇥ 104 forward and a similar number of reverse events.

It is important to note that we are assuming �(t) ' �
ij

(t);
however, the particles (i, j) may not be located as close as
desirable to the point of reconnection. We do not observe any
correlations between the measured quantities discussed below
and the initial particle separations or the values of ⇠

ij

as defined
in (4); nevertheless, more detailed theoretical analyses of vortex

Fig. 3. Contrast-enhanced negative images of particles trapped on reconnecting
vortices (top) along with velocity vectors (middle) and our interpretation of the
pre- and post-reconnection configurations of the vortices denoted by the solid
(red and blue) lines (bottom) with time measured from t0 at T = 1.90 K. The
down-pointing (green) vectors show the background drift that is subtracted from
all velocity vectors. The other (red and blue) velocity vectors (middle) correspond
to the (red and blue) marked vortices in the bottom images. The volume fraction
of hydrogen in these images (10�5) is higher than for all the pulsed counterflow
experiments discussed below. Reconnection is particularly unambiguous in the
onlinemovies in [38]. (For reviewing the colours in this figure, the reader is referred
to the web version of this article.)

reconnection are needed to reveal and quantify systematic effects
that may be caused by interpreting our measurements of �
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(t) as
good approximations to �(t).

4. Reconnection dynamics

4.1. Arbitrary power-law

We characterize the dynamics of reconnection by measuring
the separation �(t) ' �
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(t) of pairs of particles (i, j) that meet
the criterion (4). As mentioned above, previous dimensional and
theoretical arguments predict that �(t) behaves asymptotically
as a power-law with a scaling exponent ↵ = 0.5. To test this
hypothesis we fit our data to an arbitrary power-law of the form

�(t) = B|t � t0|↵. (5)
The values of B and t0 are determined by a linear least-squares
fit of [�(t)]1/↵ for 500 values of ↵ evenly-spaced in the interval
0 < ↵ < 2. For each set of {↵, B, t0} we compute the error in
the fit
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where m denotes the movie frame, � = 4 µm (0.25 pixels) is
an estimate of the uncertainty of the particle positions, and n =
15, 20, 25 for data collected at 60, 80, or 100 frames per second,
respectively. We then choose the set of {↵, B, t0} that minimizes �2

(see Fig. 4).
The measured separations �(t) for four forward events are

shown in Fig. 5, along with the predicted asymptotic form �(t) =
(|t � t0|)1/2 for comparison. Fits to (5) are shown as solid lines
with the scaling exponent↵ given in the legend. Themost frequent
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predicted in (3).
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peaked within 10% of the predicted value ↵ = 0.5. Furthermore,
as shown in Fig. 6(b), events with fitted values near 0.5 typically
have lower values of �2.

The amplitudes B for the same events are strongly correlated
with the scaling exponent ↵ as shown in Fig. 7. We find that
events with ↵ ' 0.5 have amplitudes B'p

 , as expected from
dimensional analysis. However, deWaele and Aarts [27] measured
B ' p

/2⇡ in numerical simulations of quantized vortex re-
connection in superfluid 4He using line-vortex methods; this is
approximately 30% of our experimentally determined value. The
time-scales in our experiments differ greatly from those in the
numerical simulations; deWaele and Aarts determined their value
ofB for 0 < t0�t < 3µs,whereas our time-scales span1ms< |t�
t0| < 100 ms. In addition de Waele and Aarts quote an amplitude
only for two initially antiparallel vortices; other initial orientations
might yield different values for B. On the other hand, we observe
only a two-dimensional projection of each reconnection event,
which would lead us to underestimate B, potentially furthering
the discrepancy. Clearly, resolving the source of this discrepancy
warrants additional investigation.

The predicted scaling of ↵ = 0.5 is derived from the assump-
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FIG. 14. Minimum distance between the filaments δ(t) (cm) vs (t0 − t) (s) before the reconnection (top) and vs (t − t0) after
the reconnection (bottom), corresponding to the Biot-Savart evolution of two parallel vortex rings shown in Figure 11 (solid
black line) and of two perpendicular vortex rings shown in Figure 12 (dotted-dashed blue line). t0 is the time at which the
reconnection takes place. The dashed red line expresses δ(t) =

√
κ(t0 − t)/(2π ) found by de Waele and Aarts27 (top) and

δ(t) =
√

πκ(t − t0) (bottom) as a guide to the eye.

The coefficient A however is not the same in all cases (although, for the approach of parallel
rings, it is in fair agreement with de Waele and Aarts27). A similar spread was observed by Tsubota
and Adachi.46 The speed at which the vortex lines move away from each other after the reconnection
is faster than the speed at which they approach each other; this effect is also visible in Figure 14,
and qualitatively consistent with the findings obtained with the GPE, see Figure 7.

IV. CONCLUSION

Hussain and Duraisamy9 have shown that, in ordinary incompressible viscous fluids, the mini-
mum separation δ between reconnecting vortex tubes behaves differently before (δ(t) ∼ (t0 − t)3/4)
and after (δ(t) ∼ (t − t0)2) the reconnection at t = t0. By solving the GPE we find a similar time
asymmetry, although with different power laws: δ(t) ∼ (t0 − t)0.4 and δ(t) ∼ (t − t0)0.7 respectively,
independently of the initial angle between the vortex lines. On the contrary, by solving the Biot-
Savart equation, we find that the scaling is time symmetric, with δ(t) ∼ |t0 − t|1/2 for both t < t0 and
t > t0.
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Numerical simulations of Borner’s experiment
Numerical simulations of Borner’s experiment

• Vortex lines = space curves s(t):
Biot–Savart law

ds

dt
= v

si

= � 

4⇡

I

L

(s� r)

|s� r|3 ⇥ dr

plus reconnection Ansatz

• 4He parameters:
Circulation  = 10�3

cm

2/s
Vortex core size ⇠ = 10�8

cm

• Initial condition:
(arbitrary) vortex lattice of N rings
(N = 7, 19, 37, 61, 91, · · · )

Initial condition
N = 19 rings

Carlo F. Barenghi Daniel Wacks, Andrew Baggaley, Lucy Sherwin, Yuri SergeevLarge-scale vortex rings

Begin at T=0
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Energy : E =
1

2

Z

V
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I
v · s⇥ s

0d⇠
0

Leapfrogging of N = 2 rings travelling up to 40 diameters
Symbols refer to di↵erent numerical resolutions �⇠

0

�E/E within 0.5%, 1% for largest bundles
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N = 3 rings: generalised leapfrogging
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N=3 rings: Generalised LeapfroggingN = 7 rings: generalised leapfrogging
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Larger N
Larger N

• Large N bundles of rings, over long time/distance, tend to
develop long wave perturbations

• These perturbations eventually induce vortex reconnections,
hence short waves perturbations which travel around the rings,
which induce further short wave perturbations

• Due to reconnections, the number N becomes ill defined, but
vortex bundles are robust, and travel at essentially constant speed
over a large distance even if turbulent

Carlo F. Barenghi Daniel Wacks, Andrew Baggaley, Lucy Sherwin, Yuri SergeevLarge-scale vortex rings
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FIG. 1: (Color online) Snapshots of the vortex ring of radius
R = 0.1 cm perturbed by N = 10 Kelvin waves of various
amplitude A taken during the motion of the vortex. In the left
panel (a) the amplitude of the Kelvin waves is small, A/R =
0.05, but the perturbed vortex ring (red color) already moves
slower than the unperturbed vortex (blue color). In the center
panel (b) the Kelvin waves have large amplitude, A/R = 0.35,
and the perturbed vortex ring moves backwards (negative z
direction) on average. The top right panel (c) shows the top
(xy) view of the large amplitude vortex at t = 0 s (blue) and
t = 26 s (red, outermost). For comparison, a nondisturbed
vortex is shown with dashed line (green). The lower right
panel (d) gives the averaged location of the ring as a function
of time. From top to bottom the curves correspond to A/R
= 0.0, 0.05, 0.10, . . . , 0.35.

indicates an instability of the vortex for large-amplitude
Kelvin waves or a numerical instability. What matters is
that the lifetime of the perturbed vortex and the spatial
range that it travels are much larger than the time scale
of the Kelvin oscillations and the size of the ring itself,
because it implies that the results which we describe are
physically significant and observable in a real system.

III. RESULTS

The first result of our numerical simulations is that
Kiknadze and Mamaladze’s prediction [20] obtained us-
ing the LIA is indeed correct. Integration of the motion
using the exact BSL shows that, provided the amplitude
of the Kelvin waves is large enough, the vortex ring moves
(on the average) backwards. This result is illustrated in
Figs. 1 and 2: the former shows snapshots of the ring at
different times as it travels, the latter gives the average
translational velocity of the ring along the z direction as
a function of the amplitude A of the Kelvin waves. It
is apparent that the translational velocity decreases with
increasing amplitude of the Kelvin waves and can even
become negative.

At some critical value of the amplitude A the trans-
lational velocity is zero and the perturbed vortex ring
hovers like a stationary helicopter. In the case of N = 10
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FIG. 2: Average translational velocity of the vortex ring as
a function of the initial oscillation amplitude A/R. Velocity
is scaled by the velocity of the unperturbed ring, vring. The
dash-dotted line corresponds to N = 20, solid line to N = 10,
and the dashed line to N = 6 in Eq. (6). Critical amplitudes,
above which the velocities become negative, are A/R = 0.085,
0.17, and 0.32, respectively.

Kelvin waves this happens when A/R = 0.17 approxi-
mately, which is quite close to the LIA prediction, A/R =
0.16. For N = 6 and N = 20 the critical value is, respec-
tively, A/R = 0.32 and A/R = 0.085. This dependence of
the critical amplitude on N is in approximate agreement
with the LIA prediction [20].

The backward velocity of the perturbed vortex ring
depends nonlinearly on the amplitude A of the Kelvin
waves. At large enough amplitude A this velocity will
slow down. This can be clearly seen in Fig. 2. The Kelvin
waves, that can be imagined to behave like small vortex
rings, tend to turn backwards, or more precisely, on the
direction opposite to the motion of the unperturbed vor-
tex ring. The larger the amplitude the larger fraction
of the ring velocity is oriented downwards. This is com-
pensated by the decrease in velocity of the single ring,
which is inversely proportional to the amplitude, result-
ing an optimum value at some amplitude. For N = 20
the optimum amplitude A ≈ 0.25R resulting a downward
velocity that is already slightly higher than the velocity
upwards of the unperturbed ring.

In addition to Kelvin waves, the translational velocity
of the vortex ring can be reduced by having an additional
swirl velocity along the vortex core. This was considered
by Widnall, Bliss, and Zalay [21]. However, this effect
does not matter in our limit of thin-core vortices, which
is relevant to superfluids.

The dispersion relation of large-amplitude Kelvin
waves can be obtained by tracking the motion of the vor-
tex on the y = 0 plane, for example. If the amplitude
A of the Kelvin wave is small, the vortex draws a circle
at approximately the same angular frequency that is ob-
tained analytically for small-amplitude Kelvin waves and
given by Eq. (1). In the long wavelength limit (k → 0)

Barenghi at al., 2008 
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mately, which is quite close to the LIA prediction, A/R =
0.16. For N = 6 and N = 20 the critical value is, respec-
tively, A/R = 0.32 and A/R = 0.085. This dependence of
the critical amplitude on N is in approximate agreement
with the LIA prediction [20].

The backward velocity of the perturbed vortex ring
depends nonlinearly on the amplitude A of the Kelvin
waves. At large enough amplitude A this velocity will
slow down. This can be clearly seen in Fig. 2. The Kelvin
waves, that can be imagined to behave like small vortex
rings, tend to turn backwards, or more precisely, on the
direction opposite to the motion of the unperturbed vor-
tex ring. The larger the amplitude the larger fraction
of the ring velocity is oriented downwards. This is com-
pensated by the decrease in velocity of the single ring,
which is inversely proportional to the amplitude, result-
ing an optimum value at some amplitude. For N = 20
the optimum amplitude A ≈ 0.25R resulting a downward
velocity that is already slightly higher than the velocity
upwards of the unperturbed ring.

In addition to Kelvin waves, the translational velocity
of the vortex ring can be reduced by having an additional
swirl velocity along the vortex core. This was considered
by Widnall, Bliss, and Zalay [21]. However, this effect
does not matter in our limit of thin-core vortices, which
is relevant to superfluids.

The dispersion relation of large-amplitude Kelvin
waves can be obtained by tracking the motion of the vor-
tex on the y = 0 plane, for example. If the amplitude
A of the Kelvin wave is small, the vortex draws a circle
at approximately the same angular frequency that is ob-
tained analytically for small-amplitude Kelvin waves and
given by Eq. (1). In the long wavelength limit (k → 0)
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FIG. 1: (Color online) Snapshots of the vortex ring of radius
R = 0.1 cm perturbed by N = 10 Kelvin waves of various
amplitude A taken during the motion of the vortex. In the left
panel (a) the amplitude of the Kelvin waves is small, A/R =
0.05, but the perturbed vortex ring (red color) already moves
slower than the unperturbed vortex (blue color). In the center
panel (b) the Kelvin waves have large amplitude, A/R = 0.35,
and the perturbed vortex ring moves backwards (negative z
direction) on average. The top right panel (c) shows the top
(xy) view of the large amplitude vortex at t = 0 s (blue) and
t = 26 s (red, outermost). For comparison, a nondisturbed
vortex is shown with dashed line (green). The lower right
panel (d) gives the averaged location of the ring as a function
of time. From top to bottom the curves correspond to A/R
= 0.0, 0.05, 0.10, . . . , 0.35.
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that the lifetime of the perturbed vortex and the spatial
range that it travels are much larger than the time scale
of the Kelvin oscillations and the size of the ring itself,
because it implies that the results which we describe are
physically significant and observable in a real system.
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which is inversely proportional to the amplitude, result-
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velocity that is already slightly higher than the velocity
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of the vortex ring can be reduced by having an additional
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by Widnall, Bliss, and Zalay [21]. However, this effect
does not matter in our limit of thin-core vortices, which
is relevant to superfluids.
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waves can be obtained by tracking the motion of the vor-
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VelocityVelocity

One vortex ring:

v =


4⇡R
(ln (8R/⇠)� 1/2)

Model bundle of N rings by
 ! N and ⇠ ! a

v =
N

4⇡R
(ln (8R/a)� 1/2)

Black squares and diamonds: Borner’s experiments
Red circles: numerical simulations N  1027
Blue line: model
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N=91 BundleN = 91 bundle

�x/D = 2.65 �x/D = 5.17 �x/D = 10.04
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Cross-sectionCross section

The long-term instability is probably due to ”core” deformation:
the bundle does not remain circular, but acquires a D-shape
and becomes stretched

N = 91

Initial After half a leapfrog

See classical stability of vortex rings
(Moore, Sa↵man, Widnall, Fukumoto, Mo↵att, etc)
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What about the effect of friction?E↵ect of friction

At T > 0 friction modifies vortex dynamics:
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Effect of frictionE↵ect of friction

Assume v

ext

n

= v

ext

s

= 0

Decay of a single ring

Decay of N = 19 bundle
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Effect of friction

• Clearly not in agreement with Borner’s and others results 
at T>0 

• A solution of the puzzle: 
• The piston which creates the superfluid bundle must 

generate a normal fluid vortex ring too ! 
• We add to the equation of motion a normal fluid ring 

(with solid body rotating core) placed at the moving 
centre of the superfluid bundle. This term          
effectively cancels the friction and stabilizes the bundle. 

vn 6= 0
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FIG. 1. (Color online) Motion of 3 vortex rings (initial condition: R = 0.0896 cm, a = 0.0075 cm) at zero temperature (no friction). Left:
t = 0; middle: t = 3.6; right: t = 7.2 s. The vortex bundle is stable, and each ring leapfrogs around the others. Each vortex line is represented
by a tube [23] whose thickness if for the sake of visualization only (vortex lines have infinitesimal thickness).

FIG. 2. (Color online) Motion of 3 vortex rings in the presence of friction at T = 2.02 K with vn = 0. The initial condition is the same as
in Fig. 1. Left: t = 0; middle: t = 3.6; right: t = 7.2 s. The vortex bundle decays: one by one, all vortex rings shrink and vanish on the axis of
propagation.

FIG. 3. (Color online) Motion of 3 vortex rings in the presence of friction at T = 2.02 K and normal-fluid ring (vn ̸= 0). The initial
condition is the same as in Fig. 1. Left: t = 0; middle: t = 3.6; right: t = 7.2 s. It is apparent that the superfluid vortex bundle moves in a stable
way as in the absence of friction (Fig. 1); the individual rings leapfrog around each other.
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TABLE III. Evolution at T = 2.02 K in the presence of friction
and vn.

N t (s) !z/D "/"0 c̄/c̄0 v/v0

2 50 11.87 0.97 1.02 0.99
3 40 11.37 0.96 1.07 1.10
7 30 10.13 1.52 1.18 0.69
19 60 10.21 0.80 1.08 0.64

The result holds true for bundles with N > 3. Table I
summarizes the initial conditions of our numerical simulations,
listing the large radius R and the small radius a of the torus,
their ratio R/a, the initial vortex length λ0 (which is not
exactly equal to 2πRN because the rings within the torus
have different radii), the initial average curvature (which, for
the same reason, is not exactly equal to 1/R), and the initial
intervortex distance ℓ0. These initial conditions are chosen
to best fit Borner’s experiment with the same ℓ0; see the
discussion in Ref. [16].

Tables II and III show the results of our numerical simula-
tions respectively at T = 0 (no friction) and T = 2.02 K (with
friction and normal-fluid vortex ring vn). The simulations are
stopped when a vortex bundle has traveled a distance of the or-
der of 10 diameters, as observed in the experiments. The tables
list the time t at which we stop the simulation, the distance
traveled !z by the center of vorticity of each bundle in terms
of the initial diameter 2R, the vortex length " at time t in terms
of the initial vortex length "0, the average curvature c̄ at time
t in terms of the initial average curvature c̄0, and the speed v
of the vortex bundle at time t in terms of the initial speed v0.

The main result is that, in the presence of the normal-fluid
vortex ring, a superfluid bundle travels a significant distance
despite the friction, in agreement with the experiment of
Borner et al. We find that, with or without friction, the smaller
bundles (small N ) tend to remain circular (at least within
the time scales of our simulations); the larger bundles (large
N ) develop instabilities which induce vortex reconnections,
changing the actual number of vortex rings in the bundle, and
causing Kelvin waves. Interestingly, vortex reconnections have
no significant effect on the coherence of a bundle—a turbulent
vortex bundle only seems to travel somewhat slower.

More precisely, the N = 7 bundle has the first reconnection
at t = 26.98 s for T = 0 and at about the same time (t =
24.06 s) for T = 2.02 K, whereas the first reconnection in the

FIG. 4. (Color online) Vortex bundle at T = 0 (no friction). Top:
Side (left) and rear (right) view of vortex bundle with N = 19 rings
at time t = 40 s.

FIG. 5. (Color online) Vortex bundle at T = 2.02 K in the pres-
ence of friction and normal-fluid ring vn. Top: Side (left) and rear
(right) view of vortex bundle with N = 19 rings at time t = 80 s.

evolution of the N = 19 bundle at T = 0 occurs much sooner
(t = 19.89 s) than at T = 2.02 K (t = 45.76 s). The main
difference between the appearance of the vortex bundles at
T = 0 and T = 2.02 K is the wavelengths which seem excited:
low temperatures favor short waves, high temperatures long
waves, as shown in Figs. 4 and 5, respectively. The increase
of average curvature reflects this effect. This is consistent
with the observation made by Tsubota et al. [25] that, at low
temperatures, turbulent vortex tangles tend to be more wiggly.

IV. CONCLUSION

Practical computer limitations prevent us from studying
vortex bundles with thousands of rings as in the experiments.
Nevertheless, exploring in detail what happens to small
bundles gives us insight into the physics of the problem.

Our results suggest that bundles of superfluid vortex rings
can travel coherently a significant distance, at least one order
of magnitude larger than their diameter, in agreement with
experimental observations. The effect seems temperature inde-
pendent. The normal-fluid vortical structure which is generated
by the piston-cylinder setup has been observed to travel
together with the superfluid vortical structure. The coexistence
of superfluid and normal-fluid structures effectively inhibits
the friction between the superfluid vortices and the normal
fluid from dissipating the bundles, and this effect explains
the experimental observation of Borner et al. [10–12] that
large-scale vortex rings remain stable at nonzero temperatures.

To put the large-scale vortex ring experiments in a wider
context, it is worth recalling a related problem: the “spon-
taneous” appearance of bundles of vortices in superfluid
turbulence (opposed to the “forced” generation of bundles of
vortices by the piston-cylinder arrangement described here).
In the absence of any direct experimental observation, the
existence and the nonexistence of such bundles [26–30] or of
partial polarization of vortex lines [31,32] has been discussed
in the literature, particularly with respect to the Kolmogorov
spectrum [33,34]. In this context, the vortex rings generated
by the piston-cylinder setup provide a “forced” but controlled
method to study the coupling of normal fluid and superfluid.

Finally, we notice that the detailed mechanism of generation
of the double (normal fluid and superfluid) vortex ring structure
at the hole of the cylinder is an interesting problem of two-fluid
hydrodynamics which would be worth studying.
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To summariseConclusion (part 1)

• Large-scale bundles of superfluid vortex rings are indeed
su�ciently robust to travel a distance of at least 10 diameters as
observed in experiments

• Generalised leapfrogging motion

• Results hold true in the presence of friction (high T ):
the corresponding (continuous) large-scale normal fluid structure
prevents the superfluid rings from shrinking.

• Implications for quantum turbulence ?
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Conclusions

• Our results suggest that bundles of superfluid vortex rings can 
travel coherently a significant distance, at least one order of 
magnitude larger than their diameter at both zero and finite 
temperatures. 

• In the absence of any direct experimental observation, the existence 
(and the nonexistence) of quantised vortex bundles has generated 
much discussion, particularly with respect to the quasi-classical 
regime. 

• The vortex rings generated by the piston-cylinder setup provide a 
“forced” but controlled method to study the coupling of the normal 
and super fluid components. 

•  The detailed mechanism of the generation of the double vortex 
ring structure at the hole of the cylinder is an interesting problem 
of two-fluid hydrodynamics which would be worth studying.



Conclusions (ctd): Perhaps it is time to revisit 
macroscopic vortex rings experimentally again

2

3He atoms, they form part of the normal fluid and can
be used to trace its motion. The molecules are scattered
by the vortices, but this scattering simply contributes to
the total mutual friction. In a recent experiment [22],
we tagged a line of He∗2 tracers in a counterflow chan-
nel by laser-pumping the molecules to the first excited
vibrational level. However, owing to a low (4%) tagging
efficiency [20], acceptable images required averaging over
many realizations of the turbulence. A rapid growth of
the averaged line-width was observed at higher heat cur-
rents, supporting the idea that the normal fluid can be-
come turbulent [22]. However, averaging means the loss
of much detailed information. In this paper, we describe
an innovative experiment in which a thin line of He∗2
molecules is created in helium by field-ionization with a
well-focused femtosecond laser beam. The molecule den-
sity so created is sufficient to allow single-shot imaging
of the tracer lines [24].
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FIG. 1: (color online). (a) Schematic diagram of the exper-
imental setup. A stainless steel counterflow channel (square
cross-section: 9.5 mm2; length 300 mm) is attached to a
pumped helium bath, the temperature of which is controlled
to be 1.83 K for the whole experiment. A planar heater at the
lower end of the channel drives the counterflow. The femtosec-
ond laser at 800 nm for tracer-line creation and the imaging
laser at 905 nm for tracer-line visualization are combined to
pass through a pair of indium-sealed sapphire windows on the
channel. An intensified CCD camera views the tracer lines
from a front window perpendicular to both the laser beams.
(b) Fluorescence images of the He∗2 molecular tracers created
via femtosecond-laser field-ionization in liquid helium. With
femtosecond-laser pulse energy above about 60 µJ, dielectric
breakdown occurs in helium and isolated clusters of He∗2 trac-
ers are produced. Slightly below the breakdown pulse energy,
a thin line of He∗2 tracers across the full width of the channel
can be produced.

A schematic diagram of the experiment is shown in
Fig. 1 (a). The pair of second sound porous mem-
brane transducers allows a measurement of the attenua-
tion of second sound in the heat current and so a knowl-

edge of the density of vortex lines [4]. The creation of
He∗2 molecules in helium through field-ionization requires
laser intensities ∼1013 W/cm2, achieved by focussing a
35-femtosecond pulsed laser (repetition rate 5 kHz) into
the channel, with a beam waist about 110 microns in di-
ameter. Typical fluorescence images of the He∗2 molecules
created in liquid helium at 1.83 K are shown in Fig. 1 (b).
When the femtosecond-laser pulse energy is above about
60 µJ, dielectric breakdown in helium occurs and iso-
lated clusters of He∗2 tracers are produced. Slightly be-
low the breakdown pulse energy, a thin line of He∗2 trac-
ers across the channel can be produced by controlled
electron-avalanche ionization [25]. Several pulses are re-
quired to produce an adequate tracer concentration.
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FIG. 2: (color online). Typical fluorescent images showing the
motion of He∗2 tracer lines in thermal counterflow. At heat
fluxes below about 50 mW/cm2, an initially straight tracer
line always deforms to a nearly parabolic shape, indicating
a laminar Poiseuille velocity profile of the normal fluid. As
the heat flux is increased to above about 60 mW/cm2, the
tail part of the tracer line becomes flattened. Above about 80
mW/cm2, the tracer line distorts randomly, indicating tur-
bulent flow in the normal fluid. The images shown in the
laminar flow regime are averaged over 9 single-shots.

In a typical run, we activate the heater for about 20 s,
and then send in (typically 10) femtosecond-laser pulses
to create a tracer line. The tracer line moves with the


